Properties

Label 1519.4.a.h.1.11
Level $1519$
Weight $4$
Character 1519.1
Self dual yes
Analytic conductor $89.624$
Analytic rank $1$
Dimension $23$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1519,4,Mod(1,1519)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1519, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1519.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1519 = 7^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1519.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [23,5,-6,91,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.6239012987\)
Analytic rank: \(1\)
Dimension: \(23\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Character \(\chi\) \(=\) 1519.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.189863 q^{2} -5.02070 q^{3} -7.96395 q^{4} -18.3852 q^{5} -0.953245 q^{6} -3.03096 q^{8} -1.79257 q^{9} -3.49067 q^{10} -26.1525 q^{11} +39.9846 q^{12} -59.6686 q^{13} +92.3065 q^{15} +63.1361 q^{16} -108.280 q^{17} -0.340344 q^{18} +66.4797 q^{19} +146.419 q^{20} -4.96539 q^{22} -18.4646 q^{23} +15.2176 q^{24} +213.015 q^{25} -11.3289 q^{26} +144.559 q^{27} +34.6654 q^{29} +17.5256 q^{30} -31.0000 q^{31} +36.2349 q^{32} +131.304 q^{33} -20.5583 q^{34} +14.2760 q^{36} +302.708 q^{37} +12.6220 q^{38} +299.578 q^{39} +55.7248 q^{40} +97.3925 q^{41} -237.966 q^{43} +208.277 q^{44} +32.9568 q^{45} -3.50575 q^{46} -53.6367 q^{47} -316.988 q^{48} +40.4436 q^{50} +543.640 q^{51} +475.198 q^{52} -199.618 q^{53} +27.4464 q^{54} +480.818 q^{55} -333.775 q^{57} +6.58168 q^{58} -475.892 q^{59} -735.124 q^{60} +171.908 q^{61} -5.88575 q^{62} -498.210 q^{64} +1097.02 q^{65} +24.9297 q^{66} +883.588 q^{67} +862.335 q^{68} +92.7054 q^{69} +934.857 q^{71} +5.43323 q^{72} -627.052 q^{73} +57.4731 q^{74} -1069.48 q^{75} -529.441 q^{76} +56.8788 q^{78} +146.960 q^{79} -1160.77 q^{80} -677.387 q^{81} +18.4912 q^{82} -382.128 q^{83} +1990.74 q^{85} -45.1809 q^{86} -174.045 q^{87} +79.2672 q^{88} +398.297 q^{89} +6.25728 q^{90} +147.051 q^{92} +155.642 q^{93} -10.1836 q^{94} -1222.24 q^{95} -181.925 q^{96} +882.691 q^{97} +46.8803 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 23 q + 5 q^{2} - 6 q^{3} + 91 q^{4} - 40 q^{5} - 36 q^{6} + 39 q^{8} + 211 q^{9} - 40 q^{10} + 44 q^{11} - 414 q^{12} + 20 q^{13} + 523 q^{16} - 306 q^{17} + 51 q^{18} - 296 q^{19} - 400 q^{20} - 326 q^{22}+ \cdots - 3456 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.189863 0.0671267 0.0335634 0.999437i \(-0.489314\pi\)
0.0335634 + 0.999437i \(0.489314\pi\)
\(3\) −5.02070 −0.966234 −0.483117 0.875556i \(-0.660495\pi\)
−0.483117 + 0.875556i \(0.660495\pi\)
\(4\) −7.96395 −0.995494
\(5\) −18.3852 −1.64442 −0.822210 0.569184i \(-0.807259\pi\)
−0.822210 + 0.569184i \(0.807259\pi\)
\(6\) −0.953245 −0.0648601
\(7\) 0 0
\(8\) −3.03096 −0.133951
\(9\) −1.79257 −0.0663917
\(10\) −3.49067 −0.110385
\(11\) −26.1525 −0.716843 −0.358421 0.933560i \(-0.616685\pi\)
−0.358421 + 0.933560i \(0.616685\pi\)
\(12\) 39.9846 0.961880
\(13\) −59.6686 −1.27301 −0.636503 0.771274i \(-0.719620\pi\)
−0.636503 + 0.771274i \(0.719620\pi\)
\(14\) 0 0
\(15\) 92.3065 1.58890
\(16\) 63.1361 0.986502
\(17\) −108.280 −1.54481 −0.772403 0.635132i \(-0.780946\pi\)
−0.772403 + 0.635132i \(0.780946\pi\)
\(18\) −0.340344 −0.00445665
\(19\) 66.4797 0.802710 0.401355 0.915923i \(-0.368539\pi\)
0.401355 + 0.915923i \(0.368539\pi\)
\(20\) 146.419 1.63701
\(21\) 0 0
\(22\) −4.96539 −0.0481193
\(23\) −18.4646 −0.167398 −0.0836988 0.996491i \(-0.526673\pi\)
−0.0836988 + 0.996491i \(0.526673\pi\)
\(24\) 15.2176 0.129428
\(25\) 213.015 1.70412
\(26\) −11.3289 −0.0854528
\(27\) 144.559 1.03038
\(28\) 0 0
\(29\) 34.6654 0.221973 0.110986 0.993822i \(-0.464599\pi\)
0.110986 + 0.993822i \(0.464599\pi\)
\(30\) 17.5256 0.106657
\(31\) −31.0000 −0.179605
\(32\) 36.2349 0.200172
\(33\) 131.304 0.692638
\(34\) −20.5583 −0.103698
\(35\) 0 0
\(36\) 14.2760 0.0660925
\(37\) 302.708 1.34500 0.672499 0.740098i \(-0.265221\pi\)
0.672499 + 0.740098i \(0.265221\pi\)
\(38\) 12.6220 0.0538833
\(39\) 299.578 1.23002
\(40\) 55.7248 0.220272
\(41\) 97.3925 0.370979 0.185490 0.982646i \(-0.440613\pi\)
0.185490 + 0.982646i \(0.440613\pi\)
\(42\) 0 0
\(43\) −237.966 −0.843940 −0.421970 0.906610i \(-0.638661\pi\)
−0.421970 + 0.906610i \(0.638661\pi\)
\(44\) 208.277 0.713613
\(45\) 32.9568 0.109176
\(46\) −3.50575 −0.0112368
\(47\) −53.6367 −0.166462 −0.0832310 0.996530i \(-0.526524\pi\)
−0.0832310 + 0.996530i \(0.526524\pi\)
\(48\) −316.988 −0.953192
\(49\) 0 0
\(50\) 40.4436 0.114392
\(51\) 543.640 1.49264
\(52\) 475.198 1.26727
\(53\) −199.618 −0.517353 −0.258676 0.965964i \(-0.583286\pi\)
−0.258676 + 0.965964i \(0.583286\pi\)
\(54\) 27.4464 0.0691663
\(55\) 480.818 1.17879
\(56\) 0 0
\(57\) −333.775 −0.775606
\(58\) 6.58168 0.0149003
\(59\) −475.892 −1.05010 −0.525049 0.851072i \(-0.675953\pi\)
−0.525049 + 0.851072i \(0.675953\pi\)
