Properties

Label 1519.4.a.h.1.18
Level $1519$
Weight $4$
Character 1519.1
Self dual yes
Analytic conductor $89.624$
Analytic rank $1$
Dimension $23$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1519,4,Mod(1,1519)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1519, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1519.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1519 = 7^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1519.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [23,5,-6,91,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.6239012987\)
Analytic rank: \(1\)
Dimension: \(23\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.18
Character \(\chi\) \(=\) 1519.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.44360 q^{2} +1.20269 q^{3} +3.85839 q^{4} +17.2945 q^{5} +4.14160 q^{6} -14.2621 q^{8} -25.5535 q^{9} +59.5555 q^{10} -36.6522 q^{11} +4.64046 q^{12} +9.94450 q^{13} +20.8000 q^{15} -79.9799 q^{16} -53.2459 q^{17} -87.9961 q^{18} +74.3481 q^{19} +66.7290 q^{20} -126.216 q^{22} -82.5557 q^{23} -17.1529 q^{24} +174.101 q^{25} +34.2449 q^{26} -63.2058 q^{27} -26.6505 q^{29} +71.6270 q^{30} -31.0000 q^{31} -161.322 q^{32} -44.0814 q^{33} -183.358 q^{34} -98.5954 q^{36} -439.883 q^{37} +256.025 q^{38} +11.9602 q^{39} -246.656 q^{40} +388.103 q^{41} -86.3249 q^{43} -141.418 q^{44} -441.937 q^{45} -284.289 q^{46} -475.285 q^{47} -96.1914 q^{48} +599.535 q^{50} -64.0385 q^{51} +38.3697 q^{52} +108.315 q^{53} -217.655 q^{54} -633.884 q^{55} +89.4180 q^{57} -91.7736 q^{58} -185.027 q^{59} +80.2545 q^{60} -789.250 q^{61} -106.752 q^{62} +84.3094 q^{64} +171.986 q^{65} -151.799 q^{66} -778.075 q^{67} -205.443 q^{68} -99.2892 q^{69} +692.485 q^{71} +364.446 q^{72} -174.777 q^{73} -1514.78 q^{74} +209.390 q^{75} +286.864 q^{76} +41.1861 q^{78} +325.641 q^{79} -1383.22 q^{80} +613.928 q^{81} +1336.47 q^{82} +880.935 q^{83} -920.863 q^{85} -297.269 q^{86} -32.0523 q^{87} +522.737 q^{88} -1196.89 q^{89} -1521.85 q^{90} -318.532 q^{92} -37.2835 q^{93} -1636.69 q^{94} +1285.82 q^{95} -194.021 q^{96} +663.731 q^{97} +936.594 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 23 q + 5 q^{2} - 6 q^{3} + 91 q^{4} - 40 q^{5} - 36 q^{6} + 39 q^{8} + 211 q^{9} - 40 q^{10} + 44 q^{11} - 414 q^{12} + 20 q^{13} + 523 q^{16} - 306 q^{17} + 51 q^{18} - 296 q^{19} - 400 q^{20} - 326 q^{22}+ \cdots - 3456 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.44360 1.21750 0.608748 0.793363i \(-0.291672\pi\)
0.608748 + 0.793363i \(0.291672\pi\)
\(3\) 1.20269 0.231458 0.115729 0.993281i \(-0.463080\pi\)
0.115729 + 0.993281i \(0.463080\pi\)
\(4\) 3.85839 0.482298
\(5\) 17.2945 1.54687 0.773435 0.633875i \(-0.218537\pi\)
0.773435 + 0.633875i \(0.218537\pi\)
\(6\) 4.14160 0.281800
\(7\) 0 0
\(8\) −14.2621 −0.630300
\(9\) −25.5535 −0.946427
\(10\) 59.5555 1.88331
\(11\) −36.6522 −1.00464 −0.502321 0.864681i \(-0.667521\pi\)
−0.502321 + 0.864681i \(0.667521\pi\)
\(12\) 4.64046 0.111632
\(13\) 9.94450 0.212162 0.106081 0.994357i \(-0.466170\pi\)
0.106081 + 0.994357i \(0.466170\pi\)
\(14\) 0 0
\(15\) 20.8000 0.358036
\(16\) −79.9799 −1.24969
\(17\) −53.2459 −0.759648 −0.379824 0.925059i \(-0.624016\pi\)
−0.379824 + 0.925059i \(0.624016\pi\)
\(18\) −87.9961 −1.15227
\(19\) 74.3481 0.897718 0.448859 0.893603i \(-0.351831\pi\)
0.448859 + 0.893603i \(0.351831\pi\)
\(20\) 66.7290 0.746053
\(21\) 0 0
\(22\) −126.216 −1.22315
\(23\) −82.5557 −0.748437 −0.374218 0.927341i \(-0.622089\pi\)
−0.374218 + 0.927341i \(0.622089\pi\)
\(24\) −17.1529 −0.145888
\(25\) 174.101 1.39281
\(26\) 34.2449 0.258307
\(27\) −63.2058 −0.450517
\(28\) 0 0
\(29\) −26.6505 −0.170651 −0.0853253 0.996353i \(-0.527193\pi\)
−0.0853253 + 0.996353i \(0.527193\pi\)
\(30\) 71.6270 0.435908
\(31\) −31.0000 −0.179605
\(32\) −161.322 −0.891189
\(33\) −44.0814 −0.232533
\(34\) −183.358 −0.924869
\(35\) 0 0
\(36\) −98.5954 −0.456460
\(37\) −439.883 −1.95450 −0.977248 0.212099i \(-0.931970\pi\)
−0.977248 + 0.212099i \(0.931970\pi\)
\(38\) 256.025 1.09297
\(39\) 11.9602 0.0491067
\(40\) −246.656 −0.974993
\(41\) 388.103 1.47833 0.739165 0.673524i \(-0.235220\pi\)
0.739165 + 0.673524i \(0.235220\pi\)
\(42\) 0 0
\(43\) −86.3249 −0.306149 −0.153075 0.988215i \(-0.548918\pi\)
−0.153075 + 0.988215i \(0.548918\pi\)
\(44\) −141.418 −0.484537
\(45\) −441.937 −1.46400
\(46\) −284.289 −0.911219
\(47\) −475.285 −1.47505 −0.737526 0.675319i \(-0.764006\pi\)
−0.737526 + 0.675319i \(0.764006\pi\)
\(48\) −96.1914 −0.289251
\(49\) 0 0
\(50\) 599.535 1.69574
\(51\) −64.0385 −0.175827
\(52\) 38.3697 0.102325
\(53\) 108.315 0.280720 0.140360 0.990101i \(-0.455174\pi\)
0.140360 + 0.990101i \(0.455174\pi\)
\(54\) −217.655 −0.548503
\(55\) −633.884 −1.55405
\(56\) 0 0
\(57\) 89.4180 0.207784
\(58\) −91.7736 −0.207767
\(59\) −185.027 −0.408278 −0.204139 0.978942i \(-0.565439\pi\)
−0.204139 + 0.978942i \(0.565439\pi\)
