Properties

Label 1500.2.o.c.49.1
Level $1500$
Weight $2$
Character 1500.49
Analytic conductor $11.978$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1500,2,Mod(49,1500)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1500.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1500, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1500 = 2^{2} \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1500.o (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,6,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.9775603032\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 300)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 49.1
Character \(\chi\) \(=\) 1500.49
Dual form 1500.2.o.c.949.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.951057 + 0.309017i) q^{3} -3.78808i q^{7} +(0.809017 - 0.587785i) q^{9} +(0.653426 + 0.474742i) q^{11} +(-2.79168 - 3.84242i) q^{13} +(1.09262 + 0.355012i) q^{17} +(-0.00463870 + 0.0142765i) q^{19} +(1.17058 + 3.60268i) q^{21} +(-3.68422 + 5.07089i) q^{23} +(-0.587785 + 0.809017i) q^{27} +(-1.14365 - 3.51978i) q^{29} +(-0.488893 + 1.50466i) q^{31} +(-0.768148 - 0.249586i) q^{33} +(-5.02074 - 6.91045i) q^{37} +(3.84242 + 2.79168i) q^{39} +(-9.30279 + 6.75887i) q^{41} +10.2458i q^{43} +(-0.500524 + 0.162630i) q^{47} -7.34957 q^{49} -1.14884 q^{51} +(2.80539 - 0.911527i) q^{53} -0.0150112i q^{57} +(9.25803 - 6.72635i) q^{59} +(-2.54203 - 1.84689i) q^{61} +(-2.22658 - 3.06462i) q^{63} +(-12.6312 - 4.10412i) q^{67} +(1.93691 - 5.96119i) q^{69} +(-1.51826 - 4.67271i) q^{71} +(-2.75001 + 3.78507i) q^{73} +(1.79836 - 2.47523i) q^{77} +(-2.86507 - 8.81777i) q^{79} +(0.309017 - 0.951057i) q^{81} +(1.35402 + 0.439947i) q^{83} +(2.17534 + 2.99410i) q^{87} +(-13.0306 - 9.46730i) q^{89} +(-14.5554 + 10.5751i) q^{91} -1.58209i q^{93} +(7.66744 - 2.49130i) q^{97} +0.807679 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 6 q^{9} - 6 q^{11} - 10 q^{17} + 10 q^{19} - 4 q^{21} - 40 q^{23} + 4 q^{29} + 6 q^{31} - 10 q^{33} - 10 q^{41} + 40 q^{47} - 56 q^{49} + 16 q^{51} + 60 q^{53} - 36 q^{59} - 12 q^{61} + 10 q^{63}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1500\mathbb{Z}\right)^\times\).

\(n\) \(751\) \(877\) \(1001\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.951057 + 0.309017i −0.549093 + 0.178411i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.78808i 1.43176i −0.698223 0.715880i \(-0.746026\pi\)
0.698223 0.715880i \(-0.253974\pi\)
\(8\) 0 0
\(9\) 0.809017 0.587785i 0.269672 0.195928i
\(10\) 0 0
\(11\) 0.653426 + 0.474742i 0.197015 + 0.143140i 0.681919 0.731427i \(-0.261145\pi\)
−0.484904 + 0.874567i \(0.661145\pi\)
\(12\) 0 0
\(13\) −2.79168 3.84242i −0.774274 1.06570i −0.995891 0.0905626i \(-0.971133\pi\)
0.221617 0.975134i \(-0.428867\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.09262 + 0.355012i 0.264998 + 0.0861032i 0.438503 0.898730i \(-0.355509\pi\)
−0.173504 + 0.984833i \(0.555509\pi\)
\(18\) 0 0
\(19\) −0.00463870 + 0.0142765i −0.00106419 + 0.00327524i −0.951587 0.307379i \(-0.900548\pi\)
0.950523 + 0.310654i \(0.100548\pi\)
\(20\) 0 0
\(21\) 1.17058 + 3.60268i 0.255442 + 0.786169i
\(22\) 0 0
\(23\) −3.68422 + 5.07089i −0.768213 + 1.05735i 0.228274 + 0.973597i \(0.426692\pi\)
−0.996486 + 0.0837569i \(0.973308\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −0.587785 + 0.809017i −0.113119 + 0.155695i
\(28\) 0 0
\(29\) −1.14365 3.51978i −0.212370 0.653607i −0.999330 0.0366030i \(-0.988346\pi\)
0.786960 0.617004i \(-0.211654\pi\)
\(30\) 0 0
\(31\) −0.488893 + 1.50466i −0.0878078 + 0.270245i −0.985313 0.170760i \(-0.945378\pi\)
0.897505 + 0.441005i \(0.145378\pi\)
\(32\) 0 0
\(33\) −0.768148 0.249586i −0.133717 0.0434474i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.02074 6.91045i −0.825404 1.13607i −0.988761 0.149504i \(-0.952232\pi\)
0.163357 0.986567i \(-0.447768\pi\)
\(38\) 0 0
\(39\) 3.84242 + 2.79168i 0.615280 + 0.447027i
\(40\) 0 0
\(41\) −9.30279 + 6.75887i −1.45285 + 1.05556i −0.467697 + 0.883889i \(0.654916\pi\)
−0.985155 + 0.171669i \(0.945084\pi\)
\(42\) 0 0
\(43\) 10.2458i 1.56247i 0.624238 + 0.781234i \(0.285409\pi\)
−0.624238 + 0.781234i \(0.714591\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.500524 + 0.162630i −0.0730090 + 0.0237221i −0.345294 0.938495i \(-0.612221\pi\)
0.272285 + 0.962217i \(0.412221\pi\)
\(48\) 0 0
\(49\) −7.34957 −1.04994
\(50\) 0 0
\(51\) −1.14884 −0.160870
\(52\) 0 0
\(53\) 2.80539 0.911527i 0.385350 0.125208i −0.109934 0.993939i \(-0.535064\pi\)
0.495284 + 0.868731i \(0.335064\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.0150112i 0.00198828i
\(58\) 0 0
\(59\) 9.25803 6.72635i 1.20529 0.875696i 0.210498 0.977594i \(-0.432492\pi\)
0.994795 + 0.101898i \(0.0324916\pi\)
\(60\) 0 0
\(61\) −2.54203 1.84689i −0.325473 0.236470i 0.413034 0.910716i \(-0.364469\pi\)
−0.738507 + 0.674245i \(0.764469\pi\)
\(62\) 0 0
\(63\) −2.22658 3.06462i −0.280523 0.386106i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −12.6312 4.10412i −1.54314 0.501398i −0.590901 0.806744i \(-0.701228\pi\)
−0.952241 + 0.305346i \(0.901228\pi\)
\(68\) 0 0
