Properties

Label 1512.2.bl.c.593.1
Level $1512$
Weight $2$
Character 1512.593
Analytic conductor $12.073$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(593,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.593"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.bl (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 26x^{14} + 521x^{12} + 3668x^{10} + 19270x^{8} + 25507x^{6} + 25166x^{4} + 8869x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 593.1
Root \(-0.314872 + 0.545374i\) of defining polynomial
Character \(\chi\) \(=\) 1512.593
Dual form 1512.2.bl.c.1025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.69652 + 2.93845i) q^{5} +(-2.25634 + 1.38164i) q^{7} +(-0.669013 + 0.386255i) q^{11} -0.401495i q^{13} +(1.38164 + 2.39308i) q^{17} +(-3.68797 - 2.12925i) q^{19} +(-0.0785903 - 0.0453741i) q^{23} +(-3.25634 - 5.64014i) q^{25} +5.51267i q^{29} +(3.34770 - 1.93280i) q^{31} +(-0.231984 - 8.97412i) q^{35} +(3.39308 - 5.87698i) q^{37} -7.88837 q^{41} -12.0713 q^{43} +(1.84991 - 3.20414i) q^{47} +(3.18212 - 6.23491i) q^{49} +(11.7927 - 6.80854i) q^{53} -2.62115i q^{55} +(2.67667 + 4.63612i) q^{59} +(-8.61025 - 4.97113i) q^{61} +(1.17977 + 0.681143i) q^{65} +(-5.69479 - 9.86367i) q^{67} -12.6748i q^{71} +(-2.39211 + 1.38108i) q^{73} +(0.975853 - 1.79586i) q^{77} +(4.46145 - 7.72746i) q^{79} -10.3438 q^{83} -9.37593 q^{85} +(-1.41344 + 2.44816i) q^{89} +(0.554723 + 0.905908i) q^{91} +(12.5134 - 7.22461i) q^{95} +6.45676i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{7} - 18 q^{19} - 12 q^{25} + 24 q^{31} + 16 q^{37} - 52 q^{43} + 44 q^{49} + 6 q^{61} - 4 q^{67} - 12 q^{73} + 34 q^{79} - 68 q^{85} + 102 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.69652 + 2.93845i −0.758705 + 1.31412i 0.184806 + 0.982775i \(0.440834\pi\)
−0.943511 + 0.331341i \(0.892499\pi\)
\(6\) 0 0
\(7\) −2.25634 + 1.38164i −0.852815 + 0.522213i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.669013 + 0.386255i −0.201715 + 0.116460i −0.597455 0.801902i \(-0.703821\pi\)
0.395740 + 0.918363i \(0.370488\pi\)
\(12\) 0 0
\(13\) 0.401495i 0.111355i −0.998449 0.0556773i \(-0.982268\pi\)
0.998449 0.0556773i \(-0.0177318\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.38164 + 2.39308i 0.335098 + 0.580407i 0.983504 0.180888i \(-0.0578972\pi\)
−0.648406 + 0.761295i \(0.724564\pi\)
\(18\) 0 0
\(19\) −3.68797 2.12925i −0.846078 0.488483i 0.0132479 0.999912i \(-0.495783\pi\)
−0.859325 + 0.511429i \(0.829116\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.0785903 0.0453741i −0.0163872 0.00946116i 0.491784 0.870717i \(-0.336345\pi\)
−0.508171 + 0.861256i \(0.669678\pi\)
\(24\) 0 0
\(25\) −3.25634 5.64014i −0.651267 1.12803i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.51267i 1.02368i 0.859081 + 0.511839i \(0.171036\pi\)
−0.859081 + 0.511839i \(0.828964\pi\)
\(30\) 0 0
\(31\) 3.34770 1.93280i 0.601266 0.347141i −0.168274 0.985740i \(-0.553819\pi\)
0.769539 + 0.638599i \(0.220486\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.231984 8.97412i −0.0392125 1.51690i
\(36\) 0 0
\(37\) 3.39308 5.87698i 0.557819 0.966170i −0.439860 0.898067i \(-0.644972\pi\)
0.997678 0.0681038i \(-0.0216949\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.88837 −1.23196 −0.615978 0.787763i \(-0.711239\pi\)
−0.615978 + 0.787763i \(0.711239\pi\)
\(42\) 0 0
\(43\) −12.0713 −1.84086 −0.920431 0.390905i \(-0.872162\pi\)
−0.920431 + 0.390905i \(0.872162\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.84991 3.20414i 0.269837 0.467372i −0.698982 0.715139i \(-0.746363\pi\)
0.968820 + 0.247767i \(0.0796968\pi\)
\(48\) 0 0
\(49\) 3.18212 6.23491i 0.454588 0.890702i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.7927 6.80854i 1.61986 0.935224i 0.632900 0.774234i \(-0.281864\pi\)
0.986956 0.160991i \(-0.0514689\pi\)
\(54\) 0 0
\(55\) 2.62115i 0.353436i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.67667 + 4.63612i 0.348472 + 0.603572i 0.985978 0.166874i \(-0.0533672\pi\)
−0.637506 + 0.770445i \(0.720034\pi\)
\(60\) 0 0
\(61\) −8.61025 4.97113i −1.10243 0.636488i −0.165571 0.986198i \(-0.552947\pi\)
−0.936858 + 0.349710i \(0.886280\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.17977 + 0.681143i 0.146333 + 0.0844854i
\(66\) 0 0
\(67\) −5.69479 9.86367i −0.695729 1.20504i −0.969934 0.243367i \(-0.921748\pi\)
0.274205 0.961671i \(-0.411585\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.6748i 1.50422i −0.659039 0.752109i \(-0.729037\pi\)
0.659039 0.752109i \(-0.270963\pi\)
\(72\) 0 0
\(73\) −2.39211 + 1.38108i −0.279975 + 0.161644i −0.633412 0.773815i \(-0.718346\pi\)