\(60\) −735.124 −1.58174
\(61\) 171.908 0.360828 0.180414 0.983591i \(-0.442256\pi\)
0.180414 + 0.983591i \(0.442256\pi\)
\(62\) −5.88575 −0.0120563
\(63\) 0 0
\(64\) −498.210 −0.973065
\(65\) 1097.02 2.09336
\(66\) 24.9297 0.0464945
\(67\) 883.588 1.61116 0.805578 0.592490i \(-0.201855\pi\)
0.805578 + 0.592490i \(0.201855\pi\)
\(68\) 862.335 1.53785
\(69\) 92.7054 0.161745
\(70\) 0 0
\(71\) 934.857 1.56264 0.781318 0.624133i \(-0.214548\pi\)
0.781318 + 0.624133i \(0.214548\pi\)
\(72\) 5.43323 0.00889323
\(73\) −627.052 −1.00535 −0.502677 0.864474i \(-0.667651\pi\)
−0.502677 + 0.864474i \(0.667651\pi\)
\(74\) 57.4731 0.0902853
\(75\) −1069.48 −1.64658
\(76\) −529.441 −0.799093
\(77\) 0 0
\(78\) 56.8788 0.0825674
\(79\) 146.960 0.209294 0.104647 0.994509i \(-0.466629\pi\)
0.104647 + 0.994509i \(0.466629\pi\)
\(80\) −1160.77 −1.62222
\(81\) −677.387 −0.929200
\(82\) 18.4912 0.0249026
\(83\) −382.128 −0.505349 −0.252675 0.967551i \(-0.581310\pi\)
−0.252675 + 0.967551i \(0.581310\pi\)
\(84\) 0 0
\(85\) 1990.74 2.54031
\(86\) −45.1809 −0.0566509
\(87\) −174.045 −0.214477
\(88\) 79.2672 0.0960218
\(89\) 398.297 0.474376 0.237188 0.971464i \(-0.423774\pi\)
0.237188 + 0.971464i \(0.423774\pi\)
\(90\) 6.25728 0.00732861
\(91\) 0 0
\(92\) 147.051 0.166643
\(93\) 155.642 0.173541
\(94\) −10.1836 −0.0111741
\(95\) −1222.24 −1.31999
\(96\) −181.925 −0.193413
\(97\) 882.691 0.923956 0.461978 0.886891i \(-0.347140\pi\)
0.461978 + 0.886891i \(0.347140\pi\)
\(98\) 0 0
\(99\) 46.8803 0.0475924
\(100\) −1696.44 −1.69644
\(101\) −1365.23 −1.34501 −0.672503 0.740094i \(-0.734781\pi\)
−0.672503 + 0.740094i \(0.734781\pi\)
\(102\) 103.217 0.100196
\(103\) 1838.30 1.75857 0.879287 0.476293i \(-0.158020\pi\)
0.879287 + 0.476293i \(0.158020\pi\)
\(104\) 180.853 0.170520
\(105\) 0 0
\(106\) −37.9002 −0.0347282
\(107\) −99.6301 −0.0900150 −0.0450075 0.998987i \(-0.514331\pi\)
−0.0450075 + 0.998987i \(0.514331\pi\)
\(108\) −1151.26 −1.02574
\(109\) 1801.25 1.58283 0.791417 0.611277i \(-0.209344\pi\)
0.791417 + 0.611277i \(0.209344\pi\)
\(110\) 91.2896 0.0791284
\(111\) −1519.81 −1.29958
\(112\) 0 0
\(113\) 1755.44 1.46140 0.730699 0.682700i \(-0.239194\pi\)
0.730699 + 0.682700i \(0.239194\pi\)
\(114\) −63.3715 −0.0520639
\(115\) 339.476 0.275272
\(116\) −276.074 −0.220972
\(117\) 106.960 0.0845170
\(118\) −90.3542 −0.0704897
\(119\) 0 0
\(120\) −279.778 −0.212834
\(121\) −647.048 −0.486136
\(122\) 32.6389 0.0242212
\(123\) −488.979 −0.358453
\(124\) 246.883 0.178796
\(125\) −1618.17 −1.15787
\(126\) 0 0
\(127\) −1013.76 −0.708317 −0.354159 0.935185i \(-0.615233\pi\)
−0.354159 + 0.935185i \(0.615233\pi\)
\(128\) −384.471 −0.265490
\(129\) 1194.75 0.815444
\(130\) 208.283 0.140520
\(131\) −1425.98 −0.951058 −0.475529 0.879700i \(-0.657743\pi\)
−0.475529 + 0.879700i \(0.657743\pi\)
\(132\) −1045.70 −0.689517
\(133\) 0 0
\(134\) 167.761 0.108152
\(135\) −2657.74 −1.69438
\(136\) 328.192 0.206928
\(137\) −2405.43 −1.50007 −0.750035 0.661399i \(-0.769963\pi\)
−0.750035 + 0.661399i \(0.769963\pi\)
\(138\) 17.6013 0.0108574
\(139\) 75.0616 0.0458032 0.0229016 0.999738i \(-0.492710\pi\)
0.0229016 + 0.999738i \(0.492710\pi\)
\(140\) 0 0
\(141\) 269.294 0.160841
\(142\) 177.495 0.104895
\(143\) 1560.48 0.912546
\(144\) −113.176 −0.0654955
\(145\) −637.330 −0.365016
\(146\) −119.054 −0.0674861
\(147\) 0 0
\(148\) −2410.75 −1.33894
\(149\) 1313.77 0.722335 0.361168 0.932501i \(-0.382378\pi\)
0.361168 + 0.932501i \(0.382378\pi\)
\(150\) −203.055 −0.110529
\(151\) −2478.46 −1.33572 −0.667862 0.744285i \(-0.732791\pi\)
−0.667862 + 0.744285i \(0.732791\pi\)
\(152\) −201.498 −0.107524
\(153\) 194.100 0.102562
\(154\) 0 0
\(155\) 569.941 0.295347
\(156\) −2385.83 −1.22448
\(157\) −2223.43 −1.13025 −0.565125 0.825006i \(-0.691172\pi\)
−0.565125 + 0.825006i \(0.691172\pi\)
\(158\) 27.9022 0.0140492
\(159\) 1002.22 0.499884
\(160\) −666.186 −0.329166
\(161\) 0 0
\(162\) −128.611 −0.0623742
\(163\) 371.074 0.178311 0.0891556 0.996018i \(-0.471583\pi\)
0.0891556 + 0.996018i \(0.471583\pi\)
\(164\) −775.629 −0.369308
\(165\) −2414.04 −1.13899
\(166\) −72.5519 −0.0339224
\(167\) −1843.30 −0.854123 −0.427062 0.904222i \(-0.640451\pi\)
−0.427062 + 0.904222i \(0.640451\pi\)
\(168\) 0 0
\(169\) 1363.34 0.620546
\(170\) 377.969 0.170523
\(171\) −119.170 −0.0532933
\(172\) 1895.15 0.840137
\(173\) −304.551 −0.133841 −0.0669207 0.997758i \(-0.521317\pi\)
−0.0669207 + 0.997758i \(0.521317\pi\)
\(174\) −33.0446 −0.0143972
\(175\) 0 0
\(176\) −1651.17 −0.707167
\(177\) 2389.31 1.01464
\(178\) 75.6219 0.0318433
\(179\) −1881.45 −0.785622 −0.392811 0.919619i \(-0.628497\pi\)
−0.392811 + 0.919619i \(0.628497\pi\)
\(180\) −262.466 −0.108684
\(181\) −1931.68 −0.793264 −0.396632 0.917978i \(-0.629821\pi\)
−0.396632 + 0.917978i \(0.629821\pi\)
\(182\) 0 0
\(183\) −863.096 −0.348644
\(184\) 55.9656 0.0224231
\(185\) −5565.34 −2.21174
