Properties

Label 150.2.h
Level 150
Weight 2
Character orbit h
Rep. character \(\chi_{150}(19,\cdot)\)
Character field \(\Q(\zeta_{10})\)
Dimension 24
Newform subspaces 2
Sturm bound 60
Trace bound 1

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.h (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 25 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 2 \)
Sturm bound: \(60\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(150, [\chi])\).

Total New Old
Modular forms 136 24 112
Cusp forms 104 24 80
Eisenstein series 32 0 32

Trace form

\( 24q + 6q^{4} + 4q^{5} - 2q^{6} + 6q^{9} + O(q^{10}) \) \( 24q + 6q^{4} + 4q^{5} - 2q^{6} + 6q^{9} + 2q^{10} + 12q^{11} - 2q^{15} - 6q^{16} - 20q^{17} - 8q^{19} - 4q^{20} - 4q^{21} - 20q^{22} - 20q^{23} - 8q^{24} + 14q^{25} + 8q^{26} - 10q^{28} - 32q^{29} - 16q^{30} + 6q^{31} - 20q^{33} + 20q^{34} - 24q^{35} - 6q^{36} - 2q^{40} + 44q^{41} + 10q^{42} + 8q^{44} - 4q^{45} + 4q^{46} - 40q^{47} - 44q^{49} - 8q^{50} + 16q^{51} + 2q^{54} + 28q^{55} + 12q^{60} + 12q^{61} + 60q^{62} + 20q^{63} + 6q^{64} + 12q^{65} - 8q^{66} - 40q^{67} + 16q^{69} - 22q^{70} - 8q^{71} + 8q^{74} + 8q^{75} + 8q^{76} + 80q^{77} - 4q^{79} + 4q^{80} - 6q^{81} + 40q^{83} + 4q^{84} + 16q^{85} - 24q^{86} - 20q^{87} + 10q^{88} + 36q^{89} - 2q^{90} - 12q^{91} + 32q^{94} - 2q^{96} + 50q^{97} + 80q^{98} + 8q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(150, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
150.2.h.a \(8\) \(1.198\) \(\Q(\zeta_{20})\) None \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{20}q^{2}-\zeta_{20}^{7}q^{3}+\zeta_{20}^{2}q^{4}+(\zeta_{20}+\cdots)q^{5}+\cdots\)
150.2.h.b \(16\) \(1.198\) \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(0\) \(4\) \(0\) \(q+\beta _{8}q^{2}+\beta _{6}q^{3}-\beta _{10}q^{4}+(1+\beta _{3}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(150, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(150, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)