\(60\) 80.2545 0.172680
\(61\) −789.250 −1.65661 −0.828304 0.560279i \(-0.810694\pi\)
−0.828304 + 0.560279i \(0.810694\pi\)
\(62\) −106.752 −0.218669
\(63\) 0 0
\(64\) 84.3094 0.164667
\(65\) 171.986 0.328187
\(66\) −151.799 −0.283108
\(67\) −778.075 −1.41876 −0.709381 0.704825i \(-0.751025\pi\)
−0.709381 + 0.704825i \(0.751025\pi\)
\(68\) −205.443 −0.366377
\(69\) −99.2892 −0.173232
\(70\) 0 0
\(71\) 692.485 1.15751 0.578753 0.815503i \(-0.303540\pi\)
0.578753 + 0.815503i \(0.303540\pi\)
\(72\) 364.446 0.596533
\(73\) −174.777 −0.280221 −0.140110 0.990136i \(-0.544746\pi\)
−0.140110 + 0.990136i \(0.544746\pi\)
\(74\) −1514.78 −2.37959
\(75\) 209.390 0.322378
\(76\) 286.864 0.432968
\(77\) 0 0
\(78\) 41.1861 0.0597873
\(79\) 325.641 0.463766 0.231883 0.972744i \(-0.425511\pi\)
0.231883 + 0.972744i \(0.425511\pi\)
\(80\) −1383.22 −1.93310
\(81\) 613.928 0.842151
\(82\) 1336.47 1.79986
\(83\) 880.935 1.16500 0.582501 0.812830i \(-0.302074\pi\)
0.582501 + 0.812830i \(0.302074\pi\)
\(84\) 0 0
\(85\) −920.863 −1.17508
\(86\) −297.269 −0.372736
\(87\) −32.0523 −0.0394985
\(88\) 522.737 0.633226
\(89\) −1196.89 −1.42550 −0.712752 0.701416i \(-0.752552\pi\)
−0.712752 + 0.701416i \(0.752552\pi\)
\(90\) −1521.85 −1.78242
\(91\) 0 0
\(92\) −318.532 −0.360970
\(93\) −37.2835 −0.0415712
\(94\) −1636.69 −1.79587
\(95\) 1285.82 1.38865
\(96\) −194.021 −0.206273
\(97\) 663.731 0.694760 0.347380 0.937724i \(-0.387071\pi\)
0.347380 + 0.937724i \(0.387071\pi\)
\(98\) 0 0
\(99\) 936.594 0.950821
\(100\) 671.749 0.671749
\(101\) −610.336 −0.601294 −0.300647 0.953735i \(-0.597203\pi\)
−0.300647 + 0.953735i \(0.597203\pi\)
\(102\) −220.523 −0.214069
\(103\) 574.420 0.549508 0.274754 0.961515i \(-0.411404\pi\)
0.274754 + 0.961515i \(0.411404\pi\)
\(104\) −141.829 −0.133726
\(105\) 0 0
\(106\) 372.993 0.341776
\(107\) −1212.88 −1.09583 −0.547913 0.836536i \(-0.684577\pi\)
−0.547913 + 0.836536i \(0.684577\pi\)
\(108\) −243.872 −0.217284
\(109\) 2140.31 1.88078 0.940389 0.340101i \(-0.110461\pi\)
0.940389 + 0.340101i \(0.110461\pi\)
\(110\) −2182.84 −1.89205
\(111\) −529.045 −0.452385
\(112\) 0 0
\(113\) −1061.77 −0.883916 −0.441958 0.897036i \(-0.645716\pi\)
−0.441958 + 0.897036i \(0.645716\pi\)
\(114\) 307.920 0.252977
\(115\) −1427.76 −1.15774
\(116\) −102.828 −0.0823045
\(117\) −254.117 −0.200796
\(118\) −637.157 −0.497077
\(119\) 0 0
\(120\) −296.651 −0.225670
\(121\) 12.3870 0.00930655
\(122\) −2717.86 −2.01691
\(123\) 466.769 0.342172
\(124\) −119.610 −0.0866233
\(125\) 849.182 0.607626
\(126\) 0 0
\(127\) −628.574 −0.439189 −0.219594 0.975591i \(-0.570473\pi\)
−0.219594 + 0.975591i \(0.570473\pi\)
\(128\) 1580.91 1.09167
\(129\) −103.822 −0.0708609
\(130\) 592.250 0.399567
\(131\) 896.367 0.597832 0.298916 0.954279i \(-0.403375\pi\)
0.298916 + 0.954279i \(0.403375\pi\)
\(132\) −170.083 −0.112150
\(133\) 0 0
\(134\) −2679.38 −1.72734
\(135\) −1093.12 −0.696892
\(136\) 759.396 0.478807
\(137\) −1213.83 −0.756967 −0.378484 0.925608i \(-0.623554\pi\)
−0.378484 + 0.925608i \(0.623554\pi\)
\(138\) −341.912 −0.210909
\(139\) 1043.46 0.636730 0.318365 0.947968i \(-0.396866\pi\)
0.318365 + 0.947968i \(0.396866\pi\)
\(140\) 0 0
\(141\) −571.622 −0.341413
\(142\) 2384.64 1.40926
\(143\) −364.488 −0.213147
\(144\) 2043.77 1.18274
\(145\) −460.908 −0.263974
\(146\) −601.862 −0.341168
\(147\) 0 0
\(148\) −1697.24 −0.942650
\(149\) −2045.14 −1.12446 −0.562229 0.826982i \(-0.690056\pi\)
−0.562229 + 0.826982i \(0.690056\pi\)
\(150\) 721.057 0.392494
\(151\) 685.779 0.369589 0.184794 0.982777i \(-0.440838\pi\)
0.184794 + 0.982777i \(0.440838\pi\)
\(152\) −1060.36 −0.565832
\(153\) 1360.62 0.718952
\(154\) 0 0
\(155\) −536.131 −0.277826
\(156\) 46.1470 0.0236841
\(157\) 1223.12 0.621758 0.310879 0.950450i \(-0.399377\pi\)
0.310879 + 0.950450i \(0.399377\pi\)
\(158\) 1121.38 0.564633
\(159\) 130.269 0.0649751
\(160\) −2790.00 −1.37855
\(161\) 0 0
\(162\) 2114.12 1.02532
\(163\) 2828.71 1.35927 0.679636 0.733549i \(-0.262138\pi\)
0.679636 + 0.733549i \(0.262138\pi\)
\(164\) 1497.45 0.712996
\(165\) −762.368 −0.359699
\(166\) 3033.59 1.41839
\(167\) 1525.36 0.706801 0.353401 0.935472i \(-0.385025\pi\)
0.353401 + 0.935472i \(0.385025\pi\)
\(168\) 0 0
\(169\) −2098.11 −0.954987
\(170\) −3171.08 −1.43065
\(171\) −1899.86 −0.849624
\(172\) −333.075 −0.147655
\(173\) 2371.34 1.04214 0.521068 0.853515i \(-0.325534\pi\)
0.521068 + 0.853515i \(0.325534\pi\)
\(174\) −110.375 −0.0480893
\(175\) 0 0
\(176\) 2931.44 1.25549
\(177\) −222.530 −0.0944994
\(178\) −4121.61 −1.73555
\(179\) −1616.89 −0.675150 −0.337575 0.941299i \(-0.609607\pi\)
−0.337575 + 0.941299i \(0.609607\pi\)
\(180\) −1705.16 −0.706085
\(181\) 2311.94 0.949420 0.474710 0.880142i \(-0.342553\pi\)
0.474710 + 0.880142i \(0.342553\pi\)
\(182\) 0 0
\(183\) −949.226 −0.383436
\(184\) 1177.41 0.471740
\(185\) −7607.58 −3.02335