\(186\) 29.5506 0.0116492
\(187\) 2831.79 1.10738
\(188\) 427.160 0.165712
\(189\) 0 0
\(190\) −232.058 −0.0886068
\(191\) −2416.72 −0.915538 −0.457769 0.889071i \(-0.651351\pi\)
−0.457769 + 0.889071i \(0.651351\pi\)
\(192\) 2501.36 0.940209
\(193\) 4419.01 1.64812 0.824061 0.566501i \(-0.191703\pi\)
0.824061 + 0.566501i \(0.191703\pi\)
\(194\) 167.590 0.0620221
\(195\) −5507.80 −2.02267
\(196\) 0 0
\(197\) 2230.28 0.806602 0.403301 0.915067i \(-0.367863\pi\)
0.403301 + 0.915067i \(0.367863\pi\)
\(198\) 8.90083 0.00319472
\(199\) −3692.67 −1.31541 −0.657705 0.753275i \(-0.728473\pi\)
−0.657705 + 0.753275i \(0.728473\pi\)
\(200\) −645.640 −0.228268
\(201\) −4436.23 −1.55675
\(202\) −259.207 −0.0902859
\(203\) 0 0
\(204\) −4329.53 −1.48592
\(205\) −1790.58 −0.610046
\(206\) 349.025 0.118047
\(207\) 33.0992 0.0111138
\(208\) −3767.24 −1.25582
\(209\) −1738.61 −0.575417
\(210\) 0 0
\(211\) 1668.46 0.544369 0.272184 0.962245i \(-0.412254\pi\)
0.272184 + 0.962245i \(0.412254\pi\)
\(212\) 1589.75 0.515022
\(213\) −4693.64 −1.50987
\(214\) −18.9161 −0.00604241
\(215\) 4375.04 1.38779
\(216\) −438.153 −0.138021
\(217\) 0 0
\(218\) 341.992 0.106250
\(219\) 3148.24 0.971407
\(220\) −3829.21 −1.17348
\(221\) 6460.90 1.96655
\(222\) −288.555 −0.0872367
\(223\) −5800.22 −1.74176 −0.870878 0.491499i \(-0.836449\pi\)
−0.870878 + 0.491499i \(0.836449\pi\)
\(224\) 0 0
\(225\) −381.845 −0.113139
\(226\) 333.293 0.0980988
\(227\) 4935.64 1.44313 0.721563 0.692349i \(-0.243424\pi\)
0.721563 + 0.692349i \(0.243424\pi\)
\(228\) 2658.17 0.772111
\(229\) 586.318 0.169192 0.0845961 0.996415i \(-0.473040\pi\)
0.0845961 + 0.996415i \(0.473040\pi\)
\(230\) 64.4539 0.0184781
\(231\) 0 0
\(232\) −105.070 −0.0297334
\(233\) −3351.45 −0.942320 −0.471160 0.882048i \(-0.656165\pi\)
−0.471160 + 0.882048i \(0.656165\pi\)
\(234\) 20.3078 0.00567335
\(235\) 986.120 0.273734
\(236\) 3789.98 1.04537
\(237\) −737.840 −0.202227
\(238\) 0 0
\(239\) −5140.39 −1.39123 −0.695615 0.718414i \(-0.744868\pi\)
−0.695615 + 0.718414i \(0.744868\pi\)
\(240\) 5827.87 1.56745
\(241\) 1681.41 0.449416 0.224708 0.974426i \(-0.427857\pi\)
0.224708 + 0.974426i \(0.427857\pi\)
\(242\) −122.850 −0.0326327
\(243\) −502.132 −0.132559
\(244\) −1369.06 −0.359202
\(245\) 0 0
\(246\) −92.8389 −0.0240618
\(247\) −3966.75 −1.02186
\(248\) 93.9599 0.0240583
\(249\) 1918.55 0.488286
\(250\) −307.230 −0.0777238
\(251\) −698.576 −0.175672 −0.0878362 0.996135i \(-0.527995\pi\)
−0.0878362 + 0.996135i \(0.527995\pi\)
\(252\) 0 0
\(253\) 482.896 0.119998
\(254\) −192.475 −0.0475470
\(255\) −9994.93 −2.45454
\(256\) 3912.68 0.955244
\(257\) 747.627 0.181462 0.0907309 0.995875i \(-0.471080\pi\)
0.0907309 + 0.995875i \(0.471080\pi\)
\(258\) 226.840 0.0547380
\(259\) 0 0
\(260\) −8736.60 −2.08393
\(261\) −62.1403 −0.0147371
\(262\) −270.741 −0.0638414
\(263\) 3081.65 0.722519 0.361260 0.932465i \(-0.382347\pi\)
0.361260 + 0.932465i \(0.382347\pi\)
\(264\) −397.977 −0.0927795
\(265\) 3670.02 0.850746
\(266\) 0 0
\(267\) −1999.73 −0.458358
\(268\) −7036.85 −1.60390
\(269\) −1793.21 −0.406445 −0.203223 0.979133i \(-0.565142\pi\)
−0.203223 + 0.979133i \(0.565142\pi\)
\(270\) −504.607 −0.113738
\(271\) 1801.22 0.403750 0.201875 0.979411i \(-0.435297\pi\)
0.201875 + 0.979411i \(0.435297\pi\)
\(272\) −6836.37 −1.52396
\(273\) 0 0
\(274\) −456.702 −0.100695
\(275\) −5570.87 −1.22158
\(276\) −738.301 −0.161016
\(277\) 8815.52 1.91218 0.956089 0.293078i \(-0.0946795\pi\)
0.956089 + 0.293078i \(0.0946795\pi\)
\(278\) 14.2514 0.00307462
\(279\) 55.5698 0.0119243
\(280\) 0 0
\(281\) 4440.87 0.942777 0.471389 0.881926i \(-0.343753\pi\)
0.471389 + 0.881926i \(0.343753\pi\)
\(282\) 51.1289 0.0107967
\(283\) 1478.74 0.310607 0.155303 0.987867i \(-0.450365\pi\)
0.155303 + 0.987867i \(0.450365\pi\)
\(284\) −7445.16 −1.55559
\(285\) 6136.51 1.27542
\(286\) 296.278 0.0612562
\(287\) 0 0
\(288\) −64.9538 −0.0132897
\(289\) 6811.52 1.38643
\(290\) −121.005 −0.0245023
\(291\) −4431.73 −0.892757
\(292\) 4993.81 1.00082
\(293\) 7529.68 1.50133 0.750663 0.660685i \(-0.229734\pi\)
0.750663 + 0.660685i \(0.229734\pi\)
\(294\) 0 0
\(295\) 8749.36 1.72680
\(296\) −917.498 −0.180164
\(297\) −3780.57 −0.738623
\(298\) 249.436 0.0484880
\(299\) 1101.76 0.213098
\(300\) 8517.31 1.63916
\(301\) 0 0
\(302\) −470.568 −0.0896628
\(303\) 6854.42 1.29959
\(304\) 4197.27 0.791875
\(305\) −3160.55 −0.593353
\(306\) 36.8523 0.00688467
\(307\) 9346.97 1.73765 0.868827 0.495116i \(-0.164875\pi\)
0.868827 + 0.495116i \(0.164875\pi\)
\(308\) 0 0
\(309\) −9229.55 −1.69919
\(310\) 108.211 0.0198256
\(311\) 7064.98 1.28816 0.644081 0.764957i \(-0.277240\pi\)
0.644081 + 0.764957i \(0.277240\pi\)
\(312\) −908.010 −0.164763
\(313\) 8784.58 1.58637 0.793185 0.608981i \(-0.208421\pi\)
0.793185 + 0.608981i \(0.208421\pi\)
\(314\) −422.147 −0.0758699
\(315\) 0 0
\(316\) −1170.38 −0.208351