\(69\) 1.93691 5.96119i 0.233176 0.717643i
\(70\) 0 0
\(71\) −1.51826 4.67271i −0.180184 0.554549i 0.819648 0.572867i \(-0.194169\pi\)
−0.999832 + 0.0183179i \(0.994169\pi\)
\(72\) 0 0
\(73\) −2.75001 + 3.78507i −0.321865 + 0.443009i −0.939035 0.343820i \(-0.888279\pi\)
0.617171 + 0.786829i \(0.288279\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.79836 2.47523i 0.204942 0.282079i
\(78\) 0 0
\(79\) −2.86507 8.81777i −0.322345 0.992076i −0.972625 0.232381i \(-0.925348\pi\)
0.650280 0.759695i \(-0.274652\pi\)
\(80\) 0 0
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) 0 0
\(83\) 1.35402 + 0.439947i 0.148623 + 0.0482904i 0.382384 0.924004i \(-0.375103\pi\)
−0.233761 + 0.972294i \(0.575103\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.17534 + 2.99410i 0.233221 + 0.321002i
\(88\) 0 0
\(89\) −13.0306 9.46730i −1.38124 1.00353i −0.996763 0.0803985i \(-0.974381\pi\)
−0.384480 0.923133i \(-0.625619\pi\)
\(90\) 0 0
\(91\) −14.5554 + 10.5751i −1.52582 + 1.10857i
\(92\) 0 0
\(93\) 1.58209i 0.164055i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.66744 2.49130i 0.778511 0.252954i 0.107307 0.994226i \(-0.465777\pi\)
0.671204 + 0.741272i \(0.265777\pi\)
\(98\) 0 0
\(99\) 0.807679 0.0811748
\(100\) 0 0
\(101\) 11.6496 1.15918 0.579590 0.814908i \(-0.303213\pi\)
0.579590 + 0.814908i \(0.303213\pi\)
\(102\) 0 0
\(103\) −17.9216 + 5.82307i −1.76587 + 0.573764i −0.997781 0.0665845i \(-0.978790\pi\)
−0.768084 + 0.640349i \(0.778790\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.3957i 1.39168i 0.718195 + 0.695842i \(0.244969\pi\)
−0.718195 + 0.695842i \(0.755031\pi\)
\(108\) 0 0
\(109\) −4.66144 + 3.38673i −0.446485 + 0.324390i −0.788206 0.615411i \(-0.788990\pi\)
0.341722 + 0.939801i \(0.388990\pi\)
\(110\) 0 0
\(111\) 6.91045 + 5.02074i 0.655911 + 0.476547i
\(112\) 0 0
\(113\) −10.5368 14.5027i −0.991223 1.36430i −0.930559 0.366143i \(-0.880678\pi\)
−0.0606641 0.998158i \(-0.519322\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −4.51704 1.46767i −0.417600 0.135687i
\(118\) 0 0
\(119\) 1.34482 4.13892i 0.123279 0.379414i
\(120\) 0 0
\(121\) −3.19760 9.84120i −0.290691 0.894655i
\(122\) 0 0
\(123\) 6.75887 9.30279i 0.609427 0.838804i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1.34592 1.85250i 0.119431 0.164382i −0.745116 0.666935i \(-0.767606\pi\)
0.864547 + 0.502553i \(0.167606\pi\)
\(128\) 0 0
\(129\) −3.16612 9.74432i −0.278762 0.857940i
\(130\) 0 0
\(131\) −2.17840 + 6.70444i −0.190328 + 0.585769i −0.999999 0.00111420i \(-0.999645\pi\)
0.809671 + 0.586883i \(0.199645\pi\)
\(132\) 0 0
\(133\) 0.0540804 + 0.0175718i 0.00468937 + 0.00152367i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12.8918 17.7441i −1.10142 1.51598i −0.833484 0.552544i \(-0.813657\pi\)
−0.267940 0.963436i \(-0.586343\pi\)
\(138\) 0 0
\(139\) 7.86171 + 5.71187i 0.666822 + 0.484474i 0.868960 0.494883i \(-0.164789\pi\)
−0.202138 + 0.979357i \(0.564789\pi\)
\(140\) 0 0
\(141\) 0.425771 0.309341i 0.0358564 0.0260512i
\(142\) 0 0
\(143\) 3.83607i 0.320788i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 6.98985 2.27114i 0.576513 0.187321i
\(148\) 0 0
\(149\) 13.9712 1.14457 0.572284 0.820056i \(-0.306058\pi\)
0.572284 + 0.820056i \(0.306058\pi\)
\(150\) 0 0
\(151\) −20.1871 −1.64280 −0.821400 0.570352i \(-0.806807\pi\)
−0.821400 + 0.570352i \(0.806807\pi\)
\(152\) 0 0
\(153\) 1.09262 0.355012i 0.0883328 0.0287011i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 7.76546i 0.619751i −0.950777 0.309876i \(-0.899713\pi\)
0.950777 0.309876i \(-0.100287\pi\)
\(158\) 0 0
\(159\) −2.38641 + 1.73383i −0.189255 + 0.137502i
\(160\) 0 0
\(161\) 19.2090 + 13.9561i 1.51388 + 1.09990i
\(162\) 0 0
\(163\) 8.16480 + 11.2379i 0.639517 + 0.880219i 0.998590 0.0530901i \(-0.0169070\pi\)
−0.359073 + 0.933310i \(0.616907\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.75604 + 0.895491i 0.213269 + 0.0692952i 0.413703 0.910412i \(-0.364235\pi\)
−0.200434 + 0.979707i \(0.564235\pi\)
\(168\) 0 0
\(169\) −2.95350 + 9.08992i −0.227192 + 0.699225i
\(170\) 0 0
\(171\) 0.00463870 + 0.0142765i 0.000354730 + 0.00109175i
\(172\) 0 0
\(173\) 8.95423 12.3244i 0.680777 0.937009i −0.319166 0.947699i \(-0.603403\pi\)
0.999943 + 0.0106895i \(0.00340264\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −6.72635 + 9.25803i −0.505583 + 0.695876i
\(178\) 0 0
\(179\) 7.20182 + 22.1649i 0.538290 + 1.65669i 0.736432 + 0.676512i \(0.236509\pi\)
−0.198142 + 0.980173i \(0.563491\pi\)
\(180\) 0 0
\(181\) 5.46913 16.8322i 0.406517 1.25113i −0.513105 0.858326i \(-0.671505\pi\)
0.919622 0.392805i \(-0.128495\pi\)
\(182\) 0 0
\(183\) 2.98833 + 0.970968i 0.220904 + 0.0717760i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.545404 + 0.750685i 0.0398839 + 0.0548955i
\(188\) 0 0
\(189\) 3.06462 + 2.22658i 0.222919 + 0.161960i
\(190\) 0 0
\(191\) −7.57575 + 5.50411i −0.548162 + 0.398263i −0.827107 0.562044i \(-0.810015\pi\)
0.278945 + 0.960307i \(0.410015\pi\)
\(192\) 0 0
\(193\) 18.9309i 1.36268i 0.731969 + 0.681338i \(0.238602\pi\)
−0.731969 + 0.681338i \(0.761398\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −7.17436 + 2.33109i −0.511152 + 0.166083i −0.553226 0.833031i \(-0.686603\pi\)
