Properties

Label 1519.4.a.h.1.17
Level $1519$
Weight $4$
Character 1519.1
Self dual yes
Analytic conductor $89.624$
Analytic rank $1$
Dimension $23$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1519,4,Mod(1,1519)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1519, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1519.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1519 = 7^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1519.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [23,5,-6,91,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.6239012987\)
Analytic rank: \(1\)
Dimension: \(23\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.17
Character \(\chi\) \(=\) 1519.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.43289 q^{2} -7.72707 q^{3} +3.78474 q^{4} -12.7805 q^{5} -26.5262 q^{6} -14.4705 q^{8} +32.7076 q^{9} -43.8739 q^{10} +36.3512 q^{11} -29.2450 q^{12} -18.8337 q^{13} +98.7554 q^{15} -79.9537 q^{16} +29.3324 q^{17} +112.282 q^{18} -20.5569 q^{19} -48.3707 q^{20} +124.790 q^{22} +179.957 q^{23} +111.815 q^{24} +38.3400 q^{25} -64.6539 q^{26} -44.1031 q^{27} +125.863 q^{29} +339.017 q^{30} -31.0000 q^{31} -158.708 q^{32} -280.888 q^{33} +100.695 q^{34} +123.790 q^{36} -46.7737 q^{37} -70.5697 q^{38} +145.529 q^{39} +184.940 q^{40} +378.421 q^{41} +286.604 q^{43} +137.580 q^{44} -418.018 q^{45} +617.774 q^{46} -608.901 q^{47} +617.808 q^{48} +131.617 q^{50} -226.653 q^{51} -71.2806 q^{52} -28.6235 q^{53} -151.401 q^{54} -464.585 q^{55} +158.845 q^{57} +432.075 q^{58} +26.1799 q^{59} +373.764 q^{60} +22.1075 q^{61} -106.420 q^{62} +94.8020 q^{64} +240.703 q^{65} -964.259 q^{66} -613.441 q^{67} +111.016 q^{68} -1390.54 q^{69} -486.486 q^{71} -473.296 q^{72} +356.421 q^{73} -160.569 q^{74} -296.255 q^{75} -77.8026 q^{76} +499.586 q^{78} +286.380 q^{79} +1021.84 q^{80} -542.318 q^{81} +1299.08 q^{82} +106.507 q^{83} -374.881 q^{85} +983.880 q^{86} -972.554 q^{87} -526.021 q^{88} -352.687 q^{89} -1435.01 q^{90} +681.092 q^{92} +239.539 q^{93} -2090.29 q^{94} +262.727 q^{95} +1226.35 q^{96} +631.893 q^{97} +1188.96 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 23 q + 5 q^{2} - 6 q^{3} + 91 q^{4} - 40 q^{5} - 36 q^{6} + 39 q^{8} + 211 q^{9} - 40 q^{10} + 44 q^{11} - 414 q^{12} + 20 q^{13} + 523 q^{16} - 306 q^{17} + 51 q^{18} - 296 q^{19} - 400 q^{20} - 326 q^{22}+ \cdots - 3456 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.43289 1.21371 0.606855 0.794812i \(-0.292431\pi\)
0.606855 + 0.794812i \(0.292431\pi\)
\(3\) −7.72707 −1.48708 −0.743538 0.668694i \(-0.766854\pi\)
−0.743538 + 0.668694i \(0.766854\pi\)
\(4\) 3.78474 0.473093
\(5\) −12.7805 −1.14312 −0.571559 0.820561i \(-0.693661\pi\)
−0.571559 + 0.820561i \(0.693661\pi\)
\(6\) −26.5262 −1.80488
\(7\) 0 0
\(8\) −14.4705 −0.639513
\(9\) 32.7076 1.21139
\(10\) −43.8739 −1.38741
\(11\) 36.3512 0.996391 0.498195 0.867065i \(-0.333996\pi\)
0.498195 + 0.867065i \(0.333996\pi\)
\(12\) −29.2450 −0.703524
\(13\) −18.8337 −0.401809 −0.200905 0.979611i \(-0.564388\pi\)
−0.200905 + 0.979611i \(0.564388\pi\)
\(14\) 0 0
\(15\) 98.7554 1.69990
\(16\) −79.9537 −1.24928
\(17\) 29.3324 0.418480 0.209240 0.977864i \(-0.432901\pi\)
0.209240 + 0.977864i \(0.432901\pi\)
\(18\) 112.282 1.47028
\(19\) −20.5569 −0.248215 −0.124107 0.992269i \(-0.539607\pi\)
−0.124107 + 0.992269i \(0.539607\pi\)
\(20\) −48.3707 −0.540801
\(21\) 0 0
\(22\) 124.790 1.20933
\(23\) 179.957 1.63147 0.815733 0.578429i \(-0.196334\pi\)
0.815733 + 0.578429i \(0.196334\pi\)
\(24\) 111.815 0.951004
\(25\) 38.3400 0.306720
\(26\) −64.6539 −0.487680
\(27\) −44.1031 −0.314357
\(28\) 0 0
\(29\) 125.863 0.805938 0.402969 0.915214i \(-0.367978\pi\)
0.402969 + 0.915214i \(0.367978\pi\)
\(30\) 339.017 2.06319
\(31\) −31.0000 −0.179605
\(32\) −158.708 −0.876746
\(33\) −280.888 −1.48171
\(34\) 100.695 0.507913
\(35\) 0 0
\(36\) 123.790 0.573101
\(37\) −46.7737 −0.207826 −0.103913 0.994586i \(-0.533136\pi\)
−0.103913 + 0.994586i \(0.533136\pi\)
\(38\) −70.5697 −0.301261
\(39\) 145.529 0.597521
\(40\) 184.940 0.731039
\(41\) 378.421 1.44145 0.720725 0.693222i \(-0.243809\pi\)
0.720725 + 0.693222i \(0.243809\pi\)
\(42\) 0 0
\(43\) 286.604 1.01644 0.508218 0.861229i \(-0.330305\pi\)
0.508218 + 0.861229i \(0.330305\pi\)
\(44\) 137.580 0.471385
\(45\) −418.018 −1.38477
\(46\) 617.774 1.98013
\(47\) −608.901 −1.88973 −0.944866 0.327458i \(-0.893808\pi\)
−0.944866 + 0.327458i \(0.893808\pi\)
\(48\) 617.808 1.85777
\(49\) 0 0
\(50\) 131.617 0.372269
\(51\) −226.653 −0.622311
\(52\) −71.2806 −0.190093
\(53\) −28.6235 −0.0741838 −0.0370919 0.999312i \(-0.511809\pi\)
−0.0370919 + 0.999312i \(0.511809\pi\)
\(54\) −151.401 −0.381539
\(55\) −464.585 −1.13899
\(56\) 0 0
\(57\) 158.845 0.369114
\(58\) 432.075 0.978175
\(59\) 26.1799 0.0577683 0.0288842 0.999583i \(-0.490805\pi\)
0.0288842 + 0.999583i \(0.490805\pi\)