0.353437 + 0.935458i \(0.385013\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.975853 1.79586i 0.111209 0.204657i
\(78\) 0 0
\(79\) 4.46145 7.72746i 0.501952 0.869407i −0.498045 0.867151i \(-0.665949\pi\)
0.999997 0.00225579i \(-0.000718042\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −10.3438 −1.13537 −0.567687 0.823244i \(-0.692162\pi\)
−0.567687 + 0.823244i \(0.692162\pi\)
\(84\) 0 0
\(85\) −9.37593 −1.01696
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.41344 + 2.44816i −0.149825 + 0.259504i −0.931163 0.364604i \(-0.881204\pi\)
0.781338 + 0.624108i \(0.214538\pi\)
\(90\) 0 0
\(91\) 0.554723 + 0.905908i 0.0581508 + 0.0949649i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 12.5134 7.22461i 1.28385 0.741229i
\(96\) 0 0
\(97\) 6.45676i 0.655585i 0.944750 + 0.327793i \(0.106305\pi\)
−0.944750 + 0.327793i \(0.893695\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.91518 + 11.9774i 0.688087 + 1.19180i 0.972456 + 0.233086i \(0.0748824\pi\)
−0.284370 + 0.958715i \(0.591784\pi\)
\(102\) 0 0
\(103\) 10.1112 + 5.83772i 0.996288 + 0.575207i 0.907148 0.420812i \(-0.138255\pi\)
0.0891402 + 0.996019i \(0.471588\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.02875 4.05805i −0.679495 0.392306i 0.120170 0.992753i \(-0.461656\pi\)
−0.799665 + 0.600447i \(0.794989\pi\)
\(108\) 0 0
\(109\) −0.772510 1.33803i −0.0739931 0.128160i 0.826655 0.562709i \(-0.190241\pi\)
−0.900648 + 0.434550i \(0.856908\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.85750i 0.833244i 0.909080 + 0.416622i \(0.136786\pi\)
−0.909080 + 0.416622i \(0.863214\pi\)
\(114\) 0 0
\(115\) 0.266659 0.153956i 0.0248661 0.0143565i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.42384 3.49065i −0.588873 0.319987i
\(120\) 0 0
\(121\) −5.20161 + 9.00946i −0.472874 + 0.819042i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 5.13255 0.459070
\(126\) 0 0
\(127\) −9.27224 −0.822779 −0.411389 0.911460i \(-0.634956\pi\)
−0.411389 + 0.911460i \(0.634956\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.27835 + 5.67826i −0.286431 + 0.496112i −0.972955 0.230994i \(-0.925802\pi\)
0.686525 + 0.727107i \(0.259135\pi\)
\(132\) 0 0
\(133\) 11.2632 0.291157i 0.976640 0.0252465i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.78508 + 5.64942i −0.835995 + 0.482662i −0.855901 0.517140i \(-0.826997\pi\)
0.0199056 + 0.999802i \(0.493663\pi\)
\(138\) 0 0
\(139\) 13.4999i 1.14505i −0.819887 0.572525i \(-0.805964\pi\)
0.819887 0.572525i \(-0.194036\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.155079 + 0.268605i 0.0129684 + 0.0224619i
\(144\) 0 0
\(145\) −16.1987 9.35234i −1.34523 0.776670i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −9.44769 5.45463i −0.773985 0.446860i 0.0603094 0.998180i \(-0.480791\pi\)
−0.834294 + 0.551319i \(0.814125\pi\)
\(150\) 0 0
\(151\) 3.11960 + 5.40330i 0.253869 + 0.439714i 0.964588 0.263762i \(-0.0849634\pi\)
−0.710719 + 0.703476i \(0.751630\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 13.1161i 1.05351i
\(156\) 0 0
\(157\) −13.7441 + 7.93517i −1.09690 + 0.633295i −0.935405 0.353579i \(-0.884965\pi\)
−0.161494 + 0.986874i \(0.551631\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.240017 0.00620453i 0.0189160 0.000488985i
\(162\) 0 0
\(163\) 7.14295 12.3719i 0.559479 0.969046i −0.438061 0.898945i \(-0.644335\pi\)
0.997540 0.0701004i \(-0.0223320\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.06261 −0.236992 −0.118496 0.992955i \(-0.537807\pi\)
−0.118496 + 0.992955i \(0.537807\pi\)
\(168\) 0 0
\(169\) 12.8388 0.987600
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −12.2685 + 21.2496i −0.932754 + 1.61558i −0.154164 + 0.988045i \(0.549268\pi\)
−0.778591 + 0.627532i \(0.784065\pi\)
\(174\) 0 0
\(175\) 15.1401 + 8.22696i 1.14448 + 0.621900i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.69553 2.71096i 0.350960 0.202627i −0.314148 0.949374i \(-0.601719\pi\)
0.665108 + 0.746747i \(0.268385\pi\)
\(180\) 0 0
\(181\) 25.6404i 1.90583i 0.303233 + 0.952917i \(0.401934\pi\)
−0.303233 + 0.952917i \(0.598066\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 11.5128 + 19.9408i 0.846440 + 1.46608i
\(186\) 0 0
\(187\) −1.84868 1.06733i −0.135189 0.0780512i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.65321 + 3.84123i 0.481410 + 0.277942i 0.721004 0.692931i \(-0.243681\pi\)
−0.239594 + 0.970873i \(0.577014\pi\)
\(192\) 0 0
\(193\) −9.19576 15.9275i −0.661926 1.14649i −0.980109 0.198460i \(-0.936406\pi\)
0.318184 0.948029i \(-0.396927\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.966947i 0.0688921i −0.999407 0.0344460i \(-0.989033\pi\)
0.999407 0.0344460i \(-0.0109667\pi\)
\(198\) 0 0
\(199\) 15.8436 9.14730i 1.12312 0.648435i 0.180926 0.983497i \(-0.442091\pi\)