0.0420739 + 0.999114i \(0.486603\pi\)
\(198\) 0 0
\(199\) −3.58560 −0.254176 −0.127088 0.991891i \(-0.540563\pi\)
−0.127088 + 0.991891i \(0.540563\pi\)
\(200\) 0 0
\(201\) 13.2812 0.936783
\(202\) 0 0
\(203\) −13.3332 + 4.33223i −0.935808 + 0.304063i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 6.26797i 0.435654i
\(208\) 0 0
\(209\) −0.00980868 + 0.00712642i −0.000678480 + 0.000492945i
\(210\) 0 0
\(211\) −1.68674 1.22549i −0.116120 0.0843663i 0.528210 0.849114i \(-0.322864\pi\)
−0.644330 + 0.764748i \(0.722864\pi\)
\(212\) 0 0
\(213\) 2.88790 + 3.97485i 0.197875 + 0.272352i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 5.69977 + 1.85197i 0.386926 + 0.125720i
\(218\) 0 0
\(219\) 1.44577 4.44962i 0.0976960 0.300677i
\(220\) 0 0
\(221\) −1.68613 5.18938i −0.113421 0.349075i
\(222\) 0 0
\(223\) 8.25091 11.3564i 0.552522 0.760481i −0.437830 0.899058i \(-0.644253\pi\)
0.990352 + 0.138577i \(0.0442527\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.48995 2.05074i 0.0988915 0.136112i −0.756704 0.653758i \(-0.773191\pi\)
0.855595 + 0.517646i \(0.173191\pi\)
\(228\) 0 0
\(229\) 5.10687 + 15.7173i 0.337472 + 1.03863i 0.965492 + 0.260434i \(0.0838656\pi\)
−0.628020 + 0.778197i \(0.716134\pi\)
\(230\) 0 0
\(231\) −0.945454 + 2.90981i −0.0622063 + 0.191451i
\(232\) 0 0
\(233\) 25.2228 + 8.19539i 1.65240 + 0.536898i 0.979259 0.202614i \(-0.0649437\pi\)
0.673143 + 0.739512i \(0.264944\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 5.44968 + 7.50084i 0.353995 + 0.487232i
\(238\) 0 0
\(239\) −6.03839 4.38714i −0.390591 0.283781i 0.375107 0.926982i \(-0.377606\pi\)
−0.765698 + 0.643201i \(0.777606\pi\)
\(240\) 0 0
\(241\) −8.33107 + 6.05288i −0.536651 + 0.389900i −0.822840 0.568273i \(-0.807612\pi\)
0.286189 + 0.958173i \(0.407612\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.0678060 0.0220315i 0.00431439 0.00140183i
\(248\) 0 0
\(249\) −1.42370 −0.0902231
\(250\) 0 0
\(251\) 19.5809 1.23593 0.617967 0.786204i \(-0.287956\pi\)
0.617967 + 0.786204i \(0.287956\pi\)
\(252\) 0 0
\(253\) −4.81473 + 1.56440i −0.302699 + 0.0983530i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5.98030i 0.373041i 0.982451 + 0.186520i \(0.0597210\pi\)
−0.982451 + 0.186520i \(0.940279\pi\)
\(258\) 0 0
\(259\) −26.1774 + 19.0190i −1.62658 + 1.18178i
\(260\) 0 0
\(261\) −2.99410 2.17534i −0.185330 0.134650i
\(262\) 0 0
\(263\) −3.56808 4.91104i −0.220017 0.302827i 0.684713 0.728813i \(-0.259928\pi\)
−0.904730 + 0.425985i \(0.859928\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 15.3184 + 4.97725i 0.937472 + 0.304603i
\(268\) 0 0
\(269\) −2.97152 + 9.14540i −0.181177 + 0.557605i −0.999862 0.0166382i \(-0.994704\pi\)
0.818685 + 0.574243i \(0.194704\pi\)
\(270\) 0 0
\(271\) −9.40263 28.9383i −0.571169 1.75788i −0.648868 0.760901i \(-0.724757\pi\)
0.0776990 0.996977i \(-0.475243\pi\)
\(272\) 0 0
\(273\) 10.5751 14.5554i 0.640036 0.880934i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 4.23436 5.82810i 0.254418 0.350176i −0.662634 0.748943i \(-0.730562\pi\)
0.917052 + 0.398767i \(0.130562\pi\)
\(278\) 0 0
\(279\) 0.488893 + 1.50466i 0.0292693 + 0.0900815i
\(280\) 0 0
\(281\) 9.20758 28.3380i 0.549278 1.69050i −0.161316 0.986903i \(-0.551574\pi\)
0.710594 0.703602i \(-0.248426\pi\)
\(282\) 0 0
\(283\) 8.39215 + 2.72677i 0.498861 + 0.162090i 0.547631 0.836720i \(-0.315530\pi\)
−0.0487693 + 0.998810i \(0.515530\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 25.6032 + 35.2397i 1.51131 + 2.08014i
\(288\) 0 0
\(289\) −12.6855 9.21656i −0.746207 0.542151i
\(290\) 0 0
\(291\) −6.52232 + 4.73874i −0.382345 + 0.277790i
\(292\) 0 0
\(293\) 4.20743i 0.245800i −0.992419 0.122900i \(-0.960780\pi\)
0.992419 0.122900i \(-0.0392195\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −0.768148 + 0.249586i −0.0445725 + 0.0144825i
\(298\) 0 0
\(299\) 29.7697 1.72163
\(300\) 0 0
\(301\) 38.8119 2.23708
\(302\) 0 0
\(303\) −11.0794 + 3.59993i −0.636497 + 0.206811i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 4.41109i 0.251754i −0.992046 0.125877i \(-0.959825\pi\)
0.992046 0.125877i \(-0.0401745\pi\)
\(308\) 0 0
\(309\) 15.2450 11.0761i 0.867258 0.630100i
\(310\) 0 0
\(311\) 5.11346 + 3.71514i 0.289958 + 0.210667i 0.723249 0.690587i \(-0.242648\pi\)
−0.433291 + 0.901254i \(0.642648\pi\)
\(312\) 0 0
\(313\) 9.00753 + 12.3978i 0.509136 + 0.700765i 0.983773 0.179416i \(-0.0574208\pi\)
−0.474638 + 0.880181i \(0.657421\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.2723 + 6.58686i 1.13860 + 0.369955i 0.816840 0.576864i \(-0.195724\pi\)
0.321765 + 0.946820i \(0.395724\pi\)
\(318\) 0 0
\(319\) 0.923699 2.84285i 0.0517172 0.159169i
\(320\) 0 0
\(321\) −4.44851 13.6911i −0.248292 0.764164i
\(322\) 0 0
\(323\) −0.0101366 + 0.0139519i −0.000564018 + 0.000776304i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 3.38673 4.66144i 0.187287 0.257778i
\(328\) 0 0
\(329\) 0.616057 + 1.89603i 0.0339643 + 0.104531i
\(330\) 0 0
\(331\) 6.12237 18.8427i 0.336516 1.03569i −0.629454 0.777037i \(-0.716722\pi\)
0.965970 0.258652i \(-0.0832785\pi\)