\(60\) 373.764 0.804212
\(61\) 22.1075 0.0464030 0.0232015 0.999731i \(-0.492614\pi\)
0.0232015 + 0.999731i \(0.492614\pi\)
\(62\) −106.420 −0.217989
\(63\) 0 0
\(64\) 94.8020 0.185160
\(65\) 240.703 0.459316
\(66\) −964.259 −1.79836
\(67\) −613.441 −1.11856 −0.559282 0.828978i \(-0.688923\pi\)
−0.559282 + 0.828978i \(0.688923\pi\)
\(68\) 111.016 0.197980
\(69\) −1390.54 −2.42611
\(70\) 0 0
\(71\) −486.486 −0.813172 −0.406586 0.913612i \(-0.633281\pi\)
−0.406586 + 0.913612i \(0.633281\pi\)
\(72\) −473.296 −0.774702
\(73\) 356.421 0.571452 0.285726 0.958311i \(-0.407765\pi\)
0.285726 + 0.958311i \(0.407765\pi\)
\(74\) −160.569 −0.252240
\(75\) −296.255 −0.456115
\(76\) −77.8026 −0.117429
\(77\) 0 0
\(78\) 499.586 0.725217
\(79\) 286.380 0.407851 0.203926 0.978986i \(-0.434630\pi\)
0.203926 + 0.978986i \(0.434630\pi\)
\(80\) 1021.84 1.42807
\(81\) −542.318 −0.743920
\(82\) 1299.08 1.74950
\(83\) 106.507 0.140852 0.0704260 0.997517i \(-0.477564\pi\)
0.0704260 + 0.997517i \(0.477564\pi\)
\(84\) 0 0
\(85\) −374.881 −0.478372
\(86\) 983.880 1.23366
\(87\) −972.554 −1.19849
\(88\) −526.021 −0.637205
\(89\) −352.687 −0.420054 −0.210027 0.977696i \(-0.567355\pi\)
−0.210027 + 0.977696i \(0.567355\pi\)
\(90\) −1435.01 −1.68070
\(91\) 0 0
\(92\) 681.092 0.771834
\(93\) 239.539 0.267087
\(94\) −2090.29 −2.29359
\(95\) 262.727 0.283739
\(96\) 1226.35 1.30379
\(97\) 631.893 0.661433 0.330717 0.943730i \(-0.392710\pi\)
0.330717 + 0.943730i \(0.392710\pi\)
\(98\) 0 0
\(99\) 1188.96 1.20702
\(100\) 145.107 0.145107
\(101\) −236.439 −0.232937 −0.116468 0.993194i \(-0.537157\pi\)
−0.116468 + 0.993194i \(0.537157\pi\)
\(102\) −778.077 −0.755305
\(103\) −1316.95 −1.25984 −0.629918 0.776662i \(-0.716911\pi\)
−0.629918 + 0.776662i \(0.716911\pi\)
\(104\) 272.533 0.256962
\(105\) 0 0
\(106\) −98.2613 −0.0900376
\(107\) 527.486 0.476579 0.238289 0.971194i \(-0.423413\pi\)
0.238289 + 0.971194i \(0.423413\pi\)
\(108\) −166.919 −0.148720
\(109\) −1094.66 −0.961921 −0.480961 0.876742i \(-0.659712\pi\)
−0.480961 + 0.876742i \(0.659712\pi\)
\(110\) −1594.87 −1.38241
\(111\) 361.424 0.309052
\(112\) 0 0
\(113\) −991.836 −0.825700 −0.412850 0.910799i \(-0.635467\pi\)
−0.412850 + 0.910799i \(0.635467\pi\)
\(114\) 545.297 0.447998
\(115\) −2299.94 −1.86496
\(116\) 476.359 0.381283
\(117\) −616.004 −0.486749
\(118\) 89.8727 0.0701140
\(119\) 0 0
\(120\) −1429.04 −1.08711
\(121\) −9.59069 −0.00720563
\(122\) 75.8928 0.0563198
\(123\) −2924.08 −2.14354
\(124\) −117.327 −0.0849699
\(125\) 1107.55 0.792502
\(126\) 0 0
\(127\) 2066.58 1.44393 0.721966 0.691929i \(-0.243239\pi\)
0.721966 + 0.691929i \(0.243239\pi\)
\(128\) 1595.11 1.10148
\(129\) −2214.61 −1.51152
\(130\) 826.307 0.557476
\(131\) 676.993 0.451521 0.225760 0.974183i \(-0.427513\pi\)
0.225760 + 0.974183i \(0.427513\pi\)
\(132\) −1063.09 −0.700985
\(133\) 0 0
\(134\) −2105.88 −1.35761
\(135\) 563.658 0.359348
\(136\) −424.455 −0.267623
\(137\) −326.837 −0.203822 −0.101911 0.994794i \(-0.532496\pi\)
−0.101911 + 0.994794i \(0.532496\pi\)
\(138\) −4773.58 −2.94460
\(139\) −952.506 −0.581227 −0.290613 0.956841i \(-0.593859\pi\)
−0.290613 + 0.956841i \(0.593859\pi\)
\(140\) 0 0
\(141\) 4705.02 2.81017
\(142\) −1670.05 −0.986955
\(143\) −684.626 −0.400359
\(144\) −2615.09 −1.51336
\(145\) −1608.59 −0.921283
\(146\) 1223.56 0.693577
\(147\) 0 0
\(148\) −177.026 −0.0983208
\(149\) −2826.15 −1.55387 −0.776936 0.629579i \(-0.783227\pi\)
−0.776936 + 0.629579i \(0.783227\pi\)
\(150\) −1017.01 −0.553592
\(151\) −3518.74 −1.89636 −0.948181 0.317730i \(-0.897079\pi\)
−0.948181 + 0.317730i \(0.897079\pi\)
\(152\) 297.469 0.158737
\(153\) 959.393 0.506943
\(154\) 0 0
\(155\) 396.194 0.205310
\(156\) 550.790 0.282683
\(157\) −3036.72 −1.54367 −0.771836 0.635821i \(-0.780661\pi\)
−0.771836 + 0.635821i \(0.780661\pi\)
\(158\) 983.111 0.495013
\(159\) 221.176 0.110317
\(160\) 2028.36 1.00222
\(161\) 0 0
\(162\) −1861.72 −0.902903
\(163\) −1492.82 −0.717341 −0.358670 0.933464i \(-0.616770\pi\)
−0.358670 + 0.933464i \(0.616770\pi\)
\(164\) 1432.22 0.681939
\(165\) 3589.88 1.69377
\(166\) 365.628 0.170953
\(167\) −379.063 −0.175645 −0.0878227 0.996136i \(-0.527991\pi\)
−0.0878227 + 0.996136i \(0.527991\pi\)
\(168\) 0 0
\(169\) −1842.29 −0.838549
\(170\) −1286.93 −0.580605
\(171\) −672.368 −0.300686
\(172\) 1084.72 0.480868
\(173\) 3296.35 1.44865 0.724326 0.689458i \(-0.242151\pi\)
0.724326 + 0.689458i \(0.242151\pi\)
\(174\) −3338.67 −1.45462
\(175\) 0 0
\(176\) −2906.41 −1.24477
\(177\) −202.294 −0.0859059
\(178\) −1210.74 −0.509824
\(179\) 1553.09 0.648509 0.324254 0.945970i \(-0.394887\pi\)
0.324254 + 0.945970i \(0.394887\pi\)
\(180\) −1582.09 −0.655122
\(181\) 3522.56 1.44657 0.723287 0.690547i \(-0.242630\pi\)
0.723287 + 0.690547i \(0.242630\pi\)
\(182\) 0 0
\(183\) −170.827 −0.0690047
\(184\) −2604.08 −1.04334
\(185\) 597.789 0.237569