0.942196 + 0.335062i \(0.108757\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −7.61656 12.4385i −0.534578 0.873008i
\(204\) 0 0
\(205\) 13.3828 23.1796i 0.934692 1.61893i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.28973 0.227556
\(210\) 0 0
\(211\) −25.2411 −1.73767 −0.868836 0.495100i \(-0.835131\pi\)
−0.868836 + 0.495100i \(0.835131\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 20.4792 35.4711i 1.39667 2.41911i
\(216\) 0 0
\(217\) −4.88311 + 8.98638i −0.331487 + 0.610035i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.960809 0.554723i 0.0646310 0.0373147i
\(222\) 0 0
\(223\) 19.4754i 1.30417i 0.758145 + 0.652086i \(0.226106\pi\)
−0.758145 + 0.652086i \(0.773894\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.03859 13.9233i −0.533540 0.924119i −0.999232 0.0391720i \(-0.987528\pi\)
0.465692 0.884947i \(-0.345805\pi\)
\(228\) 0 0
\(229\) 3.56487 + 2.05818i 0.235573 + 0.136008i 0.613141 0.789974i \(-0.289906\pi\)
−0.377567 + 0.925982i \(0.623239\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.32621 0.765686i −0.0868828 0.0501618i 0.455929 0.890016i \(-0.349307\pi\)
−0.542812 + 0.839854i \(0.682640\pi\)
\(234\) 0 0
\(235\) 6.27681 + 10.8718i 0.409454 + 0.709195i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.36423i 0.282299i 0.989988 + 0.141149i \(0.0450798\pi\)
−0.989988 + 0.141149i \(0.954920\pi\)
\(240\) 0 0
\(241\) 25.8242 14.9096i 1.66348 0.960412i 0.692448 0.721467i \(-0.256532\pi\)
0.971033 0.238944i \(-0.0768013\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 12.9225 + 19.9281i 0.825587 + 1.27316i
\(246\) 0 0
\(247\) −0.854882 + 1.48070i −0.0543949 + 0.0942147i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −12.8466 −0.810868 −0.405434 0.914124i \(-0.632880\pi\)
−0.405434 + 0.914124i \(0.632880\pi\)
\(252\) 0 0
\(253\) 0.0701039 0.00440740
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.14450 + 10.6426i −0.383284 + 0.663867i −0.991529 0.129882i \(-0.958540\pi\)
0.608246 + 0.793749i \(0.291873\pi\)
\(258\) 0 0
\(259\) 0.463975 + 17.9485i 0.0288300 + 1.11526i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −9.20071 + 5.31203i −0.567340 + 0.327554i −0.756086 0.654472i \(-0.772891\pi\)
0.188746 + 0.982026i \(0.439558\pi\)
\(264\) 0 0
\(265\) 46.2032i 2.83824i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −13.2212 22.8997i −0.806109 1.39622i −0.915540 0.402227i \(-0.868236\pi\)
0.109431 0.993994i \(-0.465097\pi\)
\(270\) 0 0
\(271\) −0.935128 0.539896i −0.0568050 0.0327964i 0.471329 0.881958i \(-0.343775\pi\)
−0.528134 + 0.849161i \(0.677108\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.35707 + 2.51555i 0.262741 + 0.151694i
\(276\) 0 0
\(277\) 8.04932 + 13.9418i 0.483637 + 0.837683i 0.999823 0.0187928i \(-0.00598227\pi\)
−0.516187 + 0.856476i \(0.672649\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 23.6494i 1.41081i −0.708807 0.705403i \(-0.750766\pi\)
0.708807 0.705403i \(-0.249234\pi\)
\(282\) 0 0
\(283\) 6.07360 3.50660i 0.361038 0.208445i −0.308498 0.951225i \(-0.599826\pi\)
0.669536 + 0.742780i \(0.266493\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 17.7988 10.8989i 1.05063 0.643343i
\(288\) 0 0
\(289\) 4.68212 8.10966i 0.275419 0.477039i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7.88725 0.460778 0.230389 0.973099i \(-0.426000\pi\)
0.230389 + 0.973099i \(0.426000\pi\)
\(294\) 0 0
\(295\) −18.1640 −1.05755
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.0182175 + 0.0315536i −0.00105354 + 0.00182479i
\(300\) 0 0
\(301\) 27.2370 16.6783i 1.56992 0.961322i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 29.2149 16.8672i 1.67284 0.965813i
\(306\) 0 0
\(307\) 27.9636i 1.59597i 0.602680 + 0.797983i \(0.294099\pi\)
−0.602680 + 0.797983i \(0.705901\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −7.58046 13.1297i −0.429849 0.744520i 0.567011 0.823710i \(-0.308100\pi\)
−0.996859 + 0.0791907i \(0.974766\pi\)
\(312\) 0 0
\(313\) 18.7334 + 10.8158i 1.05888 + 0.611342i 0.925121 0.379672i \(-0.123963\pi\)
0.133755 + 0.991014i \(0.457296\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.71998 3.87979i −0.377432 0.217910i 0.299268 0.954169i \(-0.403257\pi\)
−0.676700 + 0.736259i \(0.736591\pi\)
\(318\) 0 0
\(319\) −2.12930 3.68805i −0.119218 0.206491i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 11.7675i 0.654759i
\(324\) 0 0
\(325\) −2.26449 + 1.30740i −0.125611 + 0.0725217i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.252960 + 9.78554i 0.0139461 + 0.539494i
\(330\) 0 0
\(331\) −6.50297 + 11.2635i −0.357436 + 0.619097i −0.987532 0.157421i \(-0.949682\pi\)