\(332\) 0 0
\(333\) −8.12372 2.63956i −0.445177 0.144647i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −5.89780 8.11762i −0.321274 0.442195i 0.617582 0.786507i \(-0.288112\pi\)
−0.938856 + 0.344311i \(0.888112\pi\)
\(338\) 0 0
\(339\) 14.5027 + 10.5368i 0.787680 + 0.572283i
\(340\) 0 0
\(341\) −1.03378 + 0.751085i −0.0559823 + 0.0406735i
\(342\) 0 0
\(343\) 1.32419i 0.0714997i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 13.1885 4.28519i 0.707994 0.230041i 0.0671837 0.997741i \(-0.478599\pi\)
0.640810 + 0.767700i \(0.278599\pi\)
\(348\) 0 0
\(349\) −27.2533 −1.45883 −0.729417 0.684069i \(-0.760209\pi\)
−0.729417 + 0.684069i \(0.760209\pi\)
\(350\) 0 0
\(351\) 4.74950 0.253509
\(352\) 0 0
\(353\) 11.8063 3.83609i 0.628384 0.204174i 0.0225248 0.999746i \(-0.492830\pi\)
0.605859 + 0.795572i \(0.292830\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 4.35192i 0.230328i
\(358\) 0 0
\(359\) −15.3910 + 11.1823i −0.812308 + 0.590177i −0.914499 0.404588i \(-0.867415\pi\)
0.102191 + 0.994765i \(0.467415\pi\)
\(360\) 0 0
\(361\) 15.3711 + 11.1678i 0.809007 + 0.587778i
\(362\) 0 0
\(363\) 6.08220 + 8.37143i 0.319233 + 0.439386i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −0.927465 0.301352i −0.0484133 0.0157304i 0.284710 0.958614i \(-0.408103\pi\)
−0.333124 + 0.942883i \(0.608103\pi\)
\(368\) 0 0
\(369\) −3.55335 + 10.9361i −0.184980 + 0.569310i
\(370\) 0 0
\(371\) −3.45294 10.6271i −0.179268 0.551729i
\(372\) 0 0
\(373\) 11.0341 15.1871i 0.571324 0.786360i −0.421387 0.906881i \(-0.638457\pi\)
0.992711 + 0.120521i \(0.0384566\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10.3318 + 14.2205i −0.532114 + 0.732392i
\(378\) 0 0
\(379\) 1.06536 + 3.27883i 0.0547236 + 0.168422i 0.974683 0.223592i \(-0.0717784\pi\)
−0.919959 + 0.392014i \(0.871778\pi\)
\(380\) 0 0
\(381\) −0.707591 + 2.17774i −0.0362510 + 0.111569i
\(382\) 0 0
\(383\) 25.9681 + 8.43755i 1.32691 + 0.431139i 0.884862 0.465854i \(-0.154253\pi\)
0.442046 + 0.896992i \(0.354253\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 6.02232 + 8.28902i 0.306132 + 0.421354i
\(388\) 0 0
\(389\) 7.94232 + 5.77044i 0.402692 + 0.292573i 0.770637 0.637275i \(-0.219938\pi\)
−0.367945 + 0.929848i \(0.619938\pi\)
\(390\) 0 0
\(391\) −5.82567 + 4.23259i −0.294617 + 0.214051i
\(392\) 0 0
\(393\) 7.04946i 0.355598i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −11.0447 + 3.58865i −0.554319 + 0.180109i −0.572763 0.819721i \(-0.694129\pi\)
0.0184443 + 0.999830i \(0.494129\pi\)
\(398\) 0 0
\(399\) −0.0568635 −0.00284674
\(400\) 0 0
\(401\) −25.4145 −1.26914 −0.634570 0.772865i \(-0.718823\pi\)
−0.634570 + 0.772865i \(0.718823\pi\)
\(402\) 0 0
\(403\) 7.14637 2.32200i 0.355986 0.115667i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.89902i 0.341972i
\(408\) 0 0
\(409\) 13.9568 10.1402i 0.690117 0.501399i −0.186582 0.982439i \(-0.559741\pi\)
0.876699 + 0.481040i \(0.159741\pi\)
\(410\) 0 0
\(411\) 17.7441 + 12.8918i 0.875251 + 0.635907i
\(412\) 0 0
\(413\) −25.4800 35.0702i −1.25379 1.72569i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −9.24200 3.00291i −0.452583 0.147053i
\(418\) 0 0
\(419\) 6.31956 19.4496i 0.308731 0.950176i −0.669528 0.742787i \(-0.733503\pi\)
0.978259 0.207389i \(-0.0664965\pi\)
\(420\) 0 0
\(421\) −6.46100 19.8849i −0.314890 0.969132i −0.975800 0.218666i \(-0.929829\pi\)
0.660910 0.750466i \(-0.270171\pi\)
\(422\) 0 0
\(423\) −0.309341 + 0.425771i −0.0150407 + 0.0207017i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −6.99618 + 9.62941i −0.338569 + 0.466000i
\(428\) 0 0
\(429\) 1.18541 + 3.64832i 0.0572321 + 0.176142i
\(430\) 0 0
\(431\) −2.85900 + 8.79908i −0.137713 + 0.423837i −0.996002 0.0893294i \(-0.971528\pi\)
0.858289 + 0.513166i \(0.171528\pi\)
\(432\) 0 0
\(433\) −0.223727 0.0726932i −0.0107516 0.00349341i 0.303636 0.952788i \(-0.401799\pi\)
−0.314388 + 0.949295i \(0.601799\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.0553044 0.0761199i −0.00264557 0.00364131i
\(438\) 0 0
\(439\) 25.2424 + 18.3396i 1.20475 + 0.875304i 0.994744 0.102396i \(-0.0326509\pi\)
0.210008 + 0.977700i \(0.432651\pi\)
\(440\) 0 0
\(441\) −5.94593 + 4.31997i −0.283139 + 0.205713i
\(442\) 0 0
\(443\) 24.3862i 1.15862i 0.815106 + 0.579311i \(0.196678\pi\)
−0.815106 + 0.579311i \(0.803322\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −13.2874 + 4.31735i −0.628474 + 0.204203i
\(448\) 0 0
\(449\) −23.9483 −1.13019 −0.565096 0.825025i \(-0.691161\pi\)
−0.565096 + 0.825025i \(0.691161\pi\)
\(450\) 0 0
\(451\) −9.28740 −0.437327
\(452\) 0 0
\(453\) 19.1990 6.23815i 0.902050 0.293094i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.91244i 0.183016i −0.995804 0.0915082i \(-0.970831\pi\)
0.995804 0.0915082i \(-0.0291688\pi\)
\(458\) 0 0
\(459\) −0.929435 + 0.675274i −0.0433823 + 0.0315191i
\(460\) 0 0
\(461\) 2.09170 + 1.51971i 0.0974202 + 0.0707799i 0.635429 0.772159i \(-0.280823\pi\)
−0.538009 + 0.842939i \(0.680823\pi\)
\(462\) 0 0
\(463\) −12.8777 17.7247i −0.598478 0.823734i 0.397090 0.917780i \(-0.370020\pi\)