\(186\) 822.312 0.324166
\(187\) 1066.27 0.416969
\(188\) −2304.53 −0.894018
\(189\) 0 0
\(190\) 901.912 0.344377
\(191\) 43.2443 0.0163824 0.00819122 0.999966i \(-0.497393\pi\)
0.00819122 + 0.999966i \(0.497393\pi\)
\(192\) −732.542 −0.275347
\(193\) −206.333 −0.0769541 −0.0384771 0.999259i \(-0.512251\pi\)
−0.0384771 + 0.999259i \(0.512251\pi\)
\(194\) 2169.22 0.802788
\(195\) −1859.93 −0.683037
\(196\) 0 0
\(197\) 4425.94 1.60069 0.800344 0.599541i \(-0.204650\pi\)
0.800344 + 0.599541i \(0.204650\pi\)
\(198\) 4081.57 1.46497
\(199\) −1658.93 −0.590947 −0.295473 0.955351i \(-0.595477\pi\)
−0.295473 + 0.955351i \(0.595477\pi\)
\(200\) −554.799 −0.196151
\(201\) 4740.10 1.66339
\(202\) −811.671 −0.282718
\(203\) 0 0
\(204\) −857.825 −0.294410
\(205\) −4836.39 −1.64775
\(206\) −4520.95 −1.52908
\(207\) 5885.97 1.97635
\(208\) 1505.82 0.501971
\(209\) −747.269 −0.247319
\(210\) 0 0
\(211\) −4319.63 −1.40936 −0.704681 0.709524i \(-0.748910\pi\)
−0.704681 + 0.709524i \(0.748910\pi\)
\(212\) −108.333 −0.0350958
\(213\) 3759.11 1.20925
\(214\) 1810.80 0.578429
\(215\) −3662.93 −1.16191
\(216\) 638.195 0.201036
\(217\) 0 0
\(218\) −3757.85 −1.16749
\(219\) −2754.09 −0.849792
\(220\) −1758.33 −0.538849
\(221\) −552.437 −0.168149
\(222\) 1240.73 0.375100
\(223\) −1449.39 −0.435240 −0.217620 0.976034i \(-0.569829\pi\)
−0.217620 + 0.976034i \(0.569829\pi\)
\(224\) 0 0
\(225\) 1254.01 0.371558
\(226\) −3404.87 −1.00216
\(227\) −3298.69 −0.964500 −0.482250 0.876034i \(-0.660180\pi\)
−0.482250 + 0.876034i \(0.660180\pi\)
\(228\) 601.186 0.174625
\(229\) 5290.18 1.52657 0.763285 0.646062i \(-0.223585\pi\)
0.763285 + 0.646062i \(0.223585\pi\)
\(230\) −7895.43 −2.26352
\(231\) 0 0
\(232\) −1821.31 −0.515408
\(233\) −4213.70 −1.18476 −0.592379 0.805659i \(-0.701811\pi\)
−0.592379 + 0.805659i \(0.701811\pi\)
\(234\) −2114.68 −0.590772
\(235\) 7782.03 2.16019
\(236\) 99.0841 0.0273298
\(237\) −2212.88 −0.606506
\(238\) 0 0
\(239\) −1366.82 −0.369927 −0.184963 0.982745i \(-0.559217\pi\)
−0.184963 + 0.982745i \(0.559217\pi\)
\(240\) −7895.86 −2.12365
\(241\) −2678.22 −0.715847 −0.357923 0.933751i \(-0.616515\pi\)
−0.357923 + 0.933751i \(0.616515\pi\)
\(242\) −32.9238 −0.00874555
\(243\) 5381.31 1.42062
\(244\) 83.6713 0.0219529
\(245\) 0 0
\(246\) −10038.1 −2.60164
\(247\) 387.162 0.0997350
\(248\) 448.586 0.114860
\(249\) −822.991 −0.209457
\(250\) 3802.11 0.961867
\(251\) 6136.68 1.54320 0.771601 0.636107i \(-0.219456\pi\)
0.771601 + 0.636107i \(0.219456\pi\)
\(252\) 0 0
\(253\) 6541.66 1.62558
\(254\) 7094.34 1.75251
\(255\) 2896.73 0.711375
\(256\) 4717.42 1.15171
\(257\) 4865.51 1.18094 0.590472 0.807058i \(-0.298942\pi\)
0.590472 + 0.807058i \(0.298942\pi\)
\(258\) −7602.51 −1.83454
\(259\) 0 0
\(260\) 910.998 0.217299
\(261\) 4116.68 0.976308
\(262\) 2324.04 0.548015
\(263\) 6961.98 1.63230 0.816149 0.577842i \(-0.196105\pi\)
0.816149 + 0.577842i \(0.196105\pi\)
\(264\) 4064.60 0.947571
\(265\) 365.821 0.0848008
\(266\) 0 0
\(267\) 2725.24 0.624652
\(268\) −2321.71 −0.529184
\(269\) 1232.38 0.279329 0.139664 0.990199i \(-0.455398\pi\)
0.139664 + 0.990199i \(0.455398\pi\)
\(270\) 1934.98 0.436144
\(271\) −6481.64 −1.45289 −0.726443 0.687227i \(-0.758828\pi\)
−0.726443 + 0.687227i \(0.758828\pi\)
\(272\) −2345.23 −0.522796
\(273\) 0 0
\(274\) −1122.00 −0.247380
\(275\) 1393.70 0.305613
\(276\) −5262.84 −1.14778
\(277\) 6000.65 1.30160 0.650802 0.759247i \(-0.274433\pi\)
0.650802 + 0.759247i \(0.274433\pi\)
\(278\) −3269.85 −0.705441
\(279\) −1013.94 −0.217573
\(280\) 0 0
\(281\) 1126.57 0.239166 0.119583 0.992824i \(-0.461844\pi\)
0.119583 + 0.992824i \(0.461844\pi\)
\(282\) 16151.8 3.41074
\(283\) 2585.20 0.543019 0.271510 0.962436i \(-0.412477\pi\)
0.271510 + 0.962436i \(0.412477\pi\)
\(284\) −1841.22 −0.384706
\(285\) −2030.11 −0.421941
\(286\) −2350.25 −0.485920
\(287\) 0 0
\(288\) −5190.96 −1.06208
\(289\) −4052.61 −0.824875
\(290\) −5522.11 −1.11817
\(291\) −4882.68 −0.983601
\(292\) 1348.96 0.270350
\(293\) 1414.69 0.282073 0.141036 0.990004i \(-0.454957\pi\)
0.141036 + 0.990004i \(0.454957\pi\)
\(294\) 0 0
\(295\) −334.591 −0.0660361
\(296\) 676.840 0.132907
\(297\) −1603.20 −0.313223
\(298\) −9701.86 −1.88595
\(299\) −3389.26 −0.655538
\(300\) −1121.25 −0.215785
\(301\) 0 0
\(302\) −12079.4 −2.30163
\(303\) 1826.98 0.346394
\(304\) 1643.60 0.310089
\(305\) −282.544 −0.0530441
\(306\) 3293.49 0.615282
\(307\) −4177.55 −0.776630 −0.388315 0.921527i \(-0.626943\pi\)
−0.388315 + 0.921527i \(0.626943\pi\)
\(308\) 0 0
\(309\) 10176.2 1.87347
\(310\) 1360.09 0.249187
\(311\) 6143.55 1.12016 0.560079 0.828439i \(-0.310771\pi\)
0.560079 + 0.828439i \(0.310771\pi\)
\(312\) −2105.88 −0.382122
\(313\) −4527.90 −0.817675 −0.408837 0.912607i \(-0.634066\pi\)
−0.408837 + 0.912607i \(0.634066\pi\)
\(314\) −10424.7 −1.87357
\(315\) 0 0
\(316\) 1083.87 0.192951