0.630096 + 0.776517i \(0.283016\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 38.6452 2.11141
\(336\) 0 0
\(337\) −4.31948 −0.235297 −0.117648 0.993055i \(-0.537536\pi\)
−0.117648 + 0.993055i \(0.537536\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.49311 + 2.58614i −0.0808562 + 0.140047i
\(342\) 0 0
\(343\) 1.43451 + 18.4646i 0.0774562 + 0.996996i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −30.2331 + 17.4551i −1.62300 + 0.937037i −0.636884 + 0.770960i \(0.719777\pi\)
−0.986113 + 0.166077i \(0.946890\pi\)
\(348\) 0 0
\(349\) 2.48536i 0.133038i −0.997785 0.0665192i \(-0.978811\pi\)
0.997785 0.0665192i \(-0.0211894\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −11.9429 20.6857i −0.635656 1.10099i −0.986376 0.164508i \(-0.947396\pi\)
0.350719 0.936481i \(-0.385937\pi\)
\(354\) 0 0
\(355\) 37.2442 + 21.5029i 1.97672 + 1.14126i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 19.3512 + 11.1724i 1.02132 + 0.589657i 0.914485 0.404620i \(-0.132596\pi\)
0.106832 + 0.994277i \(0.465929\pi\)
\(360\) 0 0
\(361\) −0.432602 0.749289i −0.0227685 0.0394363i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 9.37212i 0.490559i
\(366\) 0 0
\(367\) −23.7863 + 13.7330i −1.24163 + 0.716857i −0.969426 0.245382i \(-0.921086\pi\)
−0.272206 + 0.962239i \(0.587753\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −17.2014 + 31.6557i −0.893052 + 1.64348i
\(372\) 0 0
\(373\) −12.9023 + 22.3474i −0.668053 + 1.15710i 0.310394 + 0.950608i \(0.399539\pi\)
−0.978448 + 0.206495i \(0.933794\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.21331 0.113991
\(378\) 0 0
\(379\) 15.6424 0.803497 0.401749 0.915750i \(-0.368403\pi\)
0.401749 + 0.915750i \(0.368403\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.99471 5.18699i 0.153023 0.265043i −0.779315 0.626633i \(-0.784433\pi\)
0.932337 + 0.361590i \(0.117766\pi\)
\(384\) 0 0
\(385\) 3.62150 + 5.91420i 0.184569 + 0.301416i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −29.8059 + 17.2084i −1.51122 + 0.872502i −0.511304 + 0.859400i \(0.670838\pi\)
−0.999914 + 0.0131027i \(0.995829\pi\)
\(390\) 0 0
\(391\) 0.250764i 0.0126817i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 15.1378 + 26.2195i 0.761668 + 1.31925i
\(396\) 0 0
\(397\) 3.89760 + 2.25028i 0.195615 + 0.112938i 0.594609 0.804015i \(-0.297307\pi\)
−0.398993 + 0.916954i \(0.630640\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.5634 + 7.25346i 0.627384 + 0.362220i 0.779738 0.626106i \(-0.215352\pi\)
−0.152354 + 0.988326i \(0.548685\pi\)
\(402\) 0 0
\(403\) −0.776009 1.34409i −0.0386557 0.0669537i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.24238i 0.259855i
\(408\) 0 0
\(409\) 15.8510 9.15160i 0.783783 0.452517i −0.0539863 0.998542i \(-0.517193\pi\)
0.837769 + 0.546024i \(0.183859\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −12.4449 6.76245i −0.612375 0.332759i
\(414\) 0 0
\(415\) 17.5483 30.3946i 0.861414 1.49201i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −27.2777 −1.33260 −0.666302 0.745682i \(-0.732124\pi\)
−0.666302 + 0.745682i \(0.732124\pi\)
\(420\) 0 0
\(421\) −8.33694 −0.406317 −0.203159 0.979146i \(-0.565121\pi\)
−0.203159 + 0.979146i \(0.565121\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 8.99820 15.5853i 0.436477 0.756000i
\(426\) 0 0
\(427\) 26.2960 0.679760i 1.27255 0.0328959i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −28.4948 + 16.4515i −1.37255 + 0.792440i −0.991248 0.132012i \(-0.957856\pi\)
−0.381298 + 0.924452i \(0.624523\pi\)
\(432\) 0 0
\(433\) 11.1943i 0.537962i 0.963145 + 0.268981i \(0.0866870\pi\)
−0.963145 + 0.268981i \(0.913313\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.193226 + 0.334676i 0.00924323 + 0.0160097i
\(438\) 0 0
\(439\) −25.8047 14.8983i −1.23159 0.711059i −0.264229 0.964460i \(-0.585117\pi\)
−0.967361 + 0.253401i \(0.918451\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 18.7877 + 10.8471i 0.892631 + 0.515361i 0.874802 0.484480i \(-0.160991\pi\)
0.0178286 + 0.999841i \(0.494325\pi\)
\(444\) 0 0
\(445\) −4.79586 8.30667i −0.227346 0.393774i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.73564i 0.459453i 0.973255 + 0.229727i \(0.0737832\pi\)
−0.973255 + 0.229727i \(0.926217\pi\)
\(450\) 0 0
\(451\) 5.27743 3.04692i 0.248504 0.143474i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.60306 + 0.0931405i −0.168914 + 0.00436650i
\(456\) 0 0
\(457\) 7.14197 12.3703i 0.334087 0.578656i −0.649222 0.760599i \(-0.724905\pi\)
0.983309 + 0.181943i \(0.0582386\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 20.3229 0.946531 0.473266 0.880920i \(-0.343075\pi\)
0.473266 + 0.880920i \(0.343075\pi\)
\(462\) 0 0