\(317\) 9121.55 1.61614 0.808071 0.589085i \(-0.200512\pi\)
0.808071 + 0.589085i \(0.200512\pi\)
\(318\) 190.285 0.0335556
\(319\) −906.586 −0.159119
\(320\) 9159.67 1.60013
\(321\) 500.213 0.0869755
\(322\) 0 0
\(323\) −7198.41 −1.24003
\(324\) 5394.68 0.925014
\(325\) −12710.3 −2.16935
\(326\) 70.4532 0.0119694
\(327\) −9043.56 −1.52939
\(328\) −295.193 −0.0496930
\(329\) 0 0
\(330\) −458.337 −0.0764565
\(331\) −1438.77 −0.238918 −0.119459 0.992839i \(-0.538116\pi\)
−0.119459 + 0.992839i \(0.538116\pi\)
\(332\) 3043.25 0.503072
\(333\) −542.627 −0.0892966
\(334\) −349.974 −0.0573345
\(335\) −16244.9 −2.64942
\(336\) 0 0
\(337\) 11050.8 1.78628 0.893140 0.449779i \(-0.148497\pi\)
0.893140 + 0.449779i \(0.148497\pi\)
\(338\) 258.848 0.0416552
\(339\) −8813.54 −1.41205
\(340\) −15854.2 −2.52886
\(341\) 810.727 0.128749
\(342\) −22.6260 −0.00357740
\(343\) 0 0
\(344\) 721.265 0.113047
\(345\) −1704.41 −0.265977
\(346\) −57.8229 −0.00898434
\(347\) 9118.03 1.41061 0.705305 0.708904i \(-0.250810\pi\)
0.705305 + 0.708904i \(0.250810\pi\)
\(348\) 1386.08 0.213511
\(349\) −2409.57 −0.369574 −0.184787 0.982779i \(-0.559160\pi\)
−0.184787 + 0.982779i \(0.559160\pi\)
\(350\) 0 0
\(351\) −8625.62 −1.31169
\(352\) −947.633 −0.143492
\(353\) −1260.02 −0.189983 −0.0949915 0.995478i \(-0.530282\pi\)
−0.0949915 + 0.995478i \(0.530282\pi\)
\(354\) 453.642 0.0681095
\(355\) −17187.5 −2.56963
\(356\) −3172.02 −0.472238
\(357\) 0 0
\(358\) −357.218 −0.0527362
\(359\) 3985.73 0.585958 0.292979 0.956119i \(-0.405353\pi\)
0.292979 + 0.956119i \(0.405353\pi\)
\(360\) −99.8909 −0.0146242
\(361\) −2439.45 −0.355656
\(362\) −366.755 −0.0532492
\(363\) 3248.63 0.469722
\(364\) 0 0
\(365\) 11528.5 1.65322
\(366\) −163.870 −0.0234033
\(367\) −10185.2 −1.44868 −0.724338 0.689445i \(-0.757855\pi\)
−0.724338 + 0.689445i \(0.757855\pi\)
\(368\) −1165.79 −0.165138
\(369\) −174.583 −0.0246299
\(370\) −1056.65 −0.148467
\(371\) 0 0
\(372\) −1239.52 −0.172759
\(373\) −11667.5 −1.61963 −0.809814 0.586687i \(-0.800432\pi\)
−0.809814 + 0.586687i \(0.800432\pi\)
\(374\) 537.651 0.0743350
\(375\) 8124.34 1.11877
\(376\) 162.571 0.0222978
\(377\) −2068.44 −0.282573
\(378\) 0 0
\(379\) 5670.62 0.768549 0.384274 0.923219i \(-0.374452\pi\)
0.384274 + 0.923219i \(0.374452\pi\)
\(380\) 9733.87 1.31405
\(381\) 5089.76 0.684400
\(382\) −458.846 −0.0614570
\(383\) 2928.46 0.390698 0.195349 0.980734i \(-0.437416\pi\)
0.195349 + 0.980734i \(0.437416\pi\)
\(384\) 1930.31 0.256526
\(385\) 0 0
\(386\) 839.007 0.110633
\(387\) 426.571 0.0560306
\(388\) −7029.71 −0.919792
\(389\) 4274.20 0.557097 0.278549 0.960422i \(-0.410147\pi\)
0.278549 + 0.960422i \(0.410147\pi\)
\(390\) −1045.73 −0.135775
\(391\) 1999.35 0.258597
\(392\) 0 0
\(393\) 7159.43 0.918945
\(394\) 423.447 0.0541445
\(395\) −2701.88 −0.344168
\(396\) −373.352 −0.0473779
\(397\) 5235.93 0.661924 0.330962 0.943644i \(-0.392627\pi\)
0.330962 + 0.943644i \(0.392627\pi\)
\(398\) −701.102 −0.0882992
\(399\) 0 0
\(400\) 13448.9 1.68112
\(401\) −2588.32 −0.322330 −0.161165 0.986927i \(-0.551525\pi\)
−0.161165 + 0.986927i \(0.551525\pi\)
\(402\) −842.276 −0.104500
\(403\) 1849.73 0.228639
\(404\) 10872.6 1.33895
\(405\) 12453.9 1.52800
\(406\) 0 0
\(407\) −7916.57 −0.964152
\(408\) −1647.75 −0.199941
\(409\) 16041.5 1.93937 0.969686 0.244353i \(-0.0785756\pi\)
0.969686 + 0.244353i \(0.0785756\pi\)
\(410\) −339.965 −0.0409504
\(411\) 12076.9 1.44942
\(412\) −14640.1 −1.75065
\(413\) 0 0
\(414\) 6.28432 0.000746033 0
\(415\) 7025.49 0.831006
\(416\) −2162.09 −0.254820
\(417\) −376.862 −0.0442566
\(418\) −330.098 −0.0386258
\(419\) 4649.11 0.542062 0.271031 0.962571i \(-0.412635\pi\)
0.271031 + 0.962571i \(0.412635\pi\)
\(420\) 0 0
\(421\) 2949.68 0.341469 0.170734 0.985317i \(-0.445386\pi\)
0.170734 + 0.985317i \(0.445386\pi\)
\(422\) 316.780 0.0365417
\(423\) 96.1478 0.0110517
\(424\) 605.036 0.0692999
\(425\) −23065.2 −2.63253
\(426\) −891.148 −0.101353
\(427\) 0 0
\(428\) 793.449 0.0896094
\(429\) −7834.71 −0.881733
\(430\) 830.658 0.0931579
\(431\) −13667.1 −1.52743 −0.763713 0.645556i \(-0.776626\pi\)
−0.763713 + 0.645556i \(0.776626\pi\)
\(432\) 9126.89 1.01648
\(433\) −9160.63 −1.01670 −0.508351 0.861150i \(-0.669745\pi\)
−0.508351 + 0.861150i \(0.669745\pi\)
\(434\) 0 0
\(435\) 3199.84 0.352691
\(436\) −14345.1 −1.57570
\(437\) −1227.52 −0.134372
\(438\) 597.734 0.0652074
\(439\) −3674.59 −0.399496 −0.199748 0.979847i \(-0.564012\pi\)
−0.199748 + 0.979847i \(0.564012\pi\)
\(440\) −1457.34 −0.157900
\(441\) 0 0
\(442\) 1226.69 0.132008
\(443\) −18179.6 −1.94975 −0.974875 0.222751i \(-0.928496\pi\)
−0.974875 + 0.222751i \(0.928496\pi\)
\(444\) 12103.7 1.29373
\(445\) −7322.77 −0.780073
\(446\) −1101.25 −0.116918
\(447\) −6596.03 −0.697945
\(448\) 0 0
\(449\) −4008.20 −0.421289 −0.210644 0.977563i \(-0.567556\pi\)
−0.210644 + 0.977563i \(0.567556\pi\)
\(450\) −72.4982 −0.00759467
\(451\) −2547.06 −0.265934