−0.995568 + 0.0940453i \(0.970020\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −7.79561 2.53295i −0.360738 0.117211i 0.123040 0.992402i \(-0.460736\pi\)
−0.483778 + 0.875191i \(0.660736\pi\)
\(468\) 0 0
\(469\) −15.5467 + 47.8479i −0.717881 + 2.20941i
\(470\) 0 0
\(471\) 2.39966 + 7.38539i 0.110570 + 0.340301i
\(472\) 0 0
\(473\) −4.86410 + 6.69486i −0.223652 + 0.307830i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.73383 2.38641i 0.0793865 0.109266i
\(478\) 0 0
\(479\) 1.90100 + 5.85067i 0.0868588 + 0.267324i 0.985047 0.172288i \(-0.0551160\pi\)
−0.898188 + 0.439612i \(0.855116\pi\)
\(480\) 0 0
\(481\) −12.5366 + 38.5836i −0.571618 + 1.75926i
\(482\) 0 0
\(483\) −22.5815 7.33717i −1.02749 0.333853i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 3.69230 + 5.08201i 0.167314 + 0.230288i 0.884438 0.466658i \(-0.154542\pi\)
−0.717124 + 0.696945i \(0.754542\pi\)
\(488\) 0 0
\(489\) −11.2379 8.16480i −0.508195 0.369225i
\(490\) 0 0
\(491\) 2.22591 1.61722i 0.100454 0.0729840i −0.536424 0.843948i \(-0.680225\pi\)
0.636878 + 0.770964i \(0.280225\pi\)
\(492\) 0 0
\(493\) 4.25178i 0.191490i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −17.7006 + 5.75128i −0.793982 + 0.257980i
\(498\) 0 0
\(499\) 16.4263 0.735341 0.367670 0.929956i \(-0.380156\pi\)
0.367670 + 0.929956i \(0.380156\pi\)
\(500\) 0 0
\(501\) −2.89787 −0.129467
\(502\) 0 0
\(503\) 11.6860 3.79701i 0.521053 0.169300i −0.0366701 0.999327i \(-0.511675\pi\)
0.557723 + 0.830027i \(0.311675\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 9.55771i 0.424473i
\(508\) 0 0
\(509\) −8.50277 + 6.17763i −0.376879 + 0.273818i −0.760058 0.649856i \(-0.774829\pi\)
0.383179 + 0.923674i \(0.374829\pi\)
\(510\) 0 0
\(511\) 14.3382 + 10.4173i 0.634283 + 0.460833i
\(512\) 0 0
\(513\) −0.00882334 0.0121443i −0.000389560 0.000536183i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −0.404263 0.131353i −0.0177795 0.00577690i
\(518\) 0 0
\(519\) −4.70752 + 14.4882i −0.206637 + 0.635963i
\(520\) 0 0
\(521\) −2.41778 7.44115i −0.105925 0.326003i 0.884022 0.467446i \(-0.154826\pi\)
−0.989946 + 0.141443i \(0.954826\pi\)
\(522\) 0 0
\(523\) 12.9592 17.8368i 0.566665 0.779947i −0.425490 0.904963i \(-0.639898\pi\)
0.992155 + 0.125016i \(0.0398982\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.06834 + 1.47045i −0.0465378 + 0.0640538i
\(528\) 0 0
\(529\) −5.03308 15.4902i −0.218830 0.673489i
\(530\) 0 0
\(531\) 3.53625 10.8835i 0.153460 0.472302i
\(532\) 0 0
\(533\) 51.9409 + 16.8766i 2.24981 + 0.731007i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −13.6987 18.8546i −0.591142 0.813637i
\(538\) 0 0
\(539\) −4.80240 3.48915i −0.206854 0.150288i
\(540\) 0 0
\(541\) −10.0860 + 7.32791i −0.433631 + 0.315052i −0.783099 0.621897i \(-0.786362\pi\)
0.349468 + 0.936948i \(0.386362\pi\)
\(542\) 0 0
\(543\) 17.6985i 0.759514i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 2.39292 0.777505i 0.102314 0.0332437i −0.257413 0.966302i \(-0.582870\pi\)
0.359726 + 0.933058i \(0.382870\pi\)
\(548\) 0 0
\(549\) −3.14212 −0.134102
\(550\) 0 0
\(551\) 0.0555550 0.00236672
\(552\) 0 0
\(553\) −33.4024 + 10.8531i −1.42042 + 0.461521i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0.262544i 0.0111244i 0.999985 + 0.00556218i \(0.00177051\pi\)
−0.999985 + 0.00556218i \(0.998229\pi\)
\(558\) 0 0
\(559\) 39.3687 28.6030i 1.66512 1.20978i
\(560\) 0 0
\(561\) −0.750685 0.545404i −0.0316939 0.0230270i
\(562\) 0 0
\(563\) −19.0928 26.2790i −0.804666 1.10753i −0.992125 0.125255i \(-0.960025\pi\)
0.187459 0.982272i \(-0.439975\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −3.60268 1.17058i −0.151298 0.0491598i
\(568\) 0 0
\(569\) 11.9892 36.8991i 0.502615 1.54689i −0.302128 0.953267i \(-0.597697\pi\)
0.804743 0.593623i \(-0.202303\pi\)
\(570\) 0 0
\(571\) −11.0258 33.9338i −0.461414 1.42009i −0.863437 0.504456i \(-0.831693\pi\)
0.402023 0.915629i \(-0.368307\pi\)
\(572\) 0 0
\(573\) 5.50411 7.57575i 0.229937 0.316482i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 14.8962 20.5029i 0.620139 0.853548i −0.377224 0.926122i \(-0.623121\pi\)
0.997363 + 0.0725741i \(0.0231214\pi\)
\(578\) 0 0
\(579\) −5.84997 18.0044i −0.243116 0.748236i
\(580\) 0 0
\(581\) 1.66655 5.12913i 0.0691403 0.212792i
\(582\) 0 0
\(583\) 2.26586 + 0.736221i 0.0938422 + 0.0304912i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0.303103 + 0.417186i 0.0125104 + 0.0172191i 0.815226 0.579142i \(-0.196612\pi\)
−0.802716 + 0.596362i \(0.796612\pi\)
\(588\) 0 0
\(589\) −0.0192134 0.0139593i −0.000791673 0.000575184i
\(590\) 0 0
\(591\) 6.10288 4.43400i 0.251039 0.182390i
\(592\) 0 0
\(593\) 7.14389i 0.293364i 0.989184 + 0.146682i \(0.0468595\pi\)
−0.989184 + 0.146682i \(0.953141\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 3.41011 1.10801i 0.139566 0.0453479i
\(598\) 0 0
\(599\) −23.6627 −0.966833 −0.483417 0.875390i \(-0.660604\pi\)
−0.483417 + 0.875390i \(0.660604\pi\)
\(600\) 0 0
\(601\) −7.98023 −0.325520 −0.162760 0.986666i \(-0.552040\pi\)
−0.162760 + 0.986666i \(0.552040\pi\)
\(602\) 0 0
\(603\) −12.6312 + 4.10412i −0.514381 + 0.167133i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 17.2004i 0.698144i 0.937096 + 0.349072i \(0.113503\pi\)