\(317\) 1801.20 0.319134 0.159567 0.987187i \(-0.448990\pi\)
0.159567 + 0.987187i \(0.448990\pi\)
\(318\) 759.272 0.133893
\(319\) 4575.28 0.803029
\(320\) −1211.61 −0.211660
\(321\) −4075.92 −0.708709
\(322\) 0 0
\(323\) −602.984 −0.103873
\(324\) −2052.53 −0.351943
\(325\) −722.082 −0.123243
\(326\) −5124.68 −0.870644
\(327\) 8458.51 1.43045
\(328\) −5475.95 −0.921825
\(329\) 0 0
\(330\) 12323.7 2.05574
\(331\) −2982.43 −0.495254 −0.247627 0.968855i \(-0.579651\pi\)
−0.247627 + 0.968855i \(0.579651\pi\)
\(332\) 403.103 0.0666360
\(333\) −1529.86 −0.251759
\(334\) −1301.28 −0.213183
\(335\) 7840.05 1.27865
\(336\) 0 0
\(337\) −2479.66 −0.400818 −0.200409 0.979712i \(-0.564227\pi\)
−0.200409 + 0.979712i \(0.564227\pi\)
\(338\) −6324.39 −1.01776
\(339\) 7663.99 1.22788
\(340\) −1418.83 −0.226314
\(341\) −1126.89 −0.178957
\(342\) −2308.17 −0.364945
\(343\) 0 0
\(344\) −4147.31 −0.650023
\(345\) 17771.8 2.77333
\(346\) 11316.0 1.75824
\(347\) −4408.14 −0.681964 −0.340982 0.940070i \(-0.610760\pi\)
−0.340982 + 0.940070i \(0.610760\pi\)
\(348\) −3680.86 −0.566997
\(349\) 111.860 0.0171569 0.00857843 0.999963i \(-0.497269\pi\)
0.00857843 + 0.999963i \(0.497269\pi\)
\(350\) 0 0
\(351\) 830.624 0.126312
\(352\) −5769.23 −0.873582
\(353\) −3996.59 −0.602598 −0.301299 0.953530i \(-0.597420\pi\)
−0.301299 + 0.953530i \(0.597420\pi\)
\(354\) −694.453 −0.104265
\(355\) 6217.51 0.929552
\(356\) −1334.83 −0.198724
\(357\) 0 0
\(358\) 5331.58 0.787102
\(359\) −616.601 −0.0906490 −0.0453245 0.998972i \(-0.514432\pi\)
−0.0453245 + 0.998972i \(0.514432\pi\)
\(360\) 6048.94 0.885576
\(361\) −6436.41 −0.938389
\(362\) 12092.6 1.75572
\(363\) 74.1080 0.0107153
\(364\) 0 0
\(365\) −4555.23 −0.653237
\(366\) −586.429 −0.0837517
\(367\) −5179.64 −0.736717 −0.368359 0.929684i \(-0.620080\pi\)
−0.368359 + 0.929684i \(0.620080\pi\)
\(368\) −14388.2 −2.03815
\(369\) 12377.2 1.74616
\(370\) 2052.15 0.288340
\(371\) 0 0
\(372\) 906.594 0.126357
\(373\) −9348.00 −1.29764 −0.648822 0.760940i \(-0.724738\pi\)
−0.648822 + 0.760940i \(0.724738\pi\)
\(374\) 3660.38 0.506080
\(375\) −8558.15 −1.17851
\(376\) 8811.12 1.20851
\(377\) −2370.47 −0.323833
\(378\) 0 0
\(379\) −11968.2 −1.62208 −0.811039 0.584992i \(-0.801097\pi\)
−0.811039 + 0.584992i \(0.801097\pi\)
\(380\) 994.352 0.134235
\(381\) −15968.6 −2.14723
\(382\) 148.453 0.0198835
\(383\) −12318.1 −1.64341 −0.821706 0.569911i \(-0.806978\pi\)
−0.821706 + 0.569911i \(0.806978\pi\)
\(384\) −12325.5 −1.63798
\(385\) 0 0
\(386\) −708.318 −0.0934000
\(387\) 9374.13 1.23130
\(388\) 2391.55 0.312919
\(389\) −1073.05 −0.139860 −0.0699301 0.997552i \(-0.522278\pi\)
−0.0699301 + 0.997552i \(0.522278\pi\)
\(390\) −6384.93 −0.829009
\(391\) 5278.58 0.682735
\(392\) 0 0
\(393\) −5231.18 −0.671445
\(394\) 15193.8 1.94277
\(395\) −3660.07 −0.466222
\(396\) 4499.91 0.571033
\(397\) 4565.61 0.577182 0.288591 0.957452i \(-0.406813\pi\)
0.288591 + 0.957452i \(0.406813\pi\)
\(398\) −5694.92 −0.717238
\(399\) 0 0
\(400\) −3065.42 −0.383177
\(401\) −1932.00 −0.240598 −0.120299 0.992738i \(-0.538385\pi\)
−0.120299 + 0.992738i \(0.538385\pi\)
\(402\) 16272.2 2.01887
\(403\) 583.844 0.0721671
\(404\) −894.862 −0.110201
\(405\) 6931.06 0.850389
\(406\) 0 0
\(407\) −1700.28 −0.207076
\(408\) 3279.80 0.397976
\(409\) −6119.00 −0.739768 −0.369884 0.929078i \(-0.620603\pi\)
−0.369884 + 0.929078i \(0.620603\pi\)
\(410\) −16602.8 −1.99989
\(411\) 2525.49 0.303098
\(412\) −4984.32 −0.596019
\(413\) 0 0
\(414\) 20205.9 2.39871
\(415\) −1361.21 −0.161010
\(416\) 2989.05 0.352285
\(417\) 7360.08 0.864328
\(418\) −2565.29 −0.300173
\(419\) 8203.40 0.956473 0.478236 0.878231i \(-0.341276\pi\)
0.478236 + 0.878231i \(0.341276\pi\)
\(420\) 0 0
\(421\) 9371.53 1.08489 0.542447 0.840090i \(-0.317498\pi\)
0.542447 + 0.840090i \(0.317498\pi\)
\(422\) −14828.8 −1.71056
\(423\) −19915.7 −2.28921
\(424\) 414.197 0.0474415
\(425\) 1124.60 0.128356
\(426\) 12904.6 1.46768
\(427\) 0 0
\(428\) 1996.40 0.225466
\(429\) 5290.16 0.595364
\(430\) −12574.4 −1.41022
\(431\) 13294.8 1.48581 0.742907 0.669395i \(-0.233447\pi\)
0.742907 + 0.669395i \(0.233447\pi\)
\(432\) 3526.21 0.392719
\(433\) 3573.48 0.396606 0.198303 0.980141i \(-0.436457\pi\)
0.198303 + 0.980141i \(0.436457\pi\)
\(434\) 0 0
\(435\) 12429.7 1.37002
\(436\) −4143.00 −0.455078
\(437\) −3699.37 −0.404954
\(438\) −9454.50 −1.03140
\(439\) 5381.51 0.585070 0.292535 0.956255i \(-0.405501\pi\)
0.292535 + 0.956255i \(0.405501\pi\)
\(440\) 6722.78 0.728400
\(441\) 0 0
\(442\) −1896.46 −0.204084
\(443\) −11113.7 −1.19193 −0.595966 0.803009i \(-0.703231\pi\)
−0.595966 + 0.803009i \(0.703231\pi\)
\(444\) 1367.90 0.146210
\(445\) 4507.51 0.480171
\(446\) −4975.60 −0.528255
\(447\) 21837.8 2.31073
\(448\) 0 0
\(449\) −8324.31 −0.874941 −0.437471 0.899233i \(-0.644126\pi\)
−0.437471 + 0.899233i \(0.644126\pi\)
\(450\) 4304.87 0.450964
