Properties

Label 1500.2.o
Level $1500$
Weight $2$
Character orbit 1500.o
Rep. character $\chi_{1500}(49,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $56$
Newform subspaces $3$
Sturm bound $600$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1500 = 2^{2} \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1500.o (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 3 \)
Sturm bound: \(600\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1500, [\chi])\).

Total New Old
Modular forms 1320 56 1264
Cusp forms 1080 56 1024
Eisenstein series 240 0 240

Trace form

\( 56 q + 14 q^{9} + 6 q^{11} - 10 q^{17} - 10 q^{19} + 4 q^{21} - 40 q^{23} - 44 q^{29} - 6 q^{31} - 10 q^{33} + 50 q^{41} + 40 q^{47} - 24 q^{49} - 16 q^{51} + 60 q^{53} + 36 q^{59} + 52 q^{61} + 10 q^{63}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1500, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1500.2.o.a 1500.o 25.e $16$ $11.978$ \(\Q(\zeta_{60})\) None 300.2.m.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+\beta_{4} q^{3}+(-\beta_{14}-\beta_{12}+\cdots-\beta_1)q^{7}+\cdots\)
1500.2.o.b 1500.o 25.e $16$ $11.978$ 16.0.\(\cdots\).9 None 300.2.m.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q-\beta _{6}q^{3}+(\beta _{1}+\beta _{3}+\beta _{6}+\beta _{10}+2\beta _{13}+\cdots)q^{7}+\cdots\)
1500.2.o.c 1500.o 25.e $24$ $11.978$ None 300.2.o.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1500, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1500, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(125, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(250, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(375, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(500, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(750, [\chi])\)\(^{\oplus 2}\)