Properties

Label 150.5.d.a
Level $150$
Weight $5$
Character orbit 150.d
Analytic conductor $15.505$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [150,5,Mod(101,150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("150.101"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 150.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.5054944626\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 6)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} + (3 \beta + 3) q^{3} - 8 q^{4} + ( - 3 \beta + 24) q^{6} - 26 q^{7} + 8 \beta q^{8} + (18 \beta - 63) q^{9} - 42 \beta q^{11} + ( - 24 \beta - 24) q^{12} - 50 q^{13} + 26 \beta q^{14} + \cdots + (2646 \beta + 6048) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} - 16 q^{4} + 48 q^{6} - 52 q^{7} - 126 q^{9} - 48 q^{12} - 100 q^{13} + 128 q^{16} + 288 q^{18} - 716 q^{19} - 156 q^{21} - 672 q^{22} - 384 q^{24} - 1242 q^{27} + 416 q^{28} - 1484 q^{31}+ \cdots + 12096 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
101.1
1.41421i
1.41421i
2.82843i 3.00000 + 8.48528i −8.00000 0 24.0000 8.48528i −26.0000 22.6274i −63.0000 + 50.9117i 0
101.2 2.82843i 3.00000 8.48528i −8.00000 0 24.0000 + 8.48528i −26.0000 22.6274i −63.0000 50.9117i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.5.d.a 2
3.b odd 2 1 inner 150.5.d.a 2
5.b even 2 1 6.5.b.a 2
5.c odd 4 2 150.5.b.a 4
15.d odd 2 1 6.5.b.a 2
15.e even 4 2 150.5.b.a 4
20.d odd 2 1 48.5.e.b 2
35.c odd 2 1 294.5.b.a 2
40.e odd 2 1 192.5.e.c 2
40.f even 2 1 192.5.e.d 2
45.h odd 6 2 162.5.d.a 4
45.j even 6 2 162.5.d.a 4
60.h even 2 1 48.5.e.b 2
105.g even 2 1 294.5.b.a 2
120.i odd 2 1 192.5.e.d 2
120.m even 2 1 192.5.e.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.5.b.a 2 5.b even 2 1
6.5.b.a 2 15.d odd 2 1
48.5.e.b 2 20.d odd 2 1
48.5.e.b 2 60.h even 2 1
150.5.b.a 4 5.c odd 4 2
150.5.b.a 4 15.e even 4 2
150.5.d.a 2 1.a even 1 1 trivial
150.5.d.a 2 3.b odd 2 1 inner
162.5.d.a 4 45.h odd 6 2
162.5.d.a 4 45.j even 6 2
192.5.e.c 2 40.e odd 2 1
192.5.e.c 2 120.m even 2 1
192.5.e.d 2 40.f even 2 1
192.5.e.d 2 120.i odd 2 1
294.5.b.a 2 35.c odd 2 1
294.5.b.a 2 105.g even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} + 26 \) acting on \(S_{5}^{\mathrm{new}}(150, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 8 \) Copy content Toggle raw display
$3$ \( T^{2} - 6T + 81 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 26)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 14112 \) Copy content Toggle raw display
$13$ \( (T + 50)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 41472 \) Copy content Toggle raw display
$19$ \( (T + 358)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 139392 \) Copy content Toggle raw display
$29$ \( T^{2} + 2080800 \) Copy content Toggle raw display
$31$ \( (T + 742)^{2} \) Copy content Toggle raw display
$37$ \( (T + 1874)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 5807232 \) Copy content Toggle raw display
$43$ \( (T - 262)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 2880000 \) Copy content Toggle raw display
$53$ \( T^{2} + 209952 \) Copy content Toggle raw display
$59$ \( T^{2} + 3297312 \) Copy content Toggle raw display
$61$ \( (T + 1486)^{2} \) Copy content Toggle raw display
$67$ \( (T - 4486)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 12700800 \) Copy content Toggle raw display
$73$ \( (T + 290)^{2} \) Copy content Toggle raw display
$79$ \( (T - 9818)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 50561568 \) Copy content Toggle raw display
$89$ \( T^{2} + 61471872 \) Copy content Toggle raw display
$97$ \( (T - 478)^{2} \) Copy content Toggle raw display
show more
show less