\(451\) 13756.1 1.43625
\(452\) −3753.84 −0.390633
\(453\) 27189.5 2.82003
\(454\) −11324.0 −1.17062
\(455\) 0 0
\(456\) −2298.57 −0.236053
\(457\) −8388.31 −0.858618 −0.429309 0.903158i \(-0.641243\pi\)
−0.429309 + 0.903158i \(0.641243\pi\)
\(458\) 18160.6 1.85281
\(459\) −1293.65 −0.131552
\(460\) −8704.66 −0.882298
\(461\) −8725.26 −0.881510 −0.440755 0.897628i \(-0.645289\pi\)
−0.440755 + 0.897628i \(0.645289\pi\)
\(462\) 0 0
\(463\) 15540.8 1.55992 0.779961 0.625828i \(-0.215239\pi\)
0.779961 + 0.625828i \(0.215239\pi\)
\(464\) −10063.2 −1.00684
\(465\) −3061.42 −0.305312
\(466\) −14465.2 −1.43795
\(467\) −12674.3 −1.25588 −0.627941 0.778261i \(-0.716102\pi\)
−0.627941 + 0.778261i \(0.716102\pi\)
\(468\) −2331.42 −0.230277
\(469\) 0 0
\(470\) 26714.9 2.62184
\(471\) 23464.9 2.29556
\(472\) −378.837 −0.0369436
\(473\) 10418.4 1.01277
\(474\) −7596.57 −0.736122
\(475\) −788.151 −0.0761323
\(476\) 0 0
\(477\) −936.206 −0.0898657
\(478\) −4692.16 −0.448984
\(479\) 3648.70 0.348045 0.174022 0.984742i \(-0.444323\pi\)
0.174022 + 0.984742i \(0.444323\pi\)
\(480\) −15673.3 −1.49038
\(481\) 880.921 0.0835063
\(482\) −9194.02 −0.868830
\(483\) 0 0
\(484\) −36.2983 −0.00340893
\(485\) −8075.88 −0.756097
\(486\) 18473.5 1.72422
\(487\) 11578.4 1.07735 0.538674 0.842514i \(-0.318925\pi\)
0.538674 + 0.842514i \(0.318925\pi\)
\(488\) −319.908 −0.0296753
\(489\) 11535.1 1.06674
\(490\) 0 0
\(491\) −2138.19 −0.196527 −0.0982637 0.995160i \(-0.531329\pi\)
−0.0982637 + 0.995160i \(0.531329\pi\)
\(492\) −11066.9 −1.01409
\(493\) 3691.87 0.337269
\(494\) 1329.09 0.121049
\(495\) −15195.5 −1.37977
\(496\) 2478.56 0.224377
\(497\) 0 0
\(498\) −2825.24 −0.254221
\(499\) 15360.9 1.37805 0.689025 0.724737i \(-0.258039\pi\)
0.689025 + 0.724737i \(0.258039\pi\)
\(500\) 4191.81 0.374927
\(501\) 2929.05 0.261198
\(502\) 21066.5 1.87300
\(503\) −15109.5 −1.33937 −0.669683 0.742647i \(-0.733570\pi\)
−0.669683 + 0.742647i \(0.733570\pi\)
\(504\) 0 0
\(505\) 3021.80 0.266274
\(506\) 22456.8 1.97298
\(507\) 14235.5 1.24699
\(508\) 7821.47 0.683113
\(509\) 449.913 0.0391788 0.0195894 0.999808i \(-0.493764\pi\)
0.0195894 + 0.999808i \(0.493764\pi\)
\(510\) 9944.17 0.863403
\(511\) 0 0
\(512\) 3433.51 0.296370
\(513\) 906.624 0.0780281
\(514\) 16702.8 1.43332
\(515\) 16831.2 1.44014
\(516\) −8381.72 −0.715087
\(517\) −22134.3 −1.88291
\(518\) 0 0
\(519\) −25471.1 −2.15425
\(520\) −3483.10 −0.293738
\(521\) 4086.94 0.343670 0.171835 0.985126i \(-0.445030\pi\)
0.171835 + 0.985126i \(0.445030\pi\)
\(522\) 14132.1 1.18495
\(523\) −10729.8 −0.897097 −0.448549 0.893758i \(-0.648059\pi\)
−0.448549 + 0.893758i \(0.648059\pi\)
\(524\) 2562.24 0.213611
\(525\) 0 0
\(526\) 23899.7 1.98114
\(527\) −909.304 −0.0751611
\(528\) 22458.0 1.85106
\(529\) 20217.6 1.66168
\(530\) 1255.82 0.102924
\(531\) 856.282 0.0699802
\(532\) 0 0
\(533\) −7127.05 −0.579188
\(534\) 9355.45 0.758146
\(535\) −6741.50 −0.544786
\(536\) 8876.81 0.715336
\(537\) −12000.8 −0.964382
\(538\) 4230.62 0.339024
\(539\) 0 0
\(540\) 2133.30 0.170005
\(541\) −950.986 −0.0755750 −0.0377875 0.999286i \(-0.512031\pi\)
−0.0377875 + 0.999286i \(0.512031\pi\)
\(542\) −22250.8 −1.76338
\(543\) −27219.1 −2.15117
\(544\) −4655.29 −0.366900
\(545\) 13990.2 1.09959
\(546\) 0 0
\(547\) 18719.6 1.46324 0.731622 0.681711i \(-0.238764\pi\)
0.731622 + 0.681711i \(0.238764\pi\)
\(548\) −1236.99 −0.0964265
\(549\) 723.085 0.0562122
\(550\) 4784.43 0.370925
\(551\) −2587.36 −0.200046
\(552\) 20121.9 1.55153
\(553\) 0 0
\(554\) 20599.6 1.57977
\(555\) −4619.16 −0.353284
\(556\) −3604.99 −0.274974
\(557\) −18162.8 −1.38166 −0.690829 0.723018i \(-0.742754\pi\)
−0.690829 + 0.723018i \(0.742754\pi\)
\(558\) −3480.73 −0.264070
\(559\) −5397.81 −0.408413
\(560\) 0 0
\(561\) −8239.13 −0.620064
\(562\) 3867.41 0.290279
\(563\) 15511.6 1.16117 0.580584 0.814200i \(-0.302824\pi\)
0.580584 + 0.814200i \(0.302824\pi\)
\(564\) 17807.3 1.32947
\(565\) 12676.1 0.943873
\(566\) 8874.72 0.659068
\(567\) 0 0
\(568\) 7039.70 0.520034
\(569\) −17928.9 −1.32095 −0.660473 0.750850i \(-0.729644\pi\)
−0.660473 + 0.750850i \(0.729644\pi\)
\(570\) −6969.14 −0.512114
\(571\) −910.568 −0.0667357 −0.0333679 0.999443i \(-0.510623\pi\)
−0.0333679 + 0.999443i \(0.510623\pi\)
\(572\) −2591.13 −0.189407
\(573\) −334.151 −0.0243619
\(574\) 0 0
\(575\) 6899.56 0.500402
\(576\) 3100.75 0.224302
\(577\) −26496.1 −1.91170 −0.955848 0.293862i \(-0.905059\pi\)
−0.955848 + 0.293862i \(0.905059\pi\)
\(578\) −13912.2 −1.00116
\(579\) 1594.35 0.114437
\(580\) −6088.09 −0.435852
\(581\) 0 0
\(582\) −16761.7 −1.19381
\(583\) −1040.50 −0.0739160
\(584\) −5157.61 −0.365451
\(585\) 7872.82 0.556412
\(586\) 4856.49 0.342355
\(587\) 25543.4 1.79606 0.898031 0.439932i \(-0.144997\pi\)
0.898031 + 0.439932i \(0.144997\pi\)
\(588\) 0 0
\(589\) 637.264 0.0445807
\(590\) −1148.61 −0.0801486
\(591\) −34199.6 −2.38034