\(186\) −128.389 −0.0506128
\(187\) 1951.58 0.763175
\(188\) −1833.83 −0.711415
\(189\) 0 0
\(190\) 4427.84 1.69068
\(191\) −705.215 −0.267160 −0.133580 0.991038i \(-0.542647\pi\)
−0.133580 + 0.991038i \(0.542647\pi\)
\(192\) 101.398 0.0381135
\(193\) 1395.98 0.520646 0.260323 0.965522i \(-0.416171\pi\)
0.260323 + 0.965522i \(0.416171\pi\)
\(194\) 2285.63 0.845868
\(195\) 206.846 0.0759618
\(196\) 0 0
\(197\) 3745.35 1.35454 0.677272 0.735733i \(-0.263162\pi\)
0.677272 + 0.735733i \(0.263162\pi\)
\(198\) 3225.26 1.15762
\(199\) −2443.91 −0.870574 −0.435287 0.900292i \(-0.643353\pi\)
−0.435287 + 0.900292i \(0.643353\pi\)
\(200\) −2483.04 −0.877888
\(201\) −935.786 −0.328384
\(202\) −2101.75 −0.732074
\(203\) 0 0
\(204\) −247.085 −0.0848011
\(205\) 6712.07 2.28679
\(206\) 1978.07 0.669024
\(207\) 2109.59 0.708341
\(208\) −795.361 −0.265136
\(209\) −2725.03 −0.901885
\(210\) 0 0
\(211\) −3053.47 −0.996252 −0.498126 0.867105i \(-0.665978\pi\)
−0.498126 + 0.867105i \(0.665978\pi\)
\(212\) 417.920 0.135391
\(213\) 832.848 0.267914
\(214\) −4176.67 −1.33416
\(215\) −1492.95 −0.473574
\(216\) 901.445 0.283961
\(217\) 0 0
\(218\) 7370.38 2.28984
\(219\) −210.203 −0.0648594
\(220\) −2445.77 −0.749517
\(221\) −529.504 −0.161169
\(222\) −1821.82 −0.550777
\(223\) −5229.07 −1.57024 −0.785122 0.619342i \(-0.787400\pi\)
−0.785122 + 0.619342i \(0.787400\pi\)
\(224\) 0 0
\(225\) −4448.90 −1.31819
\(226\) −3656.30 −1.07616
\(227\) 5787.06 1.69207 0.846037 0.533125i \(-0.178982\pi\)
0.846037 + 0.533125i \(0.178982\pi\)
\(228\) 345.009 0.100214
\(229\) 813.703 0.234808 0.117404 0.993084i \(-0.462543\pi\)
0.117404 + 0.993084i \(0.462543\pi\)
\(230\) −4916.64 −1.40954
\(231\) 0 0
\(232\) 380.091 0.107561
\(233\) −2348.65 −0.660365 −0.330183 0.943917i \(-0.607110\pi\)
−0.330183 + 0.943917i \(0.607110\pi\)
\(234\) −875.078 −0.244468
\(235\) −8219.83 −2.28171
\(236\) −713.904 −0.196912
\(237\) 391.647 0.107343
\(238\) 0 0
\(239\) −928.497 −0.251295 −0.125647 0.992075i \(-0.540101\pi\)
−0.125647 + 0.992075i \(0.540101\pi\)
\(240\) −1663.59 −0.447433
\(241\) −6720.53 −1.79630 −0.898148 0.439693i \(-0.855087\pi\)
−0.898148 + 0.439693i \(0.855087\pi\)
\(242\) 42.6560 0.0113307
\(243\) 2444.92 0.645440
\(244\) −3045.23 −0.798979
\(245\) 0 0
\(246\) 1607.37 0.416593
\(247\) 739.355 0.190462
\(248\) 442.124 0.113205
\(249\) 1059.50 0.269650
\(250\) 2924.25 0.739782
\(251\) −5518.02 −1.38763 −0.693814 0.720154i \(-0.744071\pi\)
−0.693814 + 0.720154i \(0.744071\pi\)
\(252\) 0 0
\(253\) 3025.85 0.751912
\(254\) −2164.56 −0.534711
\(255\) −1107.52 −0.271982
\(256\) 4769.54 1.16444
\(257\) −1339.15 −0.325035 −0.162518 0.986706i \(-0.551961\pi\)
−0.162518 + 0.986706i \(0.551961\pi\)
\(258\) −357.523 −0.0862729
\(259\) 0 0
\(260\) 663.587 0.158284
\(261\) 681.013 0.161508
\(262\) 3086.73 0.727858
\(263\) 1863.57 0.436929 0.218465 0.975845i \(-0.429895\pi\)
0.218465 + 0.975845i \(0.429895\pi\)
\(264\) 628.692 0.146566
\(265\) 1873.25 0.434238
\(266\) 0 0
\(267\) −1439.49 −0.329945
\(268\) −3002.11 −0.684266
\(269\) −3911.21 −0.886509 −0.443254 0.896396i \(-0.646176\pi\)
−0.443254 + 0.896396i \(0.646176\pi\)
\(270\) −3764.25 −0.848463
\(271\) 3975.48 0.891119 0.445560 0.895252i \(-0.353005\pi\)
0.445560 + 0.895252i \(0.353005\pi\)
\(272\) 4258.60 0.949322
\(273\) 0 0
\(274\) −4179.95 −0.921605
\(275\) −6381.20 −1.39928
\(276\) −383.096 −0.0835495
\(277\) −1805.31 −0.391592 −0.195796 0.980645i \(-0.562729\pi\)
−0.195796 + 0.980645i \(0.562729\pi\)
\(278\) 3593.27 0.775216
\(279\) 792.159 0.169983
\(280\) 0 0
\(281\) −474.789 −0.100795 −0.0503977 0.998729i \(-0.516049\pi\)
−0.0503977 + 0.998729i \(0.516049\pi\)
\(282\) −1968.44 −0.415669
\(283\) −2824.17 −0.593214 −0.296607 0.955000i \(-0.595855\pi\)
−0.296607 + 0.955000i \(0.595855\pi\)
\(284\) 2671.88 0.558263
\(285\) 1546.44 0.321416
\(286\) −1255.15 −0.259506
\(287\) 0 0
\(288\) 4122.36 0.843445
\(289\) −2077.88 −0.422934
\(290\) −1587.18 −0.321388
\(291\) 798.265 0.160808
\(292\) −674.357 −0.135150
\(293\) −3036.28 −0.605396 −0.302698 0.953086i \(-0.597887\pi\)
−0.302698 + 0.953086i \(0.597887\pi\)
\(294\) 0 0
\(295\) −3199.95 −0.631553
\(296\) 6273.64 1.23192
\(297\) 2316.63 0.452609
\(298\) −7042.64 −1.36902
\(299\) −820.975 −0.158790
\(300\) 807.909 0.155482
\(301\) 0 0
\(302\) 2361.55 0.449973
\(303\) −734.047 −0.139175
\(304\) −5946.36 −1.12187
\(305\) −13649.7 −2.56256
\(306\) 4685.43 0.875321
\(307\) 5357.71 0.996029 0.498014 0.867169i \(-0.334063\pi\)
0.498014 + 0.867169i \(0.334063\pi\)
\(308\) 0 0
\(309\) 690.851 0.127188
\(310\) −1846.22 −0.338252
\(311\) −2498.80 −0.455608 −0.227804 0.973707i \(-0.573154\pi\)
−0.227804 + 0.973707i \(0.573154\pi\)
\(312\) −170.577 −0.0309520
\(313\) 4948.73 0.893671 0.446835 0.894616i \(-0.352551\pi\)
0.446835 + 0.894616i \(0.352551\pi\)
\(314\) 4211.95 0.756988
\(315\) 0 0
\(316\) 1256.45 0.223673