\(463\) −19.5606 −0.909059 −0.454529 0.890732i \(-0.650193\pi\)
−0.454529 + 0.890732i \(0.650193\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5.49744 + 9.52185i −0.254391 + 0.440619i −0.964730 0.263241i \(-0.915208\pi\)
0.710339 + 0.703860i \(0.248542\pi\)
\(468\) 0 0
\(469\) 26.4774 + 14.3876i 1.22262 + 0.664357i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 8.07589 4.66262i 0.371330 0.214387i
\(474\) 0 0
\(475\) 27.7342i 1.27253i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −10.5145 18.2117i −0.480420 0.832112i 0.519327 0.854575i \(-0.326183\pi\)
−0.999748 + 0.0224629i \(0.992849\pi\)
\(480\) 0 0
\(481\) −2.35958 1.36230i −0.107588 0.0621157i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −18.9729 10.9540i −0.861515 0.497396i
\(486\) 0 0
\(487\) −3.25049 5.63001i −0.147294 0.255120i 0.782933 0.622106i \(-0.213723\pi\)
−0.930226 + 0.366986i \(0.880390\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 30.0184i 1.35471i 0.735657 + 0.677355i \(0.236874\pi\)
−0.735657 + 0.677355i \(0.763126\pi\)
\(492\) 0 0
\(493\) −13.1923 + 7.61656i −0.594150 + 0.343033i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 17.5120 + 28.5985i 0.785522 + 1.28282i
\(498\) 0 0
\(499\) 15.6919 27.1792i 0.702466 1.21671i −0.265132 0.964212i \(-0.585415\pi\)
0.967598 0.252495i \(-0.0812512\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 14.1671 0.631682 0.315841 0.948812i \(-0.397713\pi\)
0.315841 + 0.948812i \(0.397713\pi\)
\(504\) 0 0
\(505\) −46.9269 −2.08822
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.16409 2.01627i 0.0515974 0.0893694i −0.839073 0.544019i \(-0.816902\pi\)
0.890671 + 0.454649i \(0.150235\pi\)
\(510\) 0 0
\(511\) 3.48923 6.42123i 0.154355 0.284058i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −34.3077 + 19.8076i −1.51178 + 0.872825i
\(516\) 0 0
\(517\) 2.85815i 0.125701i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −19.3887 33.5823i −0.849436 1.47127i −0.881712 0.471788i \(-0.843609\pi\)
0.0322757 0.999479i \(-0.489725\pi\)
\(522\) 0 0
\(523\) −14.4817 8.36099i −0.633239 0.365600i 0.148767 0.988872i \(-0.452470\pi\)
−0.782005 + 0.623272i \(0.785803\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.25068 + 5.34088i 0.402966 + 0.232652i
\(528\) 0 0
\(529\) −11.4959 19.9115i −0.499821 0.865715i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.16714i 0.137184i
\(534\) 0 0
\(535\) 23.8488 13.7691i 1.03107 0.595290i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.279389 + 5.40035i 0.0120341 + 0.232609i
\(540\) 0 0
\(541\) 7.71132 13.3564i 0.331535 0.574236i −0.651278 0.758839i \(-0.725767\pi\)
0.982813 + 0.184603i \(0.0591000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.24231 0.224556
\(546\) 0 0
\(547\) −5.64942 −0.241552 −0.120776 0.992680i \(-0.538538\pi\)
−0.120776 + 0.992680i \(0.538538\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 11.7379 20.3306i 0.500049 0.866111i
\(552\) 0 0
\(553\) 0.610066 + 23.5999i 0.0259426 + 1.00357i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.39858 2.53952i 0.186374 0.107603i −0.403910 0.914799i \(-0.632349\pi\)
0.590284 + 0.807196i \(0.299016\pi\)
\(558\) 0 0
\(559\) 4.84658i 0.204989i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.79684 + 15.2366i 0.370743 + 0.642145i 0.989680 0.143295i \(-0.0457698\pi\)
−0.618937 + 0.785440i \(0.712437\pi\)
\(564\) 0 0
\(565\) −26.0273 15.0269i −1.09498 0.632186i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −27.2399 15.7270i −1.14196 0.659309i −0.195042 0.980795i \(-0.562484\pi\)
−0.946914 + 0.321486i \(0.895818\pi\)
\(570\) 0 0
\(571\) 0.00225988 + 0.00391423i 9.45732e−5 + 0.000163806i 0.866073 0.499918i \(-0.166637\pi\)
−0.865978 + 0.500082i \(0.833303\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.591014i 0.0246470i
\(576\) 0 0
\(577\) 11.2450 6.49230i 0.468135 0.270278i −0.247324 0.968933i \(-0.579551\pi\)
0.715459 + 0.698655i \(0.246218\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 23.3390 14.2914i 0.968265 0.592907i
\(582\) 0 0
\(583\) −5.25966 + 9.11000i −0.217833 + 0.377298i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 17.3258 0.715114 0.357557 0.933891i \(-0.383610\pi\)
0.357557 + 0.933891i \(0.383610\pi\)
\(588\) 0 0
\(589\) −16.4616 −0.678290
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −10.2777 + 17.8014i −0.422053 + 0.731018i −0.996140 0.0877766i \(-0.972024\pi\)
0.574087 + 0.818794i \(0.305357\pi\)
\(594\) 0 0
\(595\) 21.1553 12.9542i 0.867281 0.531071i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 36.5063 21.0769i 1.49161 0.861180i 0.491654 0.870791i \(-0.336393\pi\)
0.999954 + 0.00961097i \(0.00305931\pi\)
\(600\) 0 0
\(601\) 20.8943i 0.852295i 0.904654 + 0.426147i \(0.140129\pi\)