\(592\) 3739.73 0.259632
\(593\) −21320.4 −1.47643 −0.738215 0.674565i \(-0.764331\pi\)
−0.738215 + 0.674565i \(0.764331\pi\)
\(594\) −5503.61 −0.380162
\(595\) 0 0
\(596\) −10696.2 −0.735126
\(597\) 12818.7 0.878782
\(598\) −11635.0 −0.795633
\(599\) −19402.4 −1.32347 −0.661737 0.749736i \(-0.730180\pi\)
−0.661737 + 0.749736i \(0.730180\pi\)
\(600\) 4286.97 0.291692
\(601\) −16408.5 −1.11367 −0.556837 0.830622i \(-0.687985\pi\)
−0.556837 + 0.830622i \(0.687985\pi\)
\(602\) 0 0
\(603\) −20064.2 −1.35502
\(604\) −13317.5 −0.897155
\(605\) 122.573 0.00823689
\(606\) 6271.84 0.420422
\(607\) 18288.3 1.22290 0.611448 0.791284i \(-0.290587\pi\)
0.611448 + 0.791284i \(0.290587\pi\)
\(608\) 3262.55 0.217621
\(609\) 0 0
\(610\) −969.944 −0.0643801
\(611\) 11467.8 0.759312
\(612\) 3631.05 0.239831
\(613\) 575.666 0.0379298 0.0189649 0.999820i \(-0.493963\pi\)
0.0189649 + 0.999820i \(0.493963\pi\)
\(614\) −14341.1 −0.942603
\(615\) 37371.1 2.45032
\(616\) 0 0
\(617\) 17703.9 1.15516 0.577580 0.816334i \(-0.303997\pi\)
0.577580 + 0.816334i \(0.303997\pi\)
\(618\) 34933.7 2.27385
\(619\) −9375.12 −0.608753 −0.304376 0.952552i \(-0.598448\pi\)
−0.304376 + 0.952552i \(0.598448\pi\)
\(620\) 1499.49 0.0971307
\(621\) −7936.68 −0.512863
\(622\) 21090.2 1.35955
\(623\) 0 0
\(624\) −11635.6 −0.746468
\(625\) −18947.5 −1.21264
\(626\) −15543.8 −0.992420
\(627\) 5774.20 0.367782
\(628\) −11493.2 −0.730300
\(629\) −1371.99 −0.0869708
\(630\) 0 0
\(631\) −25659.2 −1.61882 −0.809410 0.587244i \(-0.800213\pi\)
−0.809410 + 0.587244i \(0.800213\pi\)
\(632\) −4144.07 −0.260826
\(633\) 33378.1 2.09583
\(634\) 6183.32 0.387336
\(635\) −26411.8 −1.65058
\(636\) 837.093 0.0521901
\(637\) 0 0
\(638\) 15706.4 0.974645
\(639\) −15911.8 −0.985071
\(640\) −20386.2 −1.25912
\(641\) 17.1131 0.00105449 0.000527243 1.00000i \(-0.499832\pi\)
0.000527243 1.00000i \(0.499832\pi\)
\(642\) −13992.2 −0.860167
\(643\) −8808.39 −0.540232 −0.270116 0.962828i \(-0.587062\pi\)
−0.270116 + 0.962828i \(0.587062\pi\)
\(644\) 0 0
\(645\) 28303.7 1.72784
\(646\) −2069.98 −0.126071
\(647\) 68.0956 0.00413773 0.00206887 0.999998i \(-0.499341\pi\)
0.00206887 + 0.999998i \(0.499341\pi\)
\(648\) 7847.62 0.475746
\(649\) 951.671 0.0575598
\(650\) −2478.83 −0.149581
\(651\) 0 0
\(652\) −5649.93 −0.339369
\(653\) −24699.4 −1.48018 −0.740092 0.672505i \(-0.765218\pi\)
−0.740092 + 0.672505i \(0.765218\pi\)
\(654\) 29037.2 1.73615
\(655\) −8652.28 −0.516141
\(656\) −30256.1 −1.80077
\(657\) 11657.7 0.692253
\(658\) 0 0
\(659\) −30523.5 −1.80429 −0.902144 0.431434i \(-0.858008\pi\)
−0.902144 + 0.431434i \(0.858008\pi\)
\(660\) 13586.8 0.801309
\(661\) −24621.0 −1.44878 −0.724392 0.689389i \(-0.757879\pi\)
−0.724392 + 0.689389i \(0.757879\pi\)
\(662\) −10238.3 −0.601095
\(663\) 4268.72 0.250050
\(664\) −1541.22 −0.0900766
\(665\) 0 0
\(666\) −5251.83 −0.305562
\(667\) 22650.0 1.31486
\(668\) −1434.65 −0.0830965
\(669\) 11199.5 0.647234
\(670\) 26914.0 1.55191
\(671\) 803.636 0.0462355
\(672\) 0 0
\(673\) 32140.8 1.84092 0.920458 0.390842i \(-0.127816\pi\)
0.920458 + 0.390842i \(0.127816\pi\)
\(674\) −8512.40 −0.486477
\(675\) −1690.91 −0.0964196
\(676\) −6972.60 −0.396711
\(677\) −16017.0 −0.909284 −0.454642 0.890674i \(-0.650233\pi\)
−0.454642 + 0.890674i \(0.650233\pi\)
\(678\) 26309.6 1.49029
\(679\) 0 0
\(680\) 5424.73 0.305925
\(681\) 25489.2 1.43428
\(682\) −3868.48 −0.217202
\(683\) −18001.7 −1.00852 −0.504259 0.863552i \(-0.668234\pi\)
−0.504259 + 0.863552i \(0.668234\pi\)
\(684\) −2544.74 −0.142252
\(685\) 4177.12 0.232992
\(686\) 0 0
\(687\) −40877.6 −2.27013
\(688\) −22915.0 −1.26981
\(689\) 539.086 0.0298077
\(690\) 61008.5 3.36602
\(691\) 19740.8 1.08680 0.543398 0.839475i \(-0.317137\pi\)
0.543398 + 0.839475i \(0.317137\pi\)
\(692\) 12475.8 0.685346
\(693\) 0 0
\(694\) −15132.7 −0.827707
\(695\) 12173.5 0.664411
\(696\) 14073.4 0.766450
\(697\) 11100.0 0.603217
\(698\) 384.004 0.0208235
\(699\) 32559.6 1.76183
\(700\) 0 0
\(701\) −28044.2 −1.51101 −0.755503 0.655145i \(-0.772607\pi\)
−0.755503 + 0.655145i \(0.772607\pi\)
\(702\) 2851.44 0.153306
\(703\) 961.523 0.0515854
\(704\) 3446.17 0.184492
\(705\) −60132.3 −3.21236
\(706\) −13719.9 −0.731379
\(707\) 0 0
\(708\) −765.630 −0.0406414
\(709\) −18840.1 −0.997962 −0.498981 0.866613i \(-0.666292\pi\)
−0.498981 + 0.866613i \(0.666292\pi\)
\(710\) 21344.0 1.12821
\(711\) 9366.80 0.494068
\(712\) 5103.57 0.268630
\(713\) −5578.68 −0.293020
\(714\) 0 0
\(715\) 8749.84 0.457658
\(716\) 5878.03 0.306805
\(717\) 10561.5 0.550109
\(718\) −2116.73 −0.110022
\(719\) 400.627 0.0207800 0.0103900 0.999946i \(-0.496693\pi\)
0.0103900 + 0.999946i \(0.496693\pi\)
\(720\) 33422.1 1.72995
\(721\) 0 0
\(722\) −22095.5 −1.13893
\(723\) 20694.8 1.06452
\(724\) 13332.0 0.684364
\(725\) 4825.59 0.247197
\(726\) 254.405 0.0130053
\(727\) 30143.9 1.53779 0.768897 0.639372i \(-0.220806\pi\)