\(317\) −1670.35 −0.295951 −0.147975 0.988991i \(-0.547276\pi\)
−0.147975 + 0.988991i \(0.547276\pi\)
\(318\) 448.596 0.0791069
\(319\) 976.799 0.171443
\(320\) 1458.09 0.254718
\(321\) −1458.72 −0.253638
\(322\) 0 0
\(323\) −3958.73 −0.681950
\(324\) 2368.77 0.406168
\(325\) 1731.35 0.295501
\(326\) 9740.94 1.65491
\(327\) 2574.14 0.435322
\(328\) −5535.15 −0.931792
\(329\) 0 0
\(330\) −2625.29 −0.437932
\(331\) −8848.24 −1.46931 −0.734657 0.678439i \(-0.762657\pi\)
−0.734657 + 0.678439i \(0.762657\pi\)
\(332\) 3398.99 0.561879
\(333\) 11240.6 1.84979
\(334\) 5252.73 0.860528
\(335\) −13456.5 −2.19464
\(336\) 0 0
\(337\) −4016.50 −0.649236 −0.324618 0.945845i \(-0.605236\pi\)
−0.324618 + 0.945845i \(0.605236\pi\)
\(338\) −7225.04 −1.16269
\(339\) −1276.98 −0.204590
\(340\) −3553.04 −0.566738
\(341\) 1136.22 0.180439
\(342\) −6542.35 −1.03441
\(343\) 0 0
\(344\) 1231.17 0.192966
\(345\) −1717.16 −0.267968
\(346\) 8165.94 1.26880
\(347\) 5542.72 0.857490 0.428745 0.903426i \(-0.358956\pi\)
0.428745 + 0.903426i \(0.358956\pi\)
\(348\) −123.670 −0.0190501
\(349\) 2828.15 0.433775 0.216887 0.976197i \(-0.430410\pi\)
0.216887 + 0.976197i \(0.430410\pi\)
\(350\) 0 0
\(351\) −628.550 −0.0955827
\(352\) 5912.83 0.895326
\(353\) 5206.37 0.785005 0.392503 0.919751i \(-0.371609\pi\)
0.392503 + 0.919751i \(0.371609\pi\)
\(354\) −766.305 −0.115053
\(355\) 11976.2 1.79051
\(356\) −4618.06 −0.687518
\(357\) 0 0
\(358\) −5567.92 −0.821993
\(359\) 1371.96 0.201697 0.100848 0.994902i \(-0.467844\pi\)
0.100848 + 0.994902i \(0.467844\pi\)
\(360\) 6302.93 0.922760
\(361\) −1331.35 −0.194103
\(362\) 7961.40 1.15592
\(363\) 14.8978 0.00215408
\(364\) 0 0
\(365\) −3022.69 −0.433465
\(366\) −3268.75 −0.466832
\(367\) 2205.23 0.313657 0.156829 0.987626i \(-0.449873\pi\)
0.156829 + 0.987626i \(0.449873\pi\)
\(368\) 6602.80 0.935312
\(369\) −9917.40 −1.39913
\(370\) −26197.5 −3.68092
\(371\) 0 0
\(372\) −143.854 −0.0200497
\(373\) −2003.59 −0.278128 −0.139064 0.990283i \(-0.544409\pi\)
−0.139064 + 0.990283i \(0.544409\pi\)
\(374\) 6720.46 0.929163
\(375\) 1021.31 0.140640
\(376\) 6778.54 0.929725
\(377\) −265.026 −0.0362056
\(378\) 0 0
\(379\) 13621.7 1.84617 0.923087 0.384591i \(-0.125658\pi\)
0.923087 + 0.384591i \(0.125658\pi\)
\(380\) 4961.18 0.669745
\(381\) −755.982 −0.101654
\(382\) −2428.48 −0.325266
\(383\) −5198.10 −0.693501 −0.346750 0.937957i \(-0.612715\pi\)
−0.346750 + 0.937957i \(0.612715\pi\)
\(384\) 1901.35 0.252676
\(385\) 0 0
\(386\) 4807.19 0.633885
\(387\) 2205.91 0.289748
\(388\) 2560.93 0.335081
\(389\) −921.571 −0.120117 −0.0600585 0.998195i \(-0.519129\pi\)
−0.0600585 + 0.998195i \(0.519129\pi\)
\(390\) 712.295 0.0924832
\(391\) 4395.75 0.568549
\(392\) 0 0
\(393\) 1078.05 0.138373
\(394\) 12897.5 1.64915
\(395\) 5631.81 0.717386
\(396\) 3613.74 0.458579
\(397\) 9403.30 1.18876 0.594381 0.804184i \(-0.297397\pi\)
0.594381 + 0.804184i \(0.297397\pi\)
\(398\) −8415.86 −1.05992
\(399\) 0 0
\(400\) −13924.6 −1.74058
\(401\) 13146.7 1.63719 0.818596 0.574370i \(-0.194753\pi\)
0.818596 + 0.574370i \(0.194753\pi\)
\(402\) −3222.47 −0.399807
\(403\) −308.279 −0.0381054
\(404\) −2354.91 −0.290003
\(405\) 10617.6 1.30270
\(406\) 0 0
\(407\) 16122.7 1.96357
\(408\) 913.321 0.110824
\(409\) 14944.6 1.80675 0.903377 0.428847i \(-0.141080\pi\)
0.903377 + 0.428847i \(0.141080\pi\)
\(410\) 23113.7 2.78415
\(411\) −1459.87 −0.175206
\(412\) 2216.33 0.265026
\(413\) 0 0
\(414\) 7264.58 0.862403
\(415\) 15235.4 1.80211
\(416\) −1604.27 −0.189077
\(417\) 1254.97 0.147377
\(418\) −9383.90 −1.09804
\(419\) 8876.22 1.03492 0.517460 0.855707i \(-0.326877\pi\)
0.517460 + 0.855707i \(0.326877\pi\)
\(420\) 0 0
\(421\) −15472.4 −1.79116 −0.895582 0.444896i \(-0.853240\pi\)
−0.895582 + 0.444896i \(0.853240\pi\)
\(422\) −10514.9 −1.21293
\(423\) 12145.2 1.39603
\(424\) −1544.79 −0.176938
\(425\) −9270.17 −1.05805
\(426\) 2868.00 0.326185
\(427\) 0 0
\(428\) −4679.75 −0.528515
\(429\) −438.368 −0.0493347
\(430\) −5141.12 −0.576574
\(431\) −3752.07 −0.419329 −0.209664 0.977773i \(-0.567237\pi\)
−0.209664 + 0.977773i \(0.567237\pi\)
\(432\) 5055.20 0.563005
\(433\) −15501.3 −1.72043 −0.860216 0.509930i \(-0.829671\pi\)
−0.860216 + 0.509930i \(0.829671\pi\)
\(434\) 0 0
\(435\) −554.331 −0.0610991
\(436\) 8258.15 0.907096
\(437\) −6137.86 −0.671885
\(438\) −723.856 −0.0789661
\(439\) 14289.9 1.55357 0.776787 0.629763i \(-0.216848\pi\)
0.776787 + 0.629763i \(0.216848\pi\)
\(440\) 9040.49 0.979520
\(441\) 0 0
\(442\) −1823.40 −0.196222
\(443\) 3125.58 0.335216 0.167608 0.985854i \(-0.446396\pi\)
0.167608 + 0.985854i \(0.446396\pi\)
\(444\) −2041.26 −0.218184
\(445\) −20699.6 −2.20507
\(446\) −18006.8 −1.91177
\(447\) −2459.67 −0.260265
\(448\) 0 0
\(449\) 5399.95 0.567571 0.283786 0.958888i \(-0.408410\pi\)
0.283786 + 0.958888i \(0.408410\pi\)
\(450\) −15320.2 −1.60489
\(451\) −14224.9 −1.48519