−0.904654 + 0.426147i \(0.859871\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −17.6492 30.5694i −0.717544 1.24282i
\(606\) 0 0
\(607\) 0.451389 + 0.260609i 0.0183213 + 0.0105778i 0.509133 0.860688i \(-0.329966\pi\)
−0.490811 + 0.871266i \(0.663300\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.28645 0.742730i −0.0520440 0.0300476i
\(612\) 0 0
\(613\) 22.7406 + 39.3879i 0.918485 + 1.59086i 0.801718 + 0.597703i \(0.203920\pi\)
0.116767 + 0.993159i \(0.462747\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 39.7150i 1.59887i −0.600755 0.799433i \(-0.705133\pi\)
0.600755 0.799433i \(-0.294867\pi\)
\(618\) 0 0
\(619\) 19.4589 11.2346i 0.782120 0.451557i −0.0550610 0.998483i \(-0.517535\pi\)
0.837181 + 0.546926i \(0.184202\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −0.193277 7.47674i −0.00774346 0.299549i
\(624\) 0 0
\(625\) 7.57422 13.1189i 0.302969 0.524757i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 18.7521 0.747696
\(630\) 0 0
\(631\) −7.67982 −0.305729 −0.152864 0.988247i \(-0.548850\pi\)
−0.152864 + 0.988247i \(0.548850\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 15.7305 27.2461i 0.624247 1.08123i
\(636\) 0 0
\(637\) −2.50329 1.27760i −0.0991838 0.0506205i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 4.32345 2.49615i 0.170766 0.0985919i −0.412181 0.911102i \(-0.635233\pi\)
0.582947 + 0.812510i \(0.301899\pi\)
\(642\) 0 0
\(643\) 6.24243i 0.246178i 0.992396 + 0.123089i \(0.0392800\pi\)
−0.992396 + 0.123089i \(0.960720\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.5158 + 28.6061i 0.649301 + 1.12462i 0.983290 + 0.182046i \(0.0582719\pi\)
−0.333989 + 0.942577i \(0.608395\pi\)
\(648\) 0 0
\(649\) −3.58145 2.06775i −0.140584 0.0811664i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −36.1543 20.8737i −1.41483 0.816850i −0.418988 0.907992i \(-0.637615\pi\)
−0.995838 + 0.0911420i \(0.970948\pi\)
\(654\) 0 0
\(655\) −11.1235 19.2665i −0.434633 0.752806i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 6.11610i 0.238249i 0.992879 + 0.119125i \(0.0380088\pi\)
−0.992879 + 0.119125i \(0.961991\pi\)
\(660\) 0 0
\(661\) −41.3405 + 23.8680i −1.60796 + 0.928356i −0.618135 + 0.786072i \(0.712111\pi\)
−0.989826 + 0.142284i \(0.954555\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −18.2526 + 33.5902i −0.707805 + 1.30257i
\(666\) 0 0
\(667\) 0.250133 0.433243i 0.00968518 0.0167752i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 7.68049 0.296502
\(672\) 0 0
\(673\) −16.1051 −0.620806 −0.310403 0.950605i \(-0.600464\pi\)
−0.310403 + 0.950605i \(0.600464\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 19.7342 34.1807i 0.758449 1.31367i −0.185193 0.982702i \(-0.559291\pi\)
0.943642 0.330969i \(-0.107376\pi\)
\(678\) 0 0
\(679\) −8.92095 14.5686i −0.342355 0.559093i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −42.6561 + 24.6275i −1.63219 + 0.942345i −0.648772 + 0.760983i \(0.724717\pi\)
−0.983416 + 0.181362i \(0.941949\pi\)
\(684\) 0 0
\(685\) 38.3373i 1.46479i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.73359 4.73472i −0.104142 0.180378i
\(690\) 0 0
\(691\) −7.31536 4.22352i −0.278289 0.160670i 0.354359 0.935109i \(-0.384699\pi\)
−0.632649 + 0.774439i \(0.718032\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 39.6689 + 22.9029i 1.50473 + 0.868756i
\(696\) 0 0
\(697\) −10.8989 18.8775i −0.412826 0.715036i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.40969i 0.0532434i 0.999646 + 0.0266217i \(0.00847495\pi\)
−0.999646 + 0.0266217i \(0.991525\pi\)
\(702\) 0 0
\(703\) −25.0271 + 14.4494i −0.943916 + 0.544970i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −32.1516 17.4708i −1.20918 0.657059i
\(708\) 0 0
\(709\) 23.2574 40.2830i 0.873450 1.51286i 0.0150454 0.999887i \(-0.495211\pi\)
0.858405 0.512973i \(-0.171456\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.350796 −0.0131374
\(714\) 0 0
\(715\) −1.05238 −0.0393568
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.99888 + 3.46216i −0.0745456 + 0.129117i −0.900889 0.434050i \(-0.857084\pi\)
0.826343 + 0.563167i \(0.190417\pi\)
\(720\) 0 0
\(721\) −30.8800 + 0.798259i −1.15003 + 0.0297287i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 31.0923 17.9511i 1.15474 0.666688i
\(726\) 0 0
\(727\) 13.3117i 0.493702i 0.969053 + 0.246851i \(0.0793958\pi\)
−0.969053 + 0.246851i \(0.920604\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −16.6783 28.8877i −0.616869 1.06845i
\(732\) 0 0
\(733\) −34.4428 19.8856i −1.27218 0.734491i −0.296778 0.954946i \(-0.595912\pi\)
−0.975397 + 0.220456i \(0.929246\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.61978 + 4.39928i 0.280678 + 0.162050i