0.768897 + 0.639372i \(0.220806\pi\)
\(728\) 0 0
\(729\) −26939.2 −1.36865
\(730\) −15637.6 −0.792840
\(731\) 8406.78 0.425357
\(732\) −646.534 −0.0326456
\(733\) −36814.5 −1.85508 −0.927540 0.373724i \(-0.878081\pi\)
−0.927540 + 0.373724i \(0.878081\pi\)
\(734\) −17781.2 −0.894161
\(735\) 0 0
\(736\) −28560.7 −1.43038
\(737\) −22299.3 −1.11453
\(738\) 42489.7 2.11933
\(739\) −5909.07 −0.294139 −0.147069 0.989126i \(-0.546984\pi\)
−0.147069 + 0.989126i \(0.546984\pi\)
\(740\) 2262.48 0.112392
\(741\) −2991.63 −0.148313
\(742\) 0 0
\(743\) −19203.6 −0.948197 −0.474099 0.880472i \(-0.657226\pi\)
−0.474099 + 0.880472i \(0.657226\pi\)
\(744\) −3466.26 −0.170805
\(745\) 36119.4 1.77626
\(746\) −32090.7 −1.57496
\(747\) 3483.60 0.170627
\(748\) 4035.55 0.197265
\(749\) 0 0
\(750\) −29379.2 −1.43037
\(751\) 28140.3 1.36731 0.683657 0.729803i \(-0.260388\pi\)
0.683657 + 0.729803i \(0.260388\pi\)
\(752\) 48683.9 2.36080
\(753\) −47418.5 −2.29486
\(754\) −8137.55 −0.393040
\(755\) 44971.0 2.16777
\(756\) 0 0
\(757\) −34796.3 −1.67067 −0.835333 0.549744i \(-0.814725\pi\)
−0.835333 + 0.549744i \(0.814725\pi\)
\(758\) −41085.7 −1.96873
\(759\) −50547.9 −2.41735
\(760\) −3801.79 −0.181455
\(761\) −19782.6 −0.942340 −0.471170 0.882043i \(-0.656168\pi\)
−0.471170 + 0.882043i \(0.656168\pi\)
\(762\) −54818.5 −2.60612
\(763\) 0 0
\(764\) 163.668 0.00775041
\(765\) −12261.5 −0.579496
\(766\) −42286.8 −1.99463
\(767\) −493.064 −0.0232119
\(768\) −36451.8 −1.71268
\(769\) 25017.3 1.17314 0.586570 0.809898i \(-0.300478\pi\)
0.586570 + 0.809898i \(0.300478\pi\)
\(770\) 0 0
\(771\) −37596.2 −1.75615
\(772\) −780.916 −0.0364064
\(773\) 9380.91 0.436491 0.218246 0.975894i \(-0.429967\pi\)
0.218246 + 0.975894i \(0.429967\pi\)
\(774\) 32180.4 1.49444
\(775\) −1188.54 −0.0550885
\(776\) −9143.83 −0.422995
\(777\) 0 0
\(778\) −3683.65 −0.169750
\(779\) −7779.17 −0.357789
\(780\) −7039.34 −0.323140
\(781\) −17684.3 −0.810237
\(782\) 18120.8 0.828642
\(783\) −5550.96 −0.253353
\(784\) 0 0
\(785\) 38810.6 1.76460
\(786\) −17958.1 −0.814940
\(787\) 25327.8 1.14719 0.573596 0.819138i \(-0.305548\pi\)
0.573596 + 0.819138i \(0.305548\pi\)
\(788\) 16751.0 0.757273
\(789\) −53795.7 −2.42735
\(790\) −12564.6 −0.565859
\(791\) 0 0
\(792\) −17204.9 −0.771905
\(793\) −416.366 −0.0186451
\(794\) 15673.2 0.700532
\(795\) −2826.73 −0.126105
\(796\) −6278.62 −0.279572
\(797\) 38975.6 1.73223 0.866114 0.499847i \(-0.166610\pi\)
0.866114 + 0.499847i \(0.166610\pi\)
\(798\) 0 0
\(799\) −17860.5 −0.790814
\(800\) −6084.86 −0.268915
\(801\) −11535.6 −0.508850
\(802\) −6632.36 −0.292016
\(803\) 12956.3 0.569389
\(804\) 17940.1 0.786936
\(805\) 0 0
\(806\) 2004.27 0.0875899
\(807\) −9522.68 −0.415383
\(808\) 3421.40 0.148966
\(809\) 1297.61 0.0563925 0.0281962 0.999602i \(-0.491024\pi\)
0.0281962 + 0.999602i \(0.491024\pi\)
\(810\) 23793.6 1.03213
\(811\) −37846.6 −1.63869 −0.819343 0.573304i \(-0.805662\pi\)
−0.819343 + 0.573304i \(0.805662\pi\)
\(812\) 0 0
\(813\) 50084.1 2.16055
\(814\) −5836.88 −0.251330
\(815\) 19078.9 0.820005
\(816\) 18121.8 0.777438
\(817\) −5891.70 −0.252294
\(818\) −21005.9 −0.897864
\(819\) 0 0
\(820\) −18304.5 −0.779537
\(821\) −4428.01 −0.188232 −0.0941160 0.995561i \(-0.530002\pi\)
−0.0941160 + 0.995561i \(0.530002\pi\)
\(822\) 8669.74 0.367873
\(823\) −5773.25 −0.244524 −0.122262 0.992498i \(-0.539015\pi\)
−0.122262 + 0.992498i \(0.539015\pi\)
\(824\) 19057.0 0.805681
\(825\) −10769.2 −0.454469
\(826\) 0 0
\(827\) 24517.5 1.03090 0.515451 0.856919i \(-0.327624\pi\)
0.515451 + 0.856919i \(0.327624\pi\)
\(828\) 22276.9 0.934994
\(829\) −26528.1 −1.11141 −0.555705 0.831380i \(-0.687552\pi\)
−0.555705 + 0.831380i \(0.687552\pi\)
\(830\) −4672.90 −0.195420
\(831\) −46367.5 −1.93558
\(832\) −1785.47 −0.0743991
\(833\) 0 0
\(834\) 25266.4 1.04904
\(835\) 4844.60 0.200783
\(836\) −2828.22 −0.117005
\(837\) 1367.20 0.0564602
\(838\) 28161.4 1.16088
\(839\) −2805.47 −0.115442 −0.0577208 0.998333i \(-0.518383\pi\)
−0.0577208 + 0.998333i \(0.518383\pi\)
\(840\) 0 0
\(841\) −8547.46 −0.350464
\(842\) 32171.4 1.31675
\(843\) −8705.12 −0.355658
\(844\) −16348.7 −0.666759
\(845\) 23545.3 0.958561
\(846\) −68368.4 −2.77843
\(847\) 0 0
\(848\) 2288.55 0.0926760
\(849\) −19976.1 −0.807510
\(850\) 3860.64 0.155787
\(851\) −8417.27 −0.339060
\(852\) 14227.3 0.572086
\(853\) 6907.55 0.277268 0.138634 0.990344i \(-0.455729\pi\)
0.138634 + 0.990344i \(0.455729\pi\)
\(854\) 0 0
\(855\) 8593.16 0.343719
\(856\) −7632.99 −0.304778
\(857\) −39021.0 −1.55535 −0.777674 0.628668i \(-0.783601\pi\)
−0.777674 + 0.628668i \(0.783601\pi\)
\(858\) 18160.5 0.722599
\(859\) −9486.04 −0.376786 −0.188393 0.982094i \(-0.560328\pi\)
−0.188393 + 0.982094i \(0.560328\pi\)
\(860\) −13863.2 −0.549689
\(861\) 0 0
\(862\) 45639.4 1.80335
\(863\) −38698.9 −1.52645 −0.763225 0.646133i \(-0.776385\pi\)