−0.937096 + 0.349072i \(0.886497\pi\)
\(608\) 0 0
\(609\) 11.3419 8.24038i 0.459597 0.333917i
\(610\) 0 0
\(611\) 2.02220 + 1.46921i 0.0818094 + 0.0594380i
\(612\) 0 0
\(613\) −8.67810 11.9444i −0.350505 0.482429i 0.596968 0.802265i \(-0.296372\pi\)
−0.947473 + 0.319836i \(0.896372\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −14.7142 4.78092i −0.592370 0.192473i −0.00253529 0.999997i \(-0.500807\pi\)
−0.589834 + 0.807524i \(0.700807\pi\)
\(618\) 0 0
\(619\) 11.5792 35.6370i 0.465406 1.43237i −0.393066 0.919510i \(-0.628586\pi\)
0.858471 0.512861i \(-0.171414\pi\)
\(620\) 0 0
\(621\) −1.93691 5.96119i −0.0777254 0.239214i
\(622\) 0 0
\(623\) −35.8629 + 49.3611i −1.43682 + 1.97761i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0.00712642 0.00980868i 0.000284602 0.000391721i
\(628\) 0 0
\(629\) −3.03244 9.33290i −0.120911 0.372127i
\(630\) 0 0
\(631\) −0.468691 + 1.44248i −0.0186583 + 0.0574244i −0.959952 0.280164i \(-0.909611\pi\)
0.941294 + 0.337588i \(0.109611\pi\)
\(632\) 0 0
\(633\) 1.98289 + 0.644279i 0.0788126 + 0.0256078i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 20.5177 + 28.2401i 0.812940 + 1.11892i
\(638\) 0 0
\(639\) −3.97485 2.88790i −0.157243 0.114243i
\(640\) 0 0
\(641\) 3.12903 2.27338i 0.123589 0.0897930i −0.524273 0.851550i \(-0.675663\pi\)
0.647863 + 0.761757i \(0.275663\pi\)
\(642\) 0 0
\(643\) 23.2212i 0.915756i 0.889015 + 0.457878i \(0.151390\pi\)
−0.889015 + 0.457878i \(0.848610\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24.8795 8.08384i 0.978114 0.317808i 0.224027 0.974583i \(-0.428080\pi\)
0.754087 + 0.656775i \(0.228080\pi\)
\(648\) 0 0
\(649\) 9.24271 0.362808
\(650\) 0 0
\(651\) −5.99309 −0.234888
\(652\) 0 0
\(653\) 8.13602 2.64355i 0.318387 0.103450i −0.145464 0.989364i \(-0.546467\pi\)
0.463851 + 0.885913i \(0.346467\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 4.67860i 0.182530i
\(658\) 0 0
\(659\) −33.9288 + 24.6507i −1.32168 + 0.960255i −0.321767 + 0.946819i \(0.604277\pi\)
−0.999910 + 0.0134358i \(0.995723\pi\)
\(660\) 0 0
\(661\) 14.1713 + 10.2961i 0.551201 + 0.400471i 0.828228 0.560391i \(-0.189349\pi\)
−0.277027 + 0.960862i \(0.589349\pi\)
\(662\) 0 0
\(663\) 3.20721 + 4.41435i 0.124558 + 0.171439i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 22.0619 + 7.16833i 0.854239 + 0.277559i
\(668\) 0 0
\(669\) −4.33776 + 13.3503i −0.167708 + 0.516151i
\(670\) 0 0
\(671\) −0.784230 2.41361i −0.0302749 0.0931765i
\(672\) 0 0
\(673\) −17.1017 + 23.5385i −0.659223 + 0.907343i −0.999455 0.0329986i \(-0.989494\pi\)
0.340232 + 0.940341i \(0.389494\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17.5667 24.1785i 0.675143 0.929255i −0.324720 0.945810i \(-0.605270\pi\)
0.999863 + 0.0165555i \(0.00527003\pi\)
\(678\) 0 0
\(679\) −9.43726 29.0449i −0.362169 1.11464i
\(680\) 0 0
\(681\) −0.783313 + 2.41079i −0.0300166 + 0.0923817i
\(682\) 0 0
\(683\) −35.3984 11.5016i −1.35448 0.440097i −0.460284 0.887772i \(-0.652252\pi\)
−0.894197 + 0.447674i \(0.852252\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −9.71385 13.3700i −0.370607 0.510096i
\(688\) 0 0
\(689\) −11.3342 8.23481i −0.431800 0.313721i
\(690\) 0 0
\(691\) −13.6397 + 9.90980i −0.518877 + 0.376986i −0.816181 0.577797i \(-0.803913\pi\)
0.297303 + 0.954783i \(0.403913\pi\)
\(692\) 0 0
\(693\) 3.05955i 0.116223i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −12.5639 + 4.08225i −0.475890 + 0.154626i
\(698\) 0 0
\(699\) −26.5208 −1.00311
\(700\) 0 0
\(701\) −23.3495 −0.881898 −0.440949 0.897532i \(-0.645358\pi\)
−0.440949 + 0.897532i \(0.645358\pi\)
\(702\) 0 0
\(703\) 0.121947 0.0396228i 0.00459930 0.00149440i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 44.1297i 1.65967i
\(708\) 0 0
\(709\) 15.4019 11.1901i 0.578429 0.420253i −0.259728 0.965682i \(-0.583633\pi\)
0.838157 + 0.545428i \(0.183633\pi\)
\(710\) 0 0
\(711\) −7.50084 5.44968i −0.281303 0.204379i
\(712\) 0 0
\(713\) −5.82877 8.02261i −0.218289 0.300449i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 7.09855 + 2.30646i 0.265100 + 0.0861363i
\(718\) 0 0
\(719\) 4.55488 14.0185i 0.169868 0.522801i −0.829494 0.558516i \(-0.811371\pi\)
0.999362 + 0.0357149i \(0.0113708\pi\)
\(720\) 0 0
\(721\) 22.0583 + 67.8884i 0.821493 + 2.52830i
\(722\) 0 0
\(723\) 6.05288 8.33107i 0.225109 0.309836i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −17.6698 + 24.3204i −0.655336 + 0.901993i −0.999316 0.0369839i \(-0.988225\pi\)
0.343979 + 0.938977i \(0.388225\pi\)
\(728\) 0 0
\(729\) −0.309017 0.951057i −0.0114451 0.0352243i
\(730\) 0 0
\(731\) −3.63738 + 11.1947i −0.134533 + 0.414051i
\(732\) 0 0
\(733\) −21.5355 6.99732i −0.795433 0.258452i −0.117017 0.993130i \(-0.537333\pi\)
−0.678416 + 0.734678i \(0.737333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.30514 8.67828i −0.232253 0.319668i
\(738\) 0 0
\(739\) −20.7764 15.0949i −0.764272 0.555276i 0.135946 0.990716i \(-0.456593\pi\)
−0.900218 + 0.435440i \(0.856593\pi\)
\(740\) 0 0
\(741\) −0.0576792 + 0.0419064i −0.00211890 + 0.00153947i
\(742\) 0 0
\(743\) 24.9796i 0.916411i −0.888846 0.458205i \(-0.848492\pi\)