\(452\) −13980.2 −1.45481
\(453\) 12443.6 1.29062
\(454\) 937.095 0.0968723
\(455\) 0 0
\(456\) 1011.66 0.103893
\(457\) −1793.39 −0.183570 −0.0917850 0.995779i \(-0.529257\pi\)
−0.0917850 + 0.995779i \(0.529257\pi\)
\(458\) 111.320 0.0113573
\(459\) −15652.8 −1.59174
\(460\) −2703.57 −0.274032
\(461\) 17027.5 1.72028 0.860140 0.510057i \(-0.170376\pi\)
0.860140 + 0.510057i \(0.170376\pi\)
\(462\) 0 0
\(463\) 833.738 0.0836870 0.0418435 0.999124i \(-0.486677\pi\)
0.0418435 + 0.999124i \(0.486677\pi\)
\(464\) 2188.64 0.218976
\(465\) −2861.50 −0.285374
\(466\) −636.316 −0.0632549
\(467\) −6510.98 −0.645165 −0.322583 0.946541i \(-0.604551\pi\)
−0.322583 + 0.946541i \(0.604551\pi\)
\(468\) −851.828 −0.0841362
\(469\) 0 0
\(470\) 187.228 0.0183748
\(471\) 11163.2 1.09209
\(472\) 1442.41 0.140662
\(473\) 6223.39 0.604972
\(474\) −140.088 −0.0135748
\(475\) 14161.2 1.36791
\(476\) 0 0
\(477\) 357.831 0.0343479
\(478\) −975.970 −0.0933887
\(479\) 16296.9 1.55454 0.777270 0.629167i \(-0.216604\pi\)
0.777270 + 0.629167i \(0.216604\pi\)
\(480\) 3344.72 0.318052
\(481\) −18062.2 −1.71219
\(482\) 319.238 0.0301678
\(483\) 0 0
\(484\) 5153.06 0.483946
\(485\) −16228.4 −1.51937
\(486\) −95.3363 −0.00889824
\(487\) 6650.41 0.618807 0.309403 0.950931i \(-0.399871\pi\)
0.309403 + 0.950931i \(0.399871\pi\)
\(488\) −521.046 −0.0483332
\(489\) −1863.05 −0.172290
\(490\) 0 0
\(491\) −2309.74 −0.212295 −0.106148 0.994350i \(-0.533852\pi\)
−0.106148 + 0.994350i \(0.533852\pi\)
\(492\) 3894.20 0.356838
\(493\) −3753.56 −0.342905
\(494\) −753.139 −0.0685938
\(495\) −861.902 −0.0782619
\(496\) −1957.22 −0.177181
\(497\) 0 0
\(498\) 364.261 0.0327770
\(499\) 8593.83 0.770967 0.385484 0.922715i \(-0.374035\pi\)
0.385484 + 0.922715i \(0.374035\pi\)
\(500\) 12887.0 1.15265
\(501\) 9254.64 0.825283
\(502\) −132.634 −0.0117923
\(503\) −1288.24 −0.114194 −0.0570970 0.998369i \(-0.518184\pi\)
−0.0570970 + 0.998369i \(0.518184\pi\)
\(504\) 0 0
\(505\) 25100.0 2.21176
\(506\) 91.6841 0.00805505
\(507\) −6844.92 −0.599593
\(508\) 8073.50 0.705126
\(509\) −12839.1 −1.11804 −0.559020 0.829154i \(-0.688822\pi\)
−0.559020 + 0.829154i \(0.688822\pi\)
\(510\) −1897.67 −0.164765
\(511\) 0 0
\(512\) 3818.64 0.329613
\(513\) 9610.23 0.827100
\(514\) 141.947 0.0121809
\(515\) −33797.5 −2.89183
\(516\) −9514.96 −0.811769
\(517\) 1402.73 0.119327
\(518\) 0 0
\(519\) 1529.06 0.129322
\(520\) −3325.02 −0.280407
\(521\) 17105.0 1.43835 0.719177 0.694827i \(-0.244519\pi\)
0.719177 + 0.694827i \(0.244519\pi\)
\(522\) −11.7981 −0.000989255 0
\(523\) 17844.2 1.49191 0.745957 0.665994i \(-0.231992\pi\)
0.745957 + 0.665994i \(0.231992\pi\)
\(524\) 11356.5 0.946773
\(525\) 0 0
\(526\) 585.091 0.0485003
\(527\) 3356.67 0.277455
\(528\) 8290.01 0.683289
\(529\) −11826.1 −0.971978
\(530\) 696.801 0.0571078
\(531\) 853.072 0.0697178
\(532\) 0 0
\(533\) −5811.27 −0.472259
\(534\) −379.675 −0.0307681
\(535\) 1831.72 0.148022
\(536\) −2678.12 −0.215816
\(537\) 9446.20 0.759095
\(538\) −340.464 −0.0272833
\(539\) 0 0
\(540\) 21166.1 1.68675
\(541\) −15463.3 −1.22887 −0.614437 0.788966i \(-0.710617\pi\)
−0.614437 + 0.788966i \(0.710617\pi\)
\(542\) 341.985 0.0271024
\(543\) 9698.40 0.766479
\(544\) −3923.51 −0.309226
\(545\) −33116.4 −2.60284
\(546\) 0 0
\(547\) −11655.3 −0.911054 −0.455527 0.890222i \(-0.650549\pi\)
−0.455527 + 0.890222i \(0.650549\pi\)
\(548\) 19156.7 1.49331
\(549\) −308.157 −0.0239560
\(550\) −1057.70 −0.0820010
\(551\) 2304.55 0.178180
\(552\) −280.987 −0.0216659
\(553\) 0 0
\(554\) 1673.74 0.128358
\(555\) 27941.9 2.13706
\(556\) −597.787 −0.0455968
\(557\) 6751.54 0.513594 0.256797 0.966465i \(-0.417333\pi\)
0.256797 + 0.966465i \(0.417333\pi\)
\(558\) 10.5507 0.000800439 0
\(559\) 14199.1 1.07434
\(560\) 0 0
\(561\) −14217.5 −1.06999
\(562\) 843.158 0.0632855
\(563\) 5964.59 0.446496 0.223248 0.974762i \(-0.428334\pi\)
0.223248 + 0.974762i \(0.428334\pi\)
\(564\) −2144.64 −0.160117
\(565\) −32274.1 −2.40315
\(566\) 280.757 0.0208500
\(567\) 0 0
\(568\) −2833.52 −0.209317
\(569\) −24472.5 −1.80306 −0.901529 0.432719i \(-0.857554\pi\)
−0.901529 + 0.432719i \(0.857554\pi\)
\(570\) 1165.10 0.0856149
\(571\) 14479.7 1.06122 0.530611 0.847615i \(-0.321962\pi\)
0.530611 + 0.847615i \(0.321962\pi\)
\(572\) −12427.6 −0.908434
\(573\) 12133.6 0.884624
\(574\) 0 0
\(575\) −3933.24 −0.285265
\(576\) 893.078 0.0646034
\(577\) 8850.73 0.638580 0.319290 0.947657i \(-0.396556\pi\)
0.319290 + 0.947657i \(0.396556\pi\)
\(578\) 1293.26 0.0930663
\(579\) −22186.5 −1.59247
\(580\) 5075.66 0.363371
\(581\) 0 0
\(582\) −841.421 −0.0599279
\(583\) 5220.52 0.370861
\(584\) 1900.57 0.134668
\(585\) −1966.49 −0.138982
\(586\) 1429.61 0.100779
\(587\) 8602.94 0.604908 0.302454 0.953164i \(-0.402194\pi\)
0.302454 + 0.953164i \(0.402194\pi\)
\(588\) 0 0
\(589\) −2060.87 −0.144171
\(590\) 1661.18 0.115915
\(591\) −11197.5 −0.779366