\(452\) −4096.70 −0.426311
\(453\) 824.782 0.0855444
\(454\) 19928.3 2.06009
\(455\) 0 0
\(456\) −1275.29 −0.130967
\(457\) 11505.3 1.17767 0.588835 0.808253i \(-0.299587\pi\)
0.588835 + 0.808253i \(0.299587\pi\)
\(458\) 2802.07 0.285878
\(459\) 3365.45 0.342235
\(460\) −5508.86 −0.558374
\(461\) 5524.07 0.558094 0.279047 0.960277i \(-0.409981\pi\)
0.279047 + 0.960277i \(0.409981\pi\)
\(462\) 0 0
\(463\) 6929.37 0.695541 0.347770 0.937580i \(-0.386939\pi\)
0.347770 + 0.937580i \(0.386939\pi\)
\(464\) 2131.50 0.213260
\(465\) −644.801 −0.0643052
\(466\) −8087.81 −0.803992
\(467\) −14849.9 −1.47146 −0.735728 0.677277i \(-0.763160\pi\)
−0.735728 + 0.677277i \(0.763160\pi\)
\(468\) −980.481 −0.0968435
\(469\) 0 0
\(470\) −28305.8 −2.77798
\(471\) 1471.04 0.143911
\(472\) 2638.86 0.257338
\(473\) 3164.00 0.307571
\(474\) 1348.67 0.130689
\(475\) 12944.1 1.25035
\(476\) 0 0
\(477\) −2767.82 −0.265681
\(478\) −3197.37 −0.305951
\(479\) −17074.0 −1.62866 −0.814332 0.580399i \(-0.802896\pi\)
−0.814332 + 0.580399i \(0.802896\pi\)
\(480\) −3355.51 −0.319078
\(481\) −4374.42 −0.414670
\(482\) −23142.8 −2.18698
\(483\) 0 0
\(484\) 47.7939 0.00448853
\(485\) 11478.9 1.07470
\(486\) 8419.34 0.785821
\(487\) 15073.3 1.40254 0.701268 0.712898i \(-0.252618\pi\)
0.701268 + 0.712898i \(0.252618\pi\)
\(488\) 11256.3 1.04416
\(489\) 3402.07 0.314615
\(490\) 0 0
\(491\) 15255.1 1.40214 0.701070 0.713092i \(-0.252706\pi\)
0.701070 + 0.713092i \(0.252706\pi\)
\(492\) 1800.98 0.165029
\(493\) 1419.03 0.129634
\(494\) 2546.04 0.231886
\(495\) 16198.0 1.47080
\(496\) 2479.38 0.224450
\(497\) 0 0
\(498\) 3648.48 0.328298
\(499\) −15652.0 −1.40417 −0.702084 0.712094i \(-0.747747\pi\)
−0.702084 + 0.712094i \(0.747747\pi\)
\(500\) 3276.47 0.293057
\(501\) 1834.54 0.163595
\(502\) −19001.9 −1.68943
\(503\) 14397.9 1.27629 0.638144 0.769917i \(-0.279703\pi\)
0.638144 + 0.769917i \(0.279703\pi\)
\(504\) 0 0
\(505\) −10555.5 −0.930124
\(506\) 10419.8 0.915450
\(507\) −2523.38 −0.221040
\(508\) −2425.28 −0.211820
\(509\) 15549.2 1.35404 0.677021 0.735963i \(-0.263270\pi\)
0.677021 + 0.735963i \(0.263270\pi\)
\(510\) −3813.84 −0.331137
\(511\) 0 0
\(512\) 3777.13 0.326029
\(513\) −4699.23 −0.404437
\(514\) −4611.51 −0.395729
\(515\) 9934.33 0.850017
\(516\) −400.587 −0.0341761
\(517\) 17420.3 1.48190
\(518\) 0 0
\(519\) 2851.99 0.241211
\(520\) −2452.87 −0.206857
\(521\) −11793.5 −0.991716 −0.495858 0.868404i \(-0.665146\pi\)
−0.495858 + 0.868404i \(0.665146\pi\)
\(522\) 2345.14 0.196636
\(523\) −11416.3 −0.954496 −0.477248 0.878769i \(-0.658366\pi\)
−0.477248 + 0.878769i \(0.658366\pi\)
\(524\) 3458.53 0.288333
\(525\) 0 0
\(526\) 6417.38 0.531960
\(527\) 1650.62 0.136437
\(528\) 3525.63 0.290593
\(529\) −5351.56 −0.439842
\(530\) 6450.74 0.528683
\(531\) 4728.08 0.386405
\(532\) 0 0
\(533\) 3859.49 0.313646
\(534\) −4957.03 −0.401707
\(535\) −20976.2 −1.69510
\(536\) 11097.0 0.894246
\(537\) −1944.62 −0.156269
\(538\) −13468.7 −1.07932
\(539\) 0 0
\(540\) −4217.66 −0.336110
\(541\) −9599.17 −0.762848 −0.381424 0.924400i \(-0.624566\pi\)
−0.381424 + 0.924400i \(0.624566\pi\)
\(542\) 13690.0 1.08493
\(543\) 2780.55 0.219751
\(544\) 8589.76 0.676990
\(545\) 37015.7 2.90932
\(546\) 0 0
\(547\) 21296.5 1.66467 0.832333 0.554275i \(-0.187004\pi\)
0.832333 + 0.554275i \(0.187004\pi\)
\(548\) −4683.42 −0.365084
\(549\) 20168.1 1.56786
\(550\) −21974.3 −1.70361
\(551\) −1981.41 −0.153196
\(552\) 1416.07 0.109188
\(553\) 0 0
\(554\) −6216.78 −0.476761
\(555\) −9149.59 −0.699781
\(556\) 4026.09 0.307094
\(557\) −9480.36 −0.721177 −0.360589 0.932725i \(-0.617424\pi\)
−0.360589 + 0.932725i \(0.617424\pi\)
\(558\) 2727.88 0.206954
\(559\) −858.458 −0.0649533
\(560\) 0 0
\(561\) 2347.15 0.176643
\(562\) −1634.98 −0.122718
\(563\) −16015.8 −1.19891 −0.599456 0.800408i \(-0.704616\pi\)
−0.599456 + 0.800408i \(0.704616\pi\)
\(564\) −2205.54 −0.164663
\(565\) −18362.8 −1.36730
\(566\) −9725.32 −0.722236
\(567\) 0 0
\(568\) −9876.27 −0.729576
\(569\) 13298.7 0.979811 0.489905 0.871776i \(-0.337031\pi\)
0.489905 + 0.871776i \(0.337031\pi\)
\(570\) 5325.34 0.391322
\(571\) −1791.78 −0.131320 −0.0656600 0.997842i \(-0.520915\pi\)
−0.0656600 + 0.997842i \(0.520915\pi\)
\(572\) −1406.34 −0.102800
\(573\) −848.157 −0.0618364
\(574\) 0 0
\(575\) −14373.0 −1.04243
\(576\) −2154.40 −0.155845
\(577\) 9068.34 0.654280 0.327140 0.944976i \(-0.393915\pi\)
0.327140 + 0.944976i \(0.393915\pi\)
\(578\) −7155.38 −0.514921
\(579\) 1678.93 0.120508
\(580\) −1778.36 −0.127314
\(581\) 0 0
\(582\) 2748.91 0.195783
\(583\) −3969.98 −0.282023
\(584\) 2492.68 0.176623
\(585\) −4394.84 −0.310605
\(586\) −10455.7 −0.737068
\(587\) −1574.45 −0.110706 −0.0553532 0.998467i \(-0.517628\pi\)
−0.0553532 + 0.998467i \(0.517628\pi\)
\(588\) 0 0
\(589\) −2304.79 −0.161235
\(590\) −11019.3 −0.768914
\(591\) 4504.51 0.313521
\(592\) 35181.8 2.44251