\(738\) 0 0
\(739\) −20.6810 35.8205i −0.760762 1.31768i −0.942458 0.334323i \(-0.891492\pi\)
0.181697 0.983355i \(-0.441841\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7.98724i 0.293024i −0.989209 0.146512i \(-0.953195\pi\)
0.989209 0.146512i \(-0.0468046\pi\)
\(744\) 0 0
\(745\) 32.0563 18.5077i 1.17445 0.678071i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 21.4660 0.554904i 0.784351 0.0202758i
\(750\) 0 0
\(751\) 4.12965 7.15277i 0.150693 0.261008i −0.780789 0.624794i \(-0.785183\pi\)
0.931482 + 0.363786i \(0.118516\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −21.1698 −0.770447
\(756\) 0 0
\(757\) −24.1678 −0.878395 −0.439198 0.898390i \(-0.644737\pi\)
−0.439198 + 0.898390i \(0.644737\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −13.0652 + 22.6296i −0.473613 + 0.820321i −0.999544 0.0302061i \(-0.990384\pi\)
0.525931 + 0.850527i \(0.323717\pi\)
\(762\) 0 0
\(763\) 3.59172 + 1.95171i 0.130029 + 0.0706565i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.86138 1.07467i 0.0672105 0.0388040i
\(768\) 0 0
\(769\) 2.48254i 0.0895227i 0.998998 + 0.0447613i \(0.0142527\pi\)
−0.998998 + 0.0447613i \(0.985747\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 14.5225 + 25.1538i 0.522339 + 0.904718i 0.999662 + 0.0259902i \(0.00827386\pi\)
−0.477323 + 0.878728i \(0.658393\pi\)
\(774\) 0 0
\(775\) −21.8025 12.5877i −0.783169 0.452163i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 29.0921 + 16.7963i 1.04233 + 0.601790i
\(780\) 0 0
\(781\) 4.89569 + 8.47959i 0.175182 + 0.303424i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 53.8486i 1.92194i
\(786\) 0 0
\(787\) −1.81957 + 1.05053i −0.0648606 + 0.0374473i −0.532080 0.846694i \(-0.678589\pi\)
0.467219 + 0.884142i \(0.345256\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −12.2379 19.9855i −0.435130 0.710603i
\(792\) 0 0
\(793\) −1.99588 + 3.45697i −0.0708759 + 0.122761i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −30.4617 −1.07901 −0.539505 0.841982i \(-0.681389\pi\)
−0.539505 + 0.841982i \(0.681389\pi\)
\(798\) 0 0
\(799\) 10.2237 0.361688
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.06690 1.84793i 0.0376501 0.0652119i
\(804\) 0 0
\(805\) −0.388961 + 0.715805i −0.0137091 + 0.0252288i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 22.2427 12.8419i 0.782013 0.451496i −0.0551301 0.998479i \(-0.517557\pi\)
0.837143 + 0.546984i \(0.184224\pi\)
\(810\) 0 0
\(811\) 21.7048i 0.762159i 0.924542 + 0.381080i \(0.124448\pi\)
−0.924542 + 0.381080i \(0.875552\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 24.2363 + 41.9784i 0.848959 + 1.47044i
\(816\) 0 0
\(817\) 44.5187 + 25.7029i 1.55751 + 0.899230i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.19178 + 2.99747i 0.181194 + 0.104613i 0.587854 0.808967i \(-0.299973\pi\)
−0.406659 + 0.913580i \(0.633306\pi\)
\(822\) 0 0
\(823\) −17.7234 30.6978i −0.617798 1.07006i −0.989887 0.141860i \(-0.954692\pi\)
0.372089 0.928197i \(-0.378642\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 44.0703i 1.53247i 0.642558 + 0.766237i \(0.277873\pi\)
−0.642558 + 0.766237i \(0.722127\pi\)
\(828\) 0 0
\(829\) 30.8006 17.7827i 1.06975 0.617619i 0.141635 0.989919i \(-0.454764\pi\)
0.928113 + 0.372300i \(0.121431\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 19.3172 0.999381i 0.669301 0.0346265i
\(834\) 0 0
\(835\) 5.19576 8.99933i 0.179807 0.311435i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −21.3775 −0.738032 −0.369016 0.929423i \(-0.620305\pi\)
−0.369016 + 0.929423i \(0.620305\pi\)
\(840\) 0 0
\(841\) −1.38958 −0.0479166
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −21.7812 + 37.7262i −0.749297 + 1.29782i
\(846\) 0 0
\(847\) −0.711277 27.5152i −0.0244398 0.945432i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.533326 + 0.307916i −0.0182822 + 0.0105552i
\(852\) 0 0
\(853\) 43.8662i 1.50195i −0.660330 0.750976i \(-0.729583\pi\)
0.660330 0.750976i \(-0.270417\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.32987 + 2.30340i 0.0454274 + 0.0786825i 0.887845 0.460143i \(-0.152202\pi\)
−0.842418 + 0.538825i \(0.818868\pi\)
\(858\) 0 0
\(859\) −45.6614 26.3626i −1.55795 0.899481i −0.997453 0.0713218i \(-0.977278\pi\)
−0.560493 0.828159i \(-0.689388\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 7.94811 + 4.58884i 0.270557 + 0.156206i 0.629141 0.777292i \(-0.283407\pi\)
−0.358584 + 0.933498i \(0.616740\pi\)
\(864\) 0 0
\(865\) −41.6273 72.1006i −1.41537 2.45149i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 6.89303i 0.233830i
\(870\) 0 0
\(871\) −3.96021 + 2.28643i −0.134187 + 0.0774727i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −11.5808 + 7.09137i −0.391502 + 0.239732i