\(592\) 19111.8 1.32684
\(593\) 6629.29 0.459077 0.229538 0.973300i \(-0.426278\pi\)
0.229538 + 0.973300i \(0.426278\pi\)
\(594\) −717.791 −0.0495814
\(595\) 0 0
\(596\) −10462.8 −0.719081
\(597\) 18539.8 1.27099
\(598\) 209.183 0.0143046
\(599\) 18626.8 1.27057 0.635284 0.772279i \(-0.280883\pi\)
0.635284 + 0.772279i \(0.280883\pi\)
\(600\) 3241.57 0.220561
\(601\) −8726.15 −0.592258 −0.296129 0.955148i \(-0.595696\pi\)
−0.296129 + 0.955148i \(0.595696\pi\)
\(602\) 0 0
\(603\) −1583.90 −0.106967
\(604\) 19738.4 1.32971
\(605\) 11896.1 0.799413
\(606\) 1301.40 0.0872373
\(607\) −3181.48 −0.212739 −0.106369 0.994327i \(-0.533923\pi\)
−0.106369 + 0.994327i \(0.533923\pi\)
\(608\) 2408.89 0.160680
\(609\) 0 0
\(610\) −600.072 −0.0398298
\(611\) 3200.43 0.211907
\(612\) −1545.80 −0.102100
\(613\) 19500.2 1.28484 0.642419 0.766353i \(-0.277931\pi\)
0.642419 + 0.766353i \(0.277931\pi\)
\(614\) 1774.64 0.116643
\(615\) 8989.96 0.589447
\(616\) 0 0
\(617\) −18196.3 −1.18729 −0.593643 0.804728i \(-0.702311\pi\)
−0.593643 + 0.804728i \(0.702311\pi\)
\(618\) −1752.35 −0.114061
\(619\) −11420.7 −0.741578 −0.370789 0.928717i \(-0.620913\pi\)
−0.370789 + 0.928717i \(0.620913\pi\)
\(620\) −4538.98 −0.294016
\(621\) −2669.23 −0.172484
\(622\) 1341.38 0.0864701
\(623\) 0 0
\(624\) 18914.2 1.21342
\(625\) 3123.46 0.199901
\(626\) 1667.87 0.106488
\(627\) 8729.04 0.555988
\(628\) 17707.3 1.12516
\(629\) −32777.2 −2.07776
\(630\) 0 0
\(631\) −21082.7 −1.33009 −0.665047 0.746802i \(-0.731589\pi\)
−0.665047 + 0.746802i \(0.731589\pi\)
\(632\) −445.429 −0.0280352
\(633\) −8376.86 −0.525988
\(634\) 1731.84 0.108486
\(635\) 18638.1 1.16477
\(636\) −7981.67 −0.497632
\(637\) 0 0
\(638\) −172.127 −0.0106812
\(639\) −1675.80 −0.103746
\(640\) 7068.57 0.436578
\(641\) −26067.7 −1.60626 −0.803128 0.595806i \(-0.796833\pi\)
−0.803128 + 0.595806i \(0.796833\pi\)
\(642\) 94.9719 0.00583838
\(643\) 30550.6 1.87371 0.936857 0.349712i \(-0.113721\pi\)
0.936857 + 0.349712i \(0.113721\pi\)
\(644\) 0 0
\(645\) −21965.8 −1.34093
\(646\) −1366.71 −0.0832393
\(647\) −7326.36 −0.445176 −0.222588 0.974913i \(-0.571451\pi\)
−0.222588 + 0.974913i \(0.571451\pi\)
\(648\) 2053.14 0.124467
\(649\) 12445.8 0.752756
\(650\) −2413.21 −0.145622
\(651\) 0 0
\(652\) −2955.21 −0.177508
\(653\) 6410.45 0.384166 0.192083 0.981379i \(-0.438476\pi\)
0.192083 + 0.981379i \(0.438476\pi\)
\(654\) −1717.04 −0.102663
\(655\) 26216.9 1.56394
\(656\) 6148.99 0.365972
\(657\) 1124.04 0.0667471
\(658\) 0 0
\(659\) −8128.08 −0.480463 −0.240231 0.970716i \(-0.577223\pi\)
−0.240231 + 0.970716i \(0.577223\pi\)
\(660\) 19225.3 1.13386
\(661\) 4380.63 0.257771 0.128886 0.991659i \(-0.458860\pi\)
0.128886 + 0.991659i \(0.458860\pi\)
\(662\) −273.169 −0.0160378
\(663\) −32438.3 −1.90015
\(664\) 1158.22 0.0676920
\(665\) 0 0
\(666\) −103.025 −0.00599419
\(667\) −640.084 −0.0371576
\(668\) 14679.9 0.850275
\(669\) 29121.2 1.68294
\(670\) −3084.31 −0.177847
\(671\) −4495.81 −0.258657
\(672\) 0 0
\(673\) −26482.7 −1.51684 −0.758419 0.651767i \(-0.774028\pi\)
−0.758419 + 0.651767i \(0.774028\pi\)
\(674\) 2098.14 0.119907
\(675\) 30793.2 1.75590
\(676\) −10857.6 −0.617750
\(677\) −12797.0 −0.726483 −0.363241 0.931695i \(-0.618330\pi\)
−0.363241 + 0.931695i \(0.618330\pi\)
\(678\) −1673.37 −0.0947864
\(679\) 0 0
\(680\) −6033.87 −0.340277
\(681\) −24780.3 −1.39440
\(682\) 153.927 0.00864248
\(683\) −23096.6 −1.29395 −0.646975 0.762511i \(-0.723966\pi\)
−0.646975 + 0.762511i \(0.723966\pi\)
\(684\) 949.063 0.0530531
\(685\) 44224.2 2.46674
\(686\) 0 0
\(687\) −2943.73 −0.163479
\(688\) −15024.2 −0.832549
\(689\) 11911.0 0.658594
\(690\) −323.604 −0.0178542
\(691\) −27750.3 −1.52774 −0.763871 0.645369i \(-0.776704\pi\)
−0.763871 + 0.645369i \(0.776704\pi\)
\(692\) 2425.43 0.133238
\(693\) 0 0
\(694\) 1731.18 0.0946896
\(695\) −1380.02 −0.0753197
\(696\) 527.523 0.0287295
\(697\) −10545.6 −0.573091
\(698\) −457.488 −0.0248083
\(699\) 16826.6 0.910502
\(700\) 0 0
\(701\) 14392.6 0.775462 0.387731 0.921772i \(-0.373259\pi\)
0.387731 + 0.921772i \(0.373259\pi\)
\(702\) −1637.69 −0.0880491
\(703\) 20124.0 1.07964
\(704\) 13029.4 0.697535
\(705\) −4951.01 −0.264491
\(706\) −239.231 −0.0127529
\(707\) 0 0
\(708\) −19028.3 −1.01007
\(709\) −24582.0 −1.30211 −0.651055 0.759030i \(-0.725673\pi\)
−0.651055 + 0.759030i \(0.725673\pi\)
\(710\) −3263.27 −0.172491
\(711\) −263.436 −0.0138954
\(712\) −1207.22 −0.0635431
\(713\) 572.404 0.0300655
\(714\) 0 0
\(715\) −28689.7 −1.50061
\(716\) 14983.8 0.782082
\(717\) 25808.4 1.34425
\(718\) 756.743 0.0393334
\(719\) 10805.2 0.560454 0.280227 0.959934i \(-0.409590\pi\)
0.280227 + 0.959934i \(0.409590\pi\)
\(720\) 2080.77 0.107702
\(721\) 0 0
\(722\) −463.161 −0.0238740
\(723\) −8441.87 −0.434241
\(724\) 15383.8 0.789690
\(725\) 7384.24 0.378267
\(726\) 616.795 0.0315309
\(727\) −3603.08 −0.183811 −0.0919056 0.995768i \(-0.529296\pi\)