\(593\) −13871.3 −0.960580 −0.480290 0.877110i \(-0.659469\pi\)
−0.480290 + 0.877110i \(0.659469\pi\)
\(594\) 7977.56 0.551049
\(595\) 0 0
\(596\) −7890.93 −0.542324
\(597\) −2939.28 −0.201502
\(598\) −2827.11 −0.193326
\(599\) 1448.02 0.0987719 0.0493860 0.998780i \(-0.484274\pi\)
0.0493860 + 0.998780i \(0.484274\pi\)
\(600\) −2986.34 −0.203195
\(601\) 20515.5 1.39242 0.696211 0.717837i \(-0.254868\pi\)
0.696211 + 0.717837i \(0.254868\pi\)
\(602\) 0 0
\(603\) 19882.6 1.34275
\(604\) 2646.00 0.178252
\(605\) 214.228 0.0143960
\(606\) −2527.77 −0.169445
\(607\) −2676.39 −0.178964 −0.0894821 0.995988i \(-0.528521\pi\)
−0.0894821 + 0.995988i \(0.528521\pi\)
\(608\) −11994.0 −0.800036
\(609\) 0 0
\(610\) −47004.2 −3.11991
\(611\) −4726.47 −0.312950
\(612\) 5249.80 0.346749
\(613\) −3187.50 −0.210019 −0.105010 0.994471i \(-0.533487\pi\)
−0.105010 + 0.994471i \(0.533487\pi\)
\(614\) 18449.8 1.21266
\(615\) 8072.56 0.529296
\(616\) 0 0
\(617\) −10116.8 −0.660106 −0.330053 0.943962i \(-0.607067\pi\)
−0.330053 + 0.943962i \(0.607067\pi\)
\(618\) 2379.02 0.154851
\(619\) −28167.8 −1.82901 −0.914506 0.404572i \(-0.867421\pi\)
−0.914506 + 0.404572i \(0.867421\pi\)
\(620\) −2068.60 −0.133995
\(621\) 5218.00 0.337184
\(622\) −8604.87 −0.554701
\(623\) 0 0
\(624\) −956.575 −0.0613680
\(625\) −7076.43 −0.452891
\(626\) 17041.5 1.08804
\(627\) −3277.37 −0.208749
\(628\) 4719.29 0.299873
\(629\) 23422.0 1.48473
\(630\) 0 0
\(631\) 676.117 0.0426558 0.0213279 0.999773i \(-0.493211\pi\)
0.0213279 + 0.999773i \(0.493211\pi\)
\(632\) −4644.32 −0.292312
\(633\) −3672.38 −0.230591
\(634\) −5752.03 −0.360319
\(635\) −10870.9 −0.679368
\(636\) 502.630 0.0313374
\(637\) 0 0
\(638\) 3363.71 0.208731
\(639\) −17695.4 −1.09549
\(640\) 27341.1 1.68867
\(641\) −7421.14 −0.457281 −0.228641 0.973511i \(-0.573428\pi\)
−0.228641 + 0.973511i \(0.573428\pi\)
\(642\) −5023.25 −0.308803
\(643\) −6581.13 −0.403630 −0.201815 0.979424i \(-0.564684\pi\)
−0.201815 + 0.979424i \(0.564684\pi\)
\(644\) 0 0
\(645\) −1795.56 −0.109613
\(646\) −13632.3 −0.830271
\(647\) 20489.2 1.24500 0.622499 0.782621i \(-0.286117\pi\)
0.622499 + 0.782621i \(0.286117\pi\)
\(648\) −8755.88 −0.530808
\(649\) 6781.64 0.410173
\(650\) 5962.07 0.359772
\(651\) 0 0
\(652\) 10914.2 0.655575
\(653\) −563.311 −0.0337582 −0.0168791 0.999858i \(-0.505373\pi\)
−0.0168791 + 0.999858i \(0.505373\pi\)
\(654\) 8864.31 0.530003
\(655\) 15502.3 0.924768
\(656\) −31040.5 −1.84745
\(657\) 4466.17 0.265208
\(658\) 0 0
\(659\) −13681.1 −0.808709 −0.404354 0.914602i \(-0.632504\pi\)
−0.404354 + 0.914602i \(0.632504\pi\)
\(660\) −2941.51 −0.173482
\(661\) −3239.39 −0.190617 −0.0953084 0.995448i \(-0.530384\pi\)
−0.0953084 + 0.995448i \(0.530384\pi\)
\(662\) −30469.8 −1.78889
\(663\) −636.831 −0.0373038
\(664\) −12564.0 −0.734301
\(665\) 0 0
\(666\) 38708.0 2.25211
\(667\) 2200.15 0.127721
\(668\) 5885.42 0.340889
\(669\) −6288.96 −0.363446
\(670\) −46338.7 −2.67197
\(671\) 28927.8 1.66430
\(672\) 0 0
\(673\) 17976.8 1.02965 0.514824 0.857296i \(-0.327857\pi\)
0.514824 + 0.857296i \(0.327857\pi\)
\(674\) −13831.2 −0.790443
\(675\) −11004.2 −0.627484
\(676\) −8095.31 −0.460589
\(677\) −30498.8 −1.73141 −0.865705 0.500554i \(-0.833130\pi\)
−0.865705 + 0.500554i \(0.833130\pi\)
\(678\) −4397.41 −0.249088
\(679\) 0 0
\(680\) 13133.4 0.740652
\(681\) 6960.06 0.391645
\(682\) 3912.69 0.219684
\(683\) 29319.9 1.64260 0.821299 0.570499i \(-0.193250\pi\)
0.821299 + 0.570499i \(0.193250\pi\)
\(684\) −7330.38 −0.409772
\(685\) −20992.6 −1.17093
\(686\) 0 0
\(687\) 978.636 0.0543483
\(688\) 6904.26 0.382591
\(689\) 1077.14 0.0595582
\(690\) −5913.22 −0.326250
\(691\) 8500.99 0.468007 0.234003 0.972236i \(-0.424817\pi\)
0.234003 + 0.972236i \(0.424817\pi\)
\(692\) 9149.53 0.502620
\(693\) 0 0
\(694\) 19086.9 1.04399
\(695\) 18046.2 0.984939
\(696\) 457.133 0.0248959
\(697\) −20664.9 −1.12301
\(698\) 9739.02 0.528120
\(699\) −2824.70 −0.152847
\(700\) 0 0
\(701\) 27949.8 1.50592 0.752960 0.658066i \(-0.228625\pi\)
0.752960 + 0.658066i \(0.228625\pi\)
\(702\) −2164.47 −0.116372
\(703\) −32704.5 −1.75459
\(704\) −3090.13 −0.165431
\(705\) −9885.94 −0.528122
\(706\) 17928.6 0.955741
\(707\) 0 0
\(708\) −858.607 −0.0455769
\(709\) −16677.3 −0.883396 −0.441698 0.897164i \(-0.645624\pi\)
−0.441698 + 0.897164i \(0.645624\pi\)
\(710\) 41241.3 2.17994
\(711\) −8321.28 −0.438920
\(712\) 17070.1 0.898496
\(713\) 2559.23 0.134423
\(714\) 0 0
\(715\) −6303.66 −0.329711
\(716\) −6238.58 −0.325624
\(717\) −1116.70 −0.0581643
\(718\) 4724.47 0.245565
\(719\) −23329.1 −1.21005 −0.605026 0.796206i \(-0.706837\pi\)
−0.605026 + 0.796206i \(0.706837\pi\)
\(720\) 35346.1 1.82954
\(721\) 0 0
\(722\) −4584.65 −0.236320
\(723\) −8082.74 −0.415768
\(724\) 8920.35 0.457904
\(725\) −4639.88 −0.237684
\(726\) 51.3020 0.00262259
\(727\) −650.985 −0.0332100 −0.0166050 0.999862i \(-0.505286\pi\)
