Properties

Label 150.5
Level 150
Weight 5
Dimension 554
Nonzero newspaces 6
Newform subspaces 18
Sturm bound 6000
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 5 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 18 \)
Sturm bound: \(6000\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(150))\).

Total New Old
Modular forms 2512 554 1958
Cusp forms 2288 554 1734
Eisenstein series 224 0 224

Trace form

\( 554 q + 34 q^{3} - 16 q^{4} - 120 q^{5} - 80 q^{6} + 132 q^{7} + 434 q^{9} + 192 q^{10} - 576 q^{11} - 272 q^{12} - 940 q^{13} + 716 q^{15} - 896 q^{16} + 3720 q^{17} + 992 q^{18} - 3836 q^{19} - 768 q^{20}+ \cdots - 20224 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(150))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
150.5.b \(\chi_{150}(149, \cdot)\) 150.5.b.a 4 1
150.5.b.b 8
150.5.b.c 12
150.5.d \(\chi_{150}(101, \cdot)\) 150.5.d.a 2 1
150.5.d.b 4
150.5.d.c 6
150.5.d.d 6
150.5.d.e 8
150.5.f \(\chi_{150}(7, \cdot)\) 150.5.f.a 4 2
150.5.f.b 4
150.5.f.c 4
150.5.f.d 4
150.5.f.e 4
150.5.f.f 4
150.5.i \(\chi_{150}(29, \cdot)\) 150.5.i.a 160 4
150.5.j \(\chi_{150}(11, \cdot)\) 150.5.j.a 160 4
150.5.k \(\chi_{150}(13, \cdot)\) 150.5.k.a 80 8
150.5.k.b 80

Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(150))\) into lower level spaces

\( S_{5}^{\mathrm{old}}(\Gamma_1(150)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 2}\)