Defining parameters
Level: | \( N \) | \(=\) | \( 1500 = 2^{2} \cdot 3 \cdot 5^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1500.o (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 25 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(600\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1500, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1320 | 56 | 1264 |
Cusp forms | 1080 | 56 | 1024 |
Eisenstein series | 240 | 0 | 240 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1500, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1500.2.o.a | $16$ | $11.978$ | \(\Q(\zeta_{60})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta_{4} q^{3}+(-\beta_{14}-\beta_{12}+\cdots-\beta_1)q^{7}+\cdots\) |
1500.2.o.b | $16$ | $11.978$ | 16.0.\(\cdots\).9 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{6}q^{3}+(\beta _{1}+\beta _{3}+\beta _{6}+\beta _{10}+2\beta _{13}+\cdots)q^{7}+\cdots\) |
1500.2.o.c | $24$ | $11.978$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1500, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1500, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(125, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(250, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(375, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(500, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(750, [\chi])\)\(^{\oplus 2}\)