0.888846 0.458205i \(-0.151508\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.35402 0.439947i 0.0495409 0.0160968i
\(748\) 0 0
\(749\) 54.5321 1.99256
\(750\) 0 0
\(751\) 17.9383 0.654580 0.327290 0.944924i \(-0.393865\pi\)
0.327290 + 0.944924i \(0.393865\pi\)
\(752\) 0 0
\(753\) −18.6225 + 6.05083i −0.678643 + 0.220504i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 9.91474i 0.360357i 0.983634 + 0.180179i \(0.0576676\pi\)
−0.983634 + 0.180179i \(0.942332\pi\)
\(758\) 0 0
\(759\) 4.09565 2.97566i 0.148663 0.108010i
\(760\) 0 0
\(761\) 25.6076 + 18.6050i 0.928273 + 0.674430i 0.945569 0.325420i \(-0.105506\pi\)
−0.0172961 + 0.999850i \(0.505506\pi\)
\(762\) 0 0
\(763\) 12.8292 + 17.6579i 0.464449 + 0.639259i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −51.6910 16.7954i −1.86645 0.606447i
\(768\) 0 0
\(769\) −6.91430 + 21.2800i −0.249336 + 0.767377i 0.745557 + 0.666442i \(0.232184\pi\)
−0.994893 + 0.100935i \(0.967816\pi\)
\(770\) 0 0
\(771\) −1.84801 5.68760i −0.0665546 0.204834i
\(772\) 0 0
\(773\) −28.1148 + 38.6967i −1.01122 + 1.39182i −0.0930367 + 0.995663i \(0.529657\pi\)
−0.918182 + 0.396160i \(0.870343\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 19.0190 26.1774i 0.682302 0.939108i
\(778\) 0 0
\(779\) −0.0533399 0.164163i −0.00191110 0.00588176i
\(780\) 0 0
\(781\) 1.22626 3.77405i 0.0438792 0.135046i
\(782\) 0 0
\(783\) 3.51978 + 1.14365i 0.125787 + 0.0408706i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −16.2038 22.3026i −0.577603 0.795002i 0.415827 0.909444i \(-0.363492\pi\)
−0.993430 + 0.114442i \(0.963492\pi\)
\(788\) 0 0
\(789\) 4.91104 + 3.56808i 0.174838 + 0.127027i
\(790\) 0 0
\(791\) −54.9375 + 39.9144i −1.95335 + 1.41919i
\(792\) 0 0
\(793\) 14.9235i 0.529948i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −21.9712 + 7.13887i −0.778260 + 0.252872i −0.671097 0.741370i \(-0.734177\pi\)
−0.107163 + 0.994241i \(0.534177\pi\)
\(798\) 0 0
\(799\) −0.604617 −0.0213898
\(800\) 0 0
\(801\) −16.1067 −0.569103
\(802\) 0 0
\(803\) −3.59386 + 1.16772i −0.126825 + 0.0412078i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 9.61605i 0.338501i
\(808\) 0 0
\(809\) −1.36960 + 0.995071i −0.0481525 + 0.0349848i −0.611601 0.791166i \(-0.709474\pi\)
0.563449 + 0.826151i \(0.309474\pi\)
\(810\) 0 0
\(811\) −16.6435 12.0922i −0.584434 0.424616i 0.255886 0.966707i \(-0.417633\pi\)
−0.840320 + 0.542091i \(0.817633\pi\)
\(812\) 0 0
\(813\) 17.8849 + 24.6164i 0.627250 + 0.863335i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −0.146274 0.0475272i −0.00511746 0.00166277i
\(818\) 0 0
\(819\) −5.55967 + 17.1109i −0.194271 + 0.597904i
\(820\) 0 0
\(821\) −14.2235 43.7754i −0.496403 1.52777i −0.814759 0.579800i \(-0.803131\pi\)
0.318356 0.947971i \(-0.396869\pi\)
\(822\) 0 0
\(823\) 32.9082 45.2942i 1.14711 1.57886i 0.396605 0.917990i \(-0.370188\pi\)
0.750502 0.660868i \(-0.229812\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −12.1319 + 16.6981i −0.421866 + 0.580648i −0.966062 0.258309i \(-0.916835\pi\)
0.544196 + 0.838958i \(0.316835\pi\)
\(828\) 0 0
\(829\) 0.599179 + 1.84408i 0.0208103 + 0.0640476i 0.960922 0.276818i \(-0.0892799\pi\)
−0.940112 + 0.340866i \(0.889280\pi\)
\(830\) 0 0
\(831\) −2.22614 + 6.85134i −0.0772238 + 0.237670i
\(832\) 0 0
\(833\) −8.03026 2.60919i −0.278232 0.0904030i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −0.929930 1.27994i −0.0321431 0.0442412i
\(838\) 0 0
\(839\) 42.2783 + 30.7170i 1.45961 + 1.06047i 0.983464 + 0.181102i \(0.0579665\pi\)
0.476146 + 0.879366i \(0.342034\pi\)
\(840\) 0 0
\(841\) 12.3806 8.99501i 0.426916 0.310173i
\(842\) 0 0
\(843\) 29.7964i 1.02624i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −37.2793 + 12.1128i −1.28093 + 0.416200i
\(848\) 0 0
\(849\) −8.82402 −0.302840
\(850\) 0 0
\(851\) 53.5397 1.83532
\(852\) 0 0
\(853\) 16.7010 5.42649i 0.571832 0.185799i −0.00880614 0.999961i \(-0.502803\pi\)
0.580638 + 0.814162i \(0.302803\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 50.9890i 1.74175i −0.491503 0.870876i \(-0.663552\pi\)
0.491503 0.870876i \(-0.336448\pi\)
\(858\) 0 0
\(859\) 15.0749 10.9525i 0.514349 0.373696i −0.300122 0.953901i \(-0.597027\pi\)
0.814471 + 0.580205i \(0.197027\pi\)
\(860\) 0 0
\(861\) −35.2397 25.6032i −1.20097 0.872553i
\(862\) 0 0
\(863\) −0.171716 0.236347i −0.00584529 0.00804536i 0.806084 0.591801i \(-0.201583\pi\)
−0.811930 + 0.583755i \(0.801583\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 14.9127 + 4.84543i 0.506462 + 0.164560i
\(868\) 0 0
\(869\) 2.31405 7.12192i 0.0784989 0.241595i
\(870\) 0 0
\(871\) 19.4925 + 59.9917i 0.660477 + 2.03274i
\(872\) 0 0
\(873\) 4.73874 6.52232i 0.160382 0.220747i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 22.3126 30.7106i 0.753442 1.03702i −0.244289 0.969702i \(-0.578555\pi\)
0.997731 0.0673215i \(-0.0214453\pi\)
\(878\) 0 0
\(879\) 1.30017 + 4.00150i 0.0438535 + 0.134967i
\(880\) 0 0
\(881\) −11.3378 + 34.8942i −0.381981 + 1.17562i 0.556666 + 0.830736i \(0.312080\pi\)
−0.938647 + 0.344879i \(0.887920\pi\)
\(882\) 0 0
\(883\) −21.5128 6.98993i −0.723964 0.235230i −0.0762228 0.997091i \(-0.524286\pi\)