\(876\) 0 0
\(877\) 12.3455 21.3831i 0.416879 0.722056i −0.578745 0.815509i \(-0.696457\pi\)
0.995624 + 0.0934532i \(0.0297905\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −36.9178 −1.24379 −0.621897 0.783099i \(-0.713638\pi\)
−0.621897 + 0.783099i \(0.713638\pi\)
\(882\) 0 0
\(883\) −0.325420 −0.0109512 −0.00547562 0.999985i \(-0.501743\pi\)
−0.00547562 + 0.999985i \(0.501743\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −16.9652 + 29.3845i −0.569635 + 0.986636i 0.426967 + 0.904267i \(0.359582\pi\)
−0.996602 + 0.0823689i \(0.973751\pi\)
\(888\) 0 0
\(889\) 20.9213 12.8109i 0.701678 0.429665i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −13.6448 + 7.87784i −0.456606 + 0.263622i
\(894\) 0 0
\(895\) 18.3968i 0.614936i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 10.6549 + 18.4548i 0.355360 + 0.615502i
\(900\) 0 0
\(901\) 32.5867 + 18.8140i 1.08562 + 0.626784i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −75.3430 43.4993i −2.50449 1.44597i
\(906\) 0 0
\(907\) −13.4226 23.2487i −0.445691 0.771960i 0.552409 0.833573i \(-0.313709\pi\)
−0.998100 + 0.0616134i \(0.980375\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 26.4947i 0.877808i 0.898534 + 0.438904i \(0.144633\pi\)
−0.898534 + 0.438904i \(0.855367\pi\)
\(912\) 0 0
\(913\) 6.92011 3.99533i 0.229022 0.132226i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −0.448286 17.3416i −0.0148037 0.572670i
\(918\) 0 0
\(919\) −14.0127 + 24.2707i −0.462235 + 0.800615i −0.999072 0.0430709i \(-0.986286\pi\)
0.536837 + 0.843686i \(0.319619\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −5.08885 −0.167502
\(924\) 0 0
\(925\) −44.1960 −1.45316
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −5.54656 + 9.60692i −0.181977 + 0.315193i −0.942554 0.334055i \(-0.891583\pi\)
0.760577 + 0.649248i \(0.224916\pi\)
\(930\) 0 0
\(931\) −25.0112 + 16.2186i −0.819709 + 0.531544i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.27263 3.62150i 0.205137 0.118436i
\(936\) 0 0
\(937\) 2.93878i 0.0960058i −0.998847 0.0480029i \(-0.984714\pi\)
0.998847 0.0480029i \(-0.0152857\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 8.94394 + 15.4914i 0.291564 + 0.505004i 0.974180 0.225774i \(-0.0724910\pi\)
−0.682616 + 0.730778i \(0.739158\pi\)
\(942\) 0 0
\(943\) 0.619949 + 0.357928i 0.0201883 + 0.0116557i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8.78474 + 5.07187i 0.285466 + 0.164814i 0.635895 0.771775i \(-0.280631\pi\)
−0.350430 + 0.936589i \(0.613964\pi\)
\(948\) 0 0
\(949\) 0.554498 + 0.960418i 0.0179998 + 0.0311765i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 3.84180i 0.124448i −0.998062 0.0622241i \(-0.980181\pi\)
0.998062 0.0622241i \(-0.0198193\pi\)
\(954\) 0 0
\(955\) −22.5746 + 13.0334i −0.730496 + 0.421752i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 14.2729 26.2665i 0.460897 0.848189i
\(960\) 0 0
\(961\) −8.02858 + 13.9059i −0.258987 + 0.448578i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 62.4031 2.00883
\(966\) 0 0
\(967\) −11.2131 −0.360590 −0.180295 0.983613i \(-0.557705\pi\)
−0.180295 + 0.983613i \(0.557705\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −24.4029 + 42.2670i −0.783126 + 1.35641i 0.146987 + 0.989138i \(0.453043\pi\)
−0.930112 + 0.367275i \(0.880291\pi\)
\(972\) 0 0
\(973\) 18.6521 + 30.4604i 0.597960 + 0.976516i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 40.7751 23.5415i 1.30451 0.753160i 0.323337 0.946284i \(-0.395195\pi\)
0.981174 + 0.193124i \(0.0618619\pi\)
\(978\) 0 0
\(979\) 2.18380i 0.0697945i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −18.9560 32.8328i −0.604604 1.04720i −0.992114 0.125339i \(-0.959998\pi\)
0.387510 0.921865i \(-0.373335\pi\)
\(984\) 0 0
\(985\) 2.84133 + 1.64044i 0.0905322 + 0.0522688i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.948690 + 0.547726i 0.0301666 + 0.0174167i
\(990\) 0 0
\(991\) −3.40637 5.90001i −0.108207 0.187420i 0.806837 0.590774i \(-0.201178\pi\)
−0.915044 + 0.403354i \(0.867844\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 62.0742i 1.96788i
\(996\) 0 0
\(997\) 9.33662 5.39050i 0.295694 0.170719i −0.344813 0.938671i \(-0.612058\pi\)
0.640507 + 0.767953i \(0.278724\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.bl.c.593.1 16
3.2 odd 2 inner 1512.2.bl.c.593.8 yes 16
7.3 odd 6 inner 1512.2.bl.c.1025.8 yes 16
21.17 even 6 inner 1512.2.bl.c.1025.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1512.2.bl.c.593.1 16 1.1 even 1 trivial
1512.2.bl.c.593.8 yes 16 3.2 odd 2 inner
1512.2.bl.c.1025.1 yes 16 21.17 even 6 inner
1512.2.bl.c.1025.8 yes 16 7.3 odd 6 inner