−0.0919056 + 0.995768i \(0.529296\pi\)
\(728\) 0 0
\(729\) 20810.5 1.05728
\(730\) 2188.83 0.110976
\(731\) 25766.9 1.30372
\(732\) 6873.66 0.347073
\(733\) −20860.7 −1.05117 −0.525584 0.850742i \(-0.676153\pi\)
−0.525584 + 0.850742i \(0.676153\pi\)
\(734\) −1933.80 −0.0972449
\(735\) 0 0
\(736\) −669.065 −0.0335082
\(737\) −23108.0 −1.15495
\(738\) −33.1469 −0.00165333
\(739\) 12402.1 0.617346 0.308673 0.951168i \(-0.400115\pi\)
0.308673 + 0.951168i \(0.400115\pi\)
\(740\) 44322.1 2.20178
\(741\) 19915.9 0.987352
\(742\) 0 0
\(743\) 11254.3 0.555695 0.277847 0.960625i \(-0.410379\pi\)
0.277847 + 0.960625i \(0.410379\pi\)
\(744\) −471.744 −0.0232459
\(745\) −24153.8 −1.18782
\(746\) −2215.23 −0.108720
\(747\) 684.993 0.0335510
\(748\) −22552.2 −1.10239
\(749\) 0 0
\(750\) 1542.51 0.0750994
\(751\) 1281.14 0.0622498 0.0311249 0.999516i \(-0.490091\pi\)
0.0311249 + 0.999516i \(0.490091\pi\)
\(752\) −3386.41 −0.164215
\(753\) 3507.34 0.169741
\(754\) −392.719 −0.0189682
\(755\) 45567.0 2.19649
\(756\) 0 0
\(757\) 26012.4 1.24893 0.624463 0.781054i \(-0.285318\pi\)
0.624463 + 0.781054i \(0.285318\pi\)
\(758\) 1076.64 0.0515901
\(759\) −2424.48 −0.115946
\(760\) 3704.57 0.176814
\(761\) 11446.5 0.545248 0.272624 0.962121i \(-0.412108\pi\)
0.272624 + 0.962121i \(0.412108\pi\)
\(762\) 966.358 0.0459415
\(763\) 0 0
\(764\) 19246.6 0.911412
\(765\) −3568.56 −0.168655
\(766\) 556.007 0.0262263
\(767\) 28395.8 1.33678
\(768\) −19644.4 −0.922989
\(769\) −5414.70 −0.253913 −0.126956 0.991908i \(-0.540521\pi\)
−0.126956 + 0.991908i \(0.540521\pi\)
\(770\) 0 0
\(771\) −3753.61 −0.175335
\(772\) −35192.8 −1.64070
\(773\) −13222.0 −0.615218 −0.307609 0.951513i \(-0.599529\pi\)
−0.307609 + 0.951513i \(0.599529\pi\)
\(774\) 80.9901 0.00376115
\(775\) −6603.46 −0.306069
\(776\) −2675.40 −0.123765
\(777\) 0 0
\(778\) 811.513 0.0373961
\(779\) 6474.63 0.297789
\(780\) 43863.8 2.01356
\(781\) −24448.8 −1.12016
\(782\) 379.602 0.0173588
\(783\) 5011.19 0.228717
\(784\) 0 0
\(785\) 40878.2 1.85861
\(786\) 1359.31 0.0616858
\(787\) −6413.52 −0.290492 −0.145246 0.989396i \(-0.546397\pi\)
−0.145246 + 0.989396i \(0.546397\pi\)
\(788\) −17761.8 −0.802968
\(789\) −15472.0 −0.698123
\(790\) −512.987 −0.0231028
\(791\) 0 0
\(792\) −142.092 −0.00637504
\(793\) −10257.5 −0.459336
\(794\) 994.110 0.0444328
\(795\) −18426.1 −0.822020
\(796\) 29408.3 1.30948
\(797\) −9137.86 −0.406122 −0.203061 0.979166i \(-0.565089\pi\)
−0.203061 + 0.979166i \(0.565089\pi\)
\(798\) 0 0
\(799\) 5807.77 0.257152
\(800\) 7718.58 0.341116
\(801\) −713.978 −0.0314946
\(802\) −491.426 −0.0216370
\(803\) 16399.0 0.720681
\(804\) 35329.9 1.54974
\(805\) 0 0
\(806\) 351.195 0.0153478
\(807\) 9003.16 0.392721
\(808\) 4137.97 0.180165
\(809\) −14991.7 −0.651522 −0.325761 0.945452i \(-0.605620\pi\)
−0.325761 + 0.945452i \(0.605620\pi\)
\(810\) 2364.53 0.102569
\(811\) 26765.1 1.15888 0.579439 0.815016i \(-0.303272\pi\)
0.579439 + 0.815016i \(0.303272\pi\)
\(812\) 0 0
\(813\) −9043.38 −0.390117
\(814\) −1503.06 −0.0647203
\(815\) −6822.25 −0.293219
\(816\) 34323.4 1.47250
\(817\) −15819.9 −0.677439
\(818\) 3045.70 0.130184
\(819\) 0 0
\(820\) 14260.1 0.607297
\(821\) −39156.5 −1.66452 −0.832259 0.554387i \(-0.812953\pi\)
−0.832259 + 0.554387i \(0.812953\pi\)
\(822\) 2292.96 0.0972947
\(823\) −20156.1 −0.853701 −0.426850 0.904322i \(-0.640377\pi\)
−0.426850 + 0.904322i \(0.640377\pi\)
\(824\) −5571.82 −0.235563
\(825\) 27969.6 1.18034
\(826\) 0 0
\(827\) −31882.8 −1.34060 −0.670299 0.742091i \(-0.733834\pi\)
−0.670299 + 0.742091i \(0.733834\pi\)
\(828\) −263.601 −0.0110637
\(829\) −21380.8 −0.895762 −0.447881 0.894093i \(-0.647821\pi\)
−0.447881 + 0.894093i \(0.647821\pi\)
\(830\) 1333.88 0.0557827
\(831\) −44260.1 −1.84761
\(832\) 29727.5 1.23872
\(833\) 0 0
\(834\) −71.5521 −0.00297080
\(835\) 33889.3 1.40454
\(836\) 13846.2 0.572824
\(837\) −4481.33 −0.185062
\(838\) 882.694 0.0363868
\(839\) 30576.8 1.25820 0.629100 0.777325i \(-0.283424\pi\)
0.629100 + 0.777325i \(0.283424\pi\)
\(840\) 0 0
\(841\) −23187.3 −0.950728
\(842\) 560.034 0.0229217
\(843\) −22296.3 −0.910943
\(844\) −13287.6 −0.541916
\(845\) −25065.2 −1.02044
\(846\) 18.2549 0.000741864 0
\(847\) 0 0
\(848\) −12603.1 −0.510370
\(849\) −7424.28 −0.300119
\(850\) −4379.23 −0.176713
\(851\) −5589.40 −0.225149
\(852\) 37379.9 1.50307
\(853\) −3297.10 −0.132345 −0.0661726 0.997808i \(-0.521079\pi\)
−0.0661726 + 0.997808i \(0.521079\pi\)
\(854\) 0 0
\(855\) 2190.96 0.0876365
\(856\) 301.975 0.0120576
\(857\) −21502.3 −0.857064 −0.428532 0.903527i \(-0.640969\pi\)
−0.428532 + 0.903527i \(0.640969\pi\)
\(858\) −1487.52 −0.0591878
\(859\) 36005.6 1.43014 0.715072 0.699051i \(-0.246394\pi\)
0.715072 + 0.699051i \(0.246394\pi\)
\(860\) −34842.6 −1.38154
\(861\) 0 0
\(862\) −2594.87 −0.102531
\(863\) 4007.03 0.158055 0.0790273 0.996872i \(-0.474819\pi\)
0.0790273 + 0.996872i \(0.474819\pi\)