−0.647741 + 0.761861i \(0.724286\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −14.3643 19.7708i −0.482306 0.663838i 0.496640 0.867957i \(-0.334567\pi\)
−0.978946 + 0.204119i \(0.934567\pi\)
\(888\) 0 0
\(889\) −7.01741 5.09845i −0.235356 0.170996i
\(890\) 0 0
\(891\) 0.653426 0.474742i 0.0218906 0.0159044i
\(892\) 0 0
\(893\) 0.00790011i 0.000264367i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −28.3126 + 9.19934i −0.945332 + 0.307157i
\(898\) 0 0
\(899\) 5.85519 0.195281
\(900\) 0 0
\(901\) 3.38882 0.112898
\(902\) 0 0
\(903\) −36.9123 + 11.9935i −1.22836 + 0.399120i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 32.7792i 1.08842i −0.838950 0.544208i \(-0.816830\pi\)
0.838950 0.544208i \(-0.183170\pi\)
\(908\) 0 0
\(909\) 9.42474 6.84747i 0.312599 0.227116i
\(910\) 0 0
\(911\) −22.0778 16.0405i −0.731470 0.531444i 0.158558 0.987350i \(-0.449315\pi\)
−0.890028 + 0.455906i \(0.849315\pi\)
\(912\) 0 0
\(913\) 0.675888 + 0.930280i 0.0223686 + 0.0307878i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 25.3970 + 8.25197i 0.838681 + 0.272504i
\(918\) 0 0
\(919\) 12.8923 39.6783i 0.425277 1.30887i −0.477453 0.878658i \(-0.658440\pi\)
0.902729 0.430209i \(-0.141560\pi\)
\(920\) 0 0
\(921\) 1.36310 + 4.19520i 0.0449158 + 0.138236i
\(922\) 0 0
\(923\) −13.7161 + 18.8785i −0.451469 + 0.621394i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −11.0761 + 15.2450i −0.363788 + 0.500711i
\(928\) 0 0
\(929\) 10.4151 + 32.0542i 0.341707 + 1.05167i 0.963323 + 0.268344i \(0.0864763\pi\)
−0.621616 + 0.783322i \(0.713524\pi\)
\(930\) 0 0
\(931\) 0.0340925 0.104926i 0.00111734 0.00343880i
\(932\) 0 0
\(933\) −6.01123 1.95317i −0.196799 0.0639438i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −0.614857 0.846278i −0.0200865 0.0276467i 0.798856 0.601523i \(-0.205439\pi\)
−0.818942 + 0.573876i \(0.805439\pi\)
\(938\) 0 0
\(939\) −12.3978 9.00753i −0.404587 0.293950i
\(940\) 0 0
\(941\) −4.62928 + 3.36337i −0.150910 + 0.109643i −0.660678 0.750669i \(-0.729731\pi\)
0.509768 + 0.860312i \(0.329731\pi\)
\(942\) 0 0
\(943\) 72.0746i 2.34707i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 11.9783 3.89200i 0.389244 0.126473i −0.107856 0.994167i \(-0.534398\pi\)
0.497099 + 0.867694i \(0.334398\pi\)
\(948\) 0 0
\(949\) 22.2210 0.721325
\(950\) 0 0
\(951\) −21.3155 −0.691204
\(952\) 0 0
\(953\) −54.5813 + 17.7346i −1.76806 + 0.574479i −0.997984 0.0634695i \(-0.979783\pi\)
−0.770079 + 0.637948i \(0.779783\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 2.98915i 0.0966255i
\(958\) 0 0
\(959\) −67.2161 + 48.8353i −2.17052 + 1.57698i
\(960\) 0 0
\(961\) 23.0545 + 16.7501i 0.743695 + 0.540326i
\(962\) 0 0
\(963\) 8.46158 + 11.6464i 0.272671 + 0.375299i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −8.40935 2.73236i −0.270427 0.0878669i 0.170665 0.985329i \(-0.445409\pi\)
−0.441091 + 0.897462i \(0.645409\pi\)
\(968\) 0 0
\(969\) 0.00532915 0.0164014i 0.000171197 0.000526890i
\(970\) 0 0
\(971\) 16.0493 + 49.3945i 0.515045 + 1.58515i 0.783200 + 0.621770i \(0.213586\pi\)
−0.268155 + 0.963376i \(0.586414\pi\)
\(972\) 0 0
\(973\) 21.6370 29.7808i 0.693651 0.954729i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −21.8859 + 30.1234i −0.700193 + 0.963732i 0.299760 + 0.954015i \(0.403093\pi\)
−0.999953 + 0.00971780i \(0.996907\pi\)
\(978\) 0 0
\(979\) −4.02002 12.3724i −0.128480 0.395422i
\(980\) 0 0
\(981\) −1.78051 + 5.47985i −0.0568473 + 0.174958i
\(982\) 0 0
\(983\) 34.0107 + 11.0507i 1.08477 + 0.352464i 0.796225 0.605001i \(-0.206827\pi\)
0.288548 + 0.957465i \(0.406827\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −1.17181 1.61286i −0.0372991 0.0513378i
\(988\) 0 0
\(989\) −51.9553 37.7477i −1.65208 1.20031i
\(990\) 0 0
\(991\) 35.4505 25.7563i 1.12612 0.818175i 0.140996 0.990010i \(-0.454970\pi\)
0.985126 + 0.171835i \(0.0549697\pi\)
\(992\) 0 0
\(993\) 19.8124i 0.628728i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 37.5746 12.2087i 1.19000 0.386654i 0.353927 0.935273i \(-0.384846\pi\)
0.836072 + 0.548619i \(0.184846\pi\)
\(998\) 0 0
\(999\) 8.54179 0.270250
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1500.2.o.c.49.1 24
5.2 odd 4 1500.2.m.c.1201.5 24
5.3 odd 4 1500.2.m.d.1201.2 24
5.4 even 2 300.2.o.a.109.5 24
15.14 odd 2 900.2.w.c.109.4 24
25.2 odd 20 1500.2.m.c.301.5 24
25.6 even 5 7500.2.d.g.1249.16 24
25.8 odd 20 7500.2.a.m.1.4 12
25.11 even 5 300.2.o.a.289.5 yes 24
25.14 even 10 inner 1500.2.o.c.949.1 24
25.17 odd 20 7500.2.a.n.1.9 12
25.19 even 10 7500.2.d.g.1249.9 24
25.23 odd 20 1500.2.m.d.301.2 24
75.11 odd 10 900.2.w.c.289.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
300.2.o.a.109.5 24 5.4 even 2
300.2.o.a.289.5 yes 24 25.11 even 5
900.2.w.c.109.4 24 15.14 odd 2
900.2.w.c.289.4 24 75.11 odd 10
1500.2.m.c.301.5 24 25.2 odd 20
1500.2.m.c.1201.5 24 5.2 odd 4
1500.2.m.d.301.2 24 25.23 odd 20
1500.2.m.d.1201.2 24 5.3 odd 4
1500.2.o.c.49.1 24 1.1 even 1 trivial
1500.2.o.c.949.1 24 25.14 even 10 inner
7500.2.a.m.1.4 12 25.8 odd 20
7500.2.a.n.1.9 12 25.17 odd 20
7500.2.d.g.1249.9 24 25.19 even 10
7500.2.d.g.1249.16 24 25.6 even 5