−0.0166050 + 0.999862i \(0.505286\pi\)
\(728\) 0 0
\(729\) −13635.6 −0.692758
\(730\) −10408.9 −0.527742
\(731\) 4596.45 0.232566
\(732\) −3662.48 −0.184930
\(733\) −15603.9 −0.786281 −0.393140 0.919478i \(-0.628611\pi\)
−0.393140 + 0.919478i \(0.628611\pi\)
\(734\) 7593.95 0.381877
\(735\) 0 0
\(736\) 13318.1 0.666999
\(737\) 28518.2 1.42535
\(738\) −34151.6 −1.70344
\(739\) 13018.2 0.648015 0.324008 0.946054i \(-0.394970\pi\)
0.324008 + 0.946054i \(0.394970\pi\)
\(740\) −29353.0 −1.45816
\(741\) 889.218 0.0440840
\(742\) 0 0
\(743\) 3851.56 0.190175 0.0950876 0.995469i \(-0.469687\pi\)
0.0950876 + 0.995469i \(0.469687\pi\)
\(744\) 531.740 0.0262023
\(745\) −35369.7 −1.73939
\(746\) −6899.55 −0.338620
\(747\) −22511.0 −1.10259
\(748\) 7529.95 0.368078
\(749\) 0 0
\(750\) 3516.97 0.171229
\(751\) −10149.4 −0.493150 −0.246575 0.969124i \(-0.579305\pi\)
−0.246575 + 0.969124i \(0.579305\pi\)
\(752\) 38013.2 1.84335
\(753\) −6636.49 −0.321178
\(754\) −912.642 −0.0440802
\(755\) 11860.2 0.571706
\(756\) 0 0
\(757\) −11079.2 −0.531943 −0.265972 0.963981i \(-0.585693\pi\)
−0.265972 + 0.963981i \(0.585693\pi\)
\(758\) 46907.7 2.24771
\(759\) 3639.17 0.174036
\(760\) −18338.4 −0.875268
\(761\) −8719.95 −0.415372 −0.207686 0.978196i \(-0.566593\pi\)
−0.207686 + 0.978196i \(0.566593\pi\)
\(762\) −2603.30 −0.123763
\(763\) 0 0
\(764\) −2720.99 −0.128851
\(765\) 23531.3 1.11213
\(766\) −17900.2 −0.844335
\(767\) −1840.00 −0.0866211
\(768\) 5736.29 0.269519
\(769\) −28723.7 −1.34695 −0.673475 0.739210i \(-0.735199\pi\)
−0.673475 + 0.739210i \(0.735199\pi\)
\(770\) 0 0
\(771\) −1610.59 −0.0752322
\(772\) 5386.22 0.251107
\(773\) −37831.3 −1.76028 −0.880140 0.474714i \(-0.842551\pi\)
−0.880140 + 0.474714i \(0.842551\pi\)
\(774\) 7596.26 0.352767
\(775\) −5397.14 −0.250156
\(776\) −9466.18 −0.437907
\(777\) 0 0
\(778\) −3173.52 −0.146242
\(779\) 28854.7 1.32712
\(780\) 798.091 0.0366362
\(781\) −25381.1 −1.16288
\(782\) 15137.2 0.692206
\(783\) 1684.46 0.0768810
\(784\) 0 0
\(785\) 21153.4 0.961779
\(786\) 3712.39 0.168469
\(787\) 36246.1 1.64172 0.820861 0.571129i \(-0.193494\pi\)
0.820861 + 0.571129i \(0.193494\pi\)
\(788\) 14451.0 0.653294
\(789\) 2241.30 0.101131
\(790\) 19393.7 0.873415
\(791\) 0 0
\(792\) −13357.8 −0.599303
\(793\) −7848.69 −0.351469
\(794\) 32381.2 1.44731
\(795\) 2252.95 0.100508
\(796\) −9429.55 −0.419876
\(797\) 3544.15 0.157516 0.0787580 0.996894i \(-0.474905\pi\)
0.0787580 + 0.996894i \(0.474905\pi\)
\(798\) 0 0
\(799\) 25307.0 1.12052
\(800\) −28086.4 −1.24126
\(801\) 30584.7 1.34914
\(802\) 45271.9 1.99328
\(803\) 6405.97 0.281521
\(804\) −3610.62 −0.158379
\(805\) 0 0
\(806\) −1061.59 −0.0463933
\(807\) −4703.99 −0.205190
\(808\) 8704.65 0.378996
\(809\) 23499.3 1.02125 0.510626 0.859803i \(-0.329414\pi\)
0.510626 + 0.859803i \(0.329414\pi\)
\(810\) 36562.8 1.58603
\(811\) 31217.4 1.35165 0.675826 0.737061i \(-0.263787\pi\)
0.675826 + 0.737061i \(0.263787\pi\)
\(812\) 0 0
\(813\) 4781.29 0.206257
\(814\) 55520.2 2.39064
\(815\) 48921.2 2.10262
\(816\) 5121.79 0.219729
\(817\) −6418.10 −0.274836
\(818\) 51463.2 2.19972
\(819\) 0 0
\(820\) 25897.7 1.10291
\(821\) −17438.2 −0.741289 −0.370644 0.928775i \(-0.620863\pi\)
−0.370644 + 0.928775i \(0.620863\pi\)
\(822\) −5027.19 −0.213313
\(823\) −29386.5 −1.24465 −0.622326 0.782758i \(-0.713812\pi\)
−0.622326 + 0.782758i \(0.713812\pi\)
\(824\) −8192.42 −0.346355
\(825\) −7674.63 −0.323874
\(826\) 0 0
\(827\) 7745.71 0.325689 0.162845 0.986652i \(-0.447933\pi\)
0.162845 + 0.986652i \(0.447933\pi\)
\(828\) 8139.61 0.341632
\(829\) −18385.9 −0.770289 −0.385144 0.922856i \(-0.625848\pi\)
−0.385144 + 0.922856i \(0.625848\pi\)
\(830\) 52464.5 2.19406
\(831\) −2171.24 −0.0906372
\(832\) 838.415 0.0349361
\(833\) 0 0
\(834\) 4321.61 0.179430
\(835\) 26380.4 1.09333
\(836\) −10514.2 −0.434978
\(837\) 1959.38 0.0809152
\(838\) 30566.2 1.26001
\(839\) −17331.9 −0.713188 −0.356594 0.934259i \(-0.616062\pi\)
−0.356594 + 0.934259i \(0.616062\pi\)
\(840\) 0 0
\(841\) −23678.8 −0.970878
\(842\) −53280.9 −2.18074
\(843\) −571.026 −0.0233300
\(844\) −11781.4 −0.480491
\(845\) −36285.8 −1.47724
\(846\) 41823.2 1.69966
\(847\) 0 0
\(848\) −8663.00 −0.350812
\(849\) −3396.61 −0.137304
\(850\) −31922.8 −1.28817
\(851\) 36314.9 1.46282
\(852\) 3213.45 0.129215
\(853\) 5121.84 0.205590 0.102795 0.994703i \(-0.467221\pi\)
0.102795 + 0.994703i \(0.467221\pi\)
\(854\) 0 0
\(855\) −32857.2 −1.31426
\(856\) 17298.1 0.690699
\(857\) 19629.6 0.782422 0.391211 0.920301i \(-0.372056\pi\)
0.391211 + 0.920301i \(0.372056\pi\)
\(858\) −1509.56 −0.0600648
\(859\) 42818.6 1.70076 0.850379 0.526170i \(-0.176372\pi\)
0.850379 + 0.526170i \(0.176372\pi\)
\(860\) −5760.38 −0.228404
\(861\) 0 0
\(862\) −12920.6 −0.510531
\(863\) 32304.6 1.27423 0.637116 0.770768i \(-0.280127\pi\)
0.637116 + 0.770768i \(0.280127\pi\)