\(864\) 5238.08 0.206254
\(865\) 5599.22 0.220092
\(866\) −1739.26 −0.0682478
\(867\) −34198.6 −1.33961
\(868\) 0 0
\(869\) −3843.36 −0.150031
\(870\) 607.531 0.0236750
\(871\) −52722.4 −2.05101
\(872\) −5459.54 −0.212022
\(873\) −1582.29 −0.0613430
\(874\) −233.061 −0.00901993
\(875\) 0 0
\(876\) −25072.4 −0.967030
\(877\) −1336.61 −0.0514643 −0.0257321 0.999669i \(-0.508192\pi\)
−0.0257321 + 0.999669i \(0.508192\pi\)
\(878\) −697.669 −0.0268168
\(879\) −37804.3 −1.45063
\(880\) 30357.0 1.16288
\(881\) 41849.4 1.60039 0.800195 0.599740i \(-0.204729\pi\)
0.800195 + 0.599740i \(0.204729\pi\)
\(882\) 0 0
\(883\) −20647.8 −0.786923 −0.393462 0.919341i \(-0.628723\pi\)
−0.393462 + 0.919341i \(0.628723\pi\)
\(884\) −51454.3 −1.95769
\(885\) −43927.9 −1.66850
\(886\) −3451.64 −0.130880
\(887\) 44612.5 1.68877 0.844385 0.535736i \(-0.179966\pi\)
0.844385 + 0.535736i \(0.179966\pi\)
\(888\) 4606.48 0.174080
\(889\) 0 0
\(890\) −1390.32 −0.0523637
\(891\) 17715.4 0.666091
\(892\) 46192.7 1.73391
\(893\) −3565.75 −0.133621
\(894\) −1252.34 −0.0468508
\(895\) 34590.8 1.29189
\(896\) 0 0
\(897\) −5531.60 −0.205903
\(898\) −761.009 −0.0282797
\(899\) −1074.63 −0.0398674
\(900\) 3041.00 0.112629
\(901\) 21614.7 0.799210
\(902\) −483.592 −0.0178513
\(903\) 0 0
\(904\) −5320.68 −0.195756
\(905\) 35514.3 1.30446
\(906\) 2362.58 0.0866353
\(907\) −31664.3 −1.15920 −0.579600 0.814901i \(-0.696791\pi\)
−0.579600 + 0.814901i \(0.696791\pi\)
\(908\) −39307.2 −1.43662
\(909\) 2447.28 0.0892972
\(910\) 0 0
\(911\) 16484.8 0.599524 0.299762 0.954014i \(-0.403093\pi\)
0.299762 + 0.954014i \(0.403093\pi\)
\(912\) −21073.2 −0.765137
\(913\) 9993.59 0.362256
\(914\) −340.499 −0.0123224
\(915\) 15868.2 0.573318
\(916\) −4669.41 −0.168430
\(917\) 0 0
\(918\) −2971.89 −0.106849
\(919\) 18662.2 0.669870 0.334935 0.942241i \(-0.391286\pi\)
0.334935 + 0.942241i \(0.391286\pi\)
\(920\) −1028.94 −0.0368729
\(921\) −46928.3 −1.67898
\(922\) 3232.89 0.115477
\(923\) −55781.6 −1.98925
\(924\) 0 0
\(925\) 64481.3 2.29204
\(926\) 158.296 0.00561763
\(927\) −3295.29 −0.116755
\(928\) 1256.10 0.0444326
\(929\) −33832.7 −1.19485 −0.597424 0.801926i \(-0.703809\pi\)
−0.597424 + 0.801926i \(0.703809\pi\)
\(930\) −543.293 −0.0191562
\(931\) 0 0
\(932\) 26690.8 0.938074
\(933\) −35471.1 −1.24467
\(934\) −1236.19 −0.0433078
\(935\) −52062.9 −1.82100
\(936\) −324.193 −0.0113211
\(937\) 3652.05 0.127329 0.0636645 0.997971i \(-0.479721\pi\)
0.0636645 + 0.997971i \(0.479721\pi\)
\(938\) 0 0
\(939\) −44104.7 −1.53280
\(940\) −7853.42 −0.272500
\(941\) 30066.8 1.04160 0.520802 0.853678i \(-0.325633\pi\)
0.520802 + 0.853678i \(0.325633\pi\)
\(942\) 2119.48 0.0733081
\(943\) −1798.32 −0.0621010
\(944\) −30046.0 −1.03593
\(945\) 0 0
\(946\) 1181.59 0.0406098
\(947\) −57360.1 −1.96827 −0.984135 0.177421i \(-0.943225\pi\)
−0.984135 + 0.177421i \(0.943225\pi\)
\(948\) 5876.12 0.201316
\(949\) 37415.3 1.27982
\(950\) 2688.68 0.0918235
\(951\) −45796.5 −1.56157
\(952\) 0 0
\(953\) 37618.1 1.27867 0.639333 0.768930i \(-0.279211\pi\)
0.639333 + 0.768930i \(0.279211\pi\)
\(954\) 67.9389 0.00230566
\(955\) 44431.8 1.50553
\(956\) 40937.8 1.38496
\(957\) 4551.70 0.153747
\(958\) 3094.18 0.104351
\(959\) 0 0
\(960\) −45988.0 −1.54610
\(961\) 961.000 0.0322581
\(962\) −3429.34 −0.114934
\(963\) 178.594 0.00597624
\(964\) −13390.7 −0.447391
\(965\) −81244.3 −2.71020
\(966\) 0 0
\(967\) −6302.73 −0.209599 −0.104799 0.994493i \(-0.533420\pi\)
−0.104799 + 0.994493i \(0.533420\pi\)
\(968\) 1961.18 0.0651184
\(969\) 36141.1 1.19816
\(970\) −3081.18 −0.101990
\(971\) −48114.9 −1.59020 −0.795098 0.606481i \(-0.792581\pi\)
−0.795098 + 0.606481i \(0.792581\pi\)
\(972\) 3998.96 0.131961
\(973\) 0 0
\(974\) 1262.67 0.0415385
\(975\) 63814.6 2.09610
\(976\) 10853.6 0.355958
\(977\) 33496.5 1.09688 0.548438 0.836191i \(-0.315223\pi\)
0.548438 + 0.836191i \(0.315223\pi\)
\(978\) −353.724 −0.0115653
\(979\) −10416.5 −0.340053
\(980\) 0 0
\(981\) −3228.88 −0.105087
\(982\) −438.534 −0.0142507
\(983\) 14695.7 0.476825 0.238412 0.971164i \(-0.423373\pi\)
0.238412 + 0.971164i \(0.423373\pi\)
\(984\) 1482.08 0.0480151
\(985\) −41004.0 −1.32639
\(986\) −712.663 −0.0230181
\(987\) 0 0
\(988\) 31591.0 1.01725
\(989\) 4393.95 0.141273
\(990\) −163.643 −0.00525346
\(991\) −46952.3 −1.50503 −0.752517 0.658573i \(-0.771160\pi\)
−0.752517 + 0.658573i \(0.771160\pi\)
\(992\) −1123.28 −0.0359519
\(993\) 7223.61 0.230850
\(994\) 0 0
\(995\) 67890.5 2.16309
\(996\) −15279.2 −0.486085
\(997\) −38016.7 −1.20762 −0.603812 0.797127i \(-0.706352\pi\)
−0.603812 + 0.797127i \(0.706352\pi\)
\(998\) 1631.65 0.0517525
\(999\) 43759.2 1.38586
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1519.4.a.h.1.11 23
7.6 odd 2 1519.4.a.i.1.11 yes 23
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1519.4.a.h.1.11 23 1.1 even 1 trivial
1519.4.a.i.1.11 yes 23 7.6 odd 2