−0.763225 + 0.646133i \(0.776385\pi\)
\(864\) 6999.52 0.275612
\(865\) −42128.8 −1.65598
\(866\) 12267.4 0.481365
\(867\) 31314.8 1.22665
\(868\) 0 0
\(869\) 10410.3 0.406379
\(870\) 42669.7 1.66280
\(871\) 11553.3 0.449449
\(872\) 15840.3 0.615161
\(873\) 20667.7 0.801256
\(874\) −12699.5 −0.491496
\(875\) 0 0
\(876\) −10423.5 −0.402030
\(877\) −2116.94 −0.0815098 −0.0407549 0.999169i \(-0.512976\pi\)
−0.0407549 + 0.999169i \(0.512976\pi\)
\(878\) 18474.2 0.710105
\(879\) −10931.4 −0.419464
\(880\) 37145.2 1.42292
\(881\) −25926.2 −0.991458 −0.495729 0.868477i \(-0.665099\pi\)
−0.495729 + 0.868477i \(0.665099\pi\)
\(882\) 0 0
\(883\) −8378.15 −0.319306 −0.159653 0.987173i \(-0.551038\pi\)
−0.159653 + 0.987173i \(0.551038\pi\)
\(884\) −2090.83 −0.0795500
\(885\) 2585.41 0.0982006
\(886\) −38152.0 −1.44666
\(887\) 42851.8 1.62212 0.811061 0.584962i \(-0.198890\pi\)
0.811061 + 0.584962i \(0.198890\pi\)
\(888\) −5229.99 −0.197643
\(889\) 0 0
\(890\) 15473.8 0.582789
\(891\) −19713.9 −0.741235
\(892\) −5485.57 −0.205909
\(893\) 12517.1 0.469059
\(894\) 74966.9 2.80455
\(895\) −19849.1 −0.741323
\(896\) 0 0
\(897\) 26189.0 0.974834
\(898\) −28576.5 −1.06193
\(899\) −3901.76 −0.144751
\(900\) 4746.10 0.175781
\(901\) −839.596 −0.0310444
\(902\) 47223.0 1.74319
\(903\) 0 0
\(904\) 14352.4 0.528046
\(905\) −45020.0 −1.65361
\(906\) 93338.7 3.42270
\(907\) 6476.75 0.237108 0.118554 0.992948i \(-0.462174\pi\)
0.118554 + 0.992948i \(0.462174\pi\)
\(908\) −12484.7 −0.456298
\(909\) −7733.37 −0.282178
\(910\) 0 0
\(911\) 8590.89 0.312436 0.156218 0.987723i \(-0.450070\pi\)
0.156218 + 0.987723i \(0.450070\pi\)
\(912\) −12700.2 −0.461125
\(913\) 3871.67 0.140344
\(914\) −28796.2 −1.04211
\(915\) 2183.24 0.0788805
\(916\) 20021.9 0.722209
\(917\) 0 0
\(918\) −4440.96 −0.159666
\(919\) 32029.4 1.14968 0.574838 0.818267i \(-0.305065\pi\)
0.574838 + 0.818267i \(0.305065\pi\)
\(920\) 33281.3 1.19266
\(921\) 32280.2 1.15491
\(922\) −29952.9 −1.06990
\(923\) 9162.31 0.326740
\(924\) 0 0
\(925\) −1793.30 −0.0637442
\(926\) 53350.0 1.89329
\(927\) −43074.3 −1.52616
\(928\) −19975.5 −0.706603
\(929\) −37416.2 −1.32140 −0.660702 0.750648i \(-0.729741\pi\)
−0.660702 + 0.750648i \(0.729741\pi\)
\(930\) −10509.5 −0.370560
\(931\) 0 0
\(932\) −15947.8 −0.560500
\(933\) −47471.7 −1.66576
\(934\) −43509.5 −1.52428
\(935\) −13627.4 −0.476645
\(936\) 8913.91 0.311282
\(937\) −12407.0 −0.432570 −0.216285 0.976330i \(-0.569394\pi\)
−0.216285 + 0.976330i \(0.569394\pi\)
\(938\) 0 0
\(939\) 34987.4 1.21594
\(940\) 29453.0 1.02197
\(941\) 11985.1 0.415200 0.207600 0.978214i \(-0.433435\pi\)
0.207600 + 0.978214i \(0.433435\pi\)
\(942\) 80552.6 2.78614
\(943\) 68099.6 2.35167
\(944\) −2093.18 −0.0721686
\(945\) 0 0
\(946\) 35765.2 1.22920
\(947\) 47379.7 1.62580 0.812901 0.582402i \(-0.197887\pi\)
0.812901 + 0.582402i \(0.197887\pi\)
\(948\) −8375.17 −0.286933
\(949\) −6712.73 −0.229615
\(950\) −2705.64 −0.0924026
\(951\) −13918.0 −0.474576
\(952\) 0 0
\(953\) 39722.5 1.35020 0.675099 0.737728i \(-0.264101\pi\)
0.675099 + 0.737728i \(0.264101\pi\)
\(954\) −3213.89 −0.109071
\(955\) −552.681 −0.0187271
\(956\) −5173.07 −0.175010
\(957\) −35353.5 −1.19417
\(958\) 12525.6 0.422426
\(959\) 0 0
\(960\) 9362.22 0.314754
\(961\) 961.000 0.0322581
\(962\) 3024.10 0.101352
\(963\) 17252.8 0.577324
\(964\) −10136.4 −0.338662
\(965\) 2637.02 0.0879677
\(966\) 0 0
\(967\) 44883.6 1.49262 0.746308 0.665601i \(-0.231825\pi\)
0.746308 + 0.665601i \(0.231825\pi\)
\(968\) 138.782 0.00460809
\(969\) 4659.30 0.154467
\(970\) −27723.6 −0.917682
\(971\) −35719.0 −1.18051 −0.590256 0.807216i \(-0.700973\pi\)
−0.590256 + 0.807216i \(0.700973\pi\)
\(972\) 20366.9 0.672086
\(973\) 0 0
\(974\) 39747.5 1.30759
\(975\) 5579.58 0.183271
\(976\) −1767.58 −0.0579701
\(977\) −46492.5 −1.52244 −0.761222 0.648491i \(-0.775400\pi\)
−0.761222 + 0.648491i \(0.775400\pi\)
\(978\) 39598.8 1.29471
\(979\) −12820.6 −0.418538
\(980\) 0 0
\(981\) −35803.7 −1.16526
\(982\) −7340.16 −0.238527
\(983\) −58800.7 −1.90788 −0.953942 0.299992i \(-0.903016\pi\)
−0.953942 + 0.299992i \(0.903016\pi\)
\(984\) 42313.0 1.37082
\(985\) −56565.6 −1.82978
\(986\) 12673.8 0.409346
\(987\) 0 0
\(988\) 1465.31 0.0471839
\(989\) 51576.5 1.65828
\(990\) −52164.3 −1.67464
\(991\) 20054.4 0.642835 0.321418 0.946938i \(-0.395841\pi\)
0.321418 + 0.946938i \(0.395841\pi\)
\(992\) 4919.95 0.157468
\(993\) 23045.4 0.736480
\(994\) 0 0
\(995\) 21201.9 0.675522
\(996\) −3114.81 −0.0990928
\(997\) 56811.1 1.80464 0.902320 0.431067i \(-0.141863\pi\)
0.902320 + 0.431067i \(0.141863\pi\)
\(998\) 52732.2 1.67255
\(999\) 2062.87 0.0653315
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1519.4.a.h.1.17 23
7.6 odd 2 1519.4.a.i.1.17 yes 23
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1519.4.a.h.1.17 23 1.1 even 1 trivial
1519.4.a.i.1.17 yes 23 7.6 odd 2