\(864\) 10196.5 0.401496
\(865\) 41011.2 1.61205
\(866\) −53380.4 −2.09462
\(867\) −2499.05 −0.0978918
\(868\) 0 0
\(869\) −11935.5 −0.465919
\(870\) −1908.89 −0.0743880
\(871\) −7737.57 −0.301008
\(872\) −30525.3 −1.18545
\(873\) −16960.7 −0.657539
\(874\) −21136.3 −0.818018
\(875\) 0 0
\(876\) −811.045 −0.0312816
\(877\) −27583.1 −1.06205 −0.531023 0.847357i \(-0.678192\pi\)
−0.531023 + 0.847357i \(0.678192\pi\)
\(878\) 49208.7 1.89147
\(879\) −3651.71 −0.140124
\(880\) 50698.0 1.94208
\(881\) −42842.4 −1.63836 −0.819182 0.573534i \(-0.805572\pi\)
−0.819182 + 0.573534i \(0.805572\pi\)
\(882\) 0 0
\(883\) −1814.31 −0.0691466 −0.0345733 0.999402i \(-0.511007\pi\)
−0.0345733 + 0.999402i \(0.511007\pi\)
\(884\) −2043.03 −0.0777313
\(885\) −3848.56 −0.146178
\(886\) 10763.2 0.408124
\(887\) −35662.9 −1.34999 −0.674996 0.737821i \(-0.735855\pi\)
−0.674996 + 0.737821i \(0.735855\pi\)
\(888\) 7545.27 0.285138
\(889\) 0 0
\(890\) −71281.3 −2.68467
\(891\) −22501.8 −0.846061
\(892\) −20175.8 −0.757325
\(893\) −35336.5 −1.32418
\(894\) −8470.14 −0.316872
\(895\) −27963.3 −1.04437
\(896\) 0 0
\(897\) −987.381 −0.0367533
\(898\) 18595.3 0.691016
\(899\) 826.164 0.0306497
\(900\) −17165.6 −0.635762
\(901\) −5767.31 −0.213249
\(902\) −48984.7 −1.80822
\(903\) 0 0
\(904\) 15143.0 0.557133
\(905\) 39983.9 1.46863
\(906\) 2840.22 0.104150
\(907\) −23655.3 −0.865998 −0.432999 0.901394i \(-0.642545\pi\)
−0.432999 + 0.901394i \(0.642545\pi\)
\(908\) 22328.7 0.816084
\(909\) 15596.2 0.569081
\(910\) 0 0
\(911\) 20104.4 0.731162 0.365581 0.930779i \(-0.380870\pi\)
0.365581 + 0.930779i \(0.380870\pi\)
\(912\) −7151.65 −0.259665
\(913\) −32288.3 −1.17041
\(914\) 39619.7 1.43381
\(915\) −16416.4 −0.593126
\(916\) 3139.58 0.113247
\(917\) 0 0
\(918\) 11589.3 0.416669
\(919\) −10431.2 −0.374420 −0.187210 0.982320i \(-0.559945\pi\)
−0.187210 + 0.982320i \(0.559945\pi\)
\(920\) 20362.8 0.729721
\(921\) 6443.69 0.230539
\(922\) 19022.7 0.679478
\(923\) 6886.42 0.245579
\(924\) 0 0
\(925\) −76584.2 −2.72224
\(926\) 23862.0 0.846818
\(927\) −14678.5 −0.520069
\(928\) 4299.32 0.152082
\(929\) 13881.5 0.490246 0.245123 0.969492i \(-0.421172\pi\)
0.245123 + 0.969492i \(0.421172\pi\)
\(930\) −2220.44 −0.0782914
\(931\) 0 0
\(932\) −9061.99 −0.318493
\(933\) −3005.29 −0.105454
\(934\) −51137.0 −1.79149
\(935\) 33751.7 1.18053
\(936\) 3624.23 0.126562
\(937\) −32190.6 −1.12233 −0.561164 0.827704i \(-0.689646\pi\)
−0.561164 + 0.827704i \(0.689646\pi\)
\(938\) 0 0
\(939\) 5951.81 0.206848
\(940\) −31715.3 −1.10047
\(941\) −20400.5 −0.706736 −0.353368 0.935484i \(-0.614964\pi\)
−0.353368 + 0.935484i \(0.614964\pi\)
\(942\) 5065.69 0.175211
\(943\) −32040.1 −1.10644
\(944\) 14798.4 0.510220
\(945\) 0 0
\(946\) 10895.6 0.374466
\(947\) −47368.4 −1.62541 −0.812706 0.582673i \(-0.802007\pi\)
−0.812706 + 0.582673i \(0.802007\pi\)
\(948\) 1511.12 0.0517711
\(949\) −1738.07 −0.0594522
\(950\) 44574.3 1.52230
\(951\) −2008.92 −0.0685003
\(952\) 0 0
\(953\) −25855.3 −0.878840 −0.439420 0.898282i \(-0.644816\pi\)
−0.439420 + 0.898282i \(0.644816\pi\)
\(954\) −9531.28 −0.323466
\(955\) −12196.4 −0.413262
\(956\) −3582.50 −0.121199
\(957\) 1174.79 0.0396819
\(958\) −58796.0 −1.98289
\(959\) 0 0
\(960\) 1753.64 0.0589567
\(961\) 961.000 0.0322581
\(962\) −15063.8 −0.504859
\(963\) 30993.3 1.03712
\(964\) −25930.4 −0.866350
\(965\) 24142.8 0.805372
\(966\) 0 0
\(967\) −40511.0 −1.34720 −0.673602 0.739094i \(-0.735254\pi\)
−0.673602 + 0.739094i \(0.735254\pi\)
\(968\) −176.665 −0.00586592
\(969\) −4761.14 −0.157843
\(970\) 39528.8 1.30845
\(971\) −18403.8 −0.608247 −0.304123 0.952633i \(-0.598364\pi\)
−0.304123 + 0.952633i \(0.598364\pi\)
\(972\) 9433.46 0.311295
\(973\) 0 0
\(974\) 51906.3 1.70758
\(975\) 2082.28 0.0683963
\(976\) 63124.1 2.07024
\(977\) −35081.3 −1.14877 −0.574387 0.818584i \(-0.694759\pi\)
−0.574387 + 0.818584i \(0.694759\pi\)
\(978\) 11715.4 0.383043
\(979\) 43868.6 1.43212
\(980\) 0 0
\(981\) −54692.5 −1.78002
\(982\) 52532.3 1.70710
\(983\) −258.803 −0.00839728 −0.00419864 0.999991i \(-0.501336\pi\)
−0.00419864 + 0.999991i \(0.501336\pi\)
\(984\) −6657.09 −0.215671
\(985\) 64774.1 2.09531
\(986\) 4886.56 0.157829
\(987\) 0 0
\(988\) 2852.72 0.0918593
\(989\) 7126.61 0.229134
\(990\) 55779.3 1.79069
\(991\) 28178.5 0.903247 0.451624 0.892209i \(-0.350845\pi\)
0.451624 + 0.892209i \(0.350845\pi\)
\(992\) 5001.00 0.160062
\(993\) −10641.7 −0.340085
\(994\) 0 0
\(995\) −42266.3 −1.34667
\(996\) 4087.94 0.130052
\(997\) −22666.7 −0.720023 −0.360012 0.932948i \(-0.617227\pi\)
−0.360012 + 0.932948i \(0.617227\pi\)
\(998\) −53899.2 −1.70957
\(999\) 27803.2 0.880534
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1519.4.a.h.1.18 23
7.6 odd 2 1519.4.a.i.1.18 yes 23
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1519.4.a.h.1.18 23 1.1 even 1 trivial
1519.4.a.i.1.18 yes 23 7.6 odd 2