Properties

Label 150.14.c.j.49.2
Level $150$
Weight $14$
Character 150.49
Analytic conductor $160.846$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [150,14,Mod(49,150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("150.49"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 150.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-16384,0,-186624,0,0,-2125764,0,8037120] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(160.846393428\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 11557705x^{2} + 33395130437904 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.2
Root \(2404.42i\) of defining polynomial
Character \(\chi\) \(=\) 150.49
Dual form 150.14.c.j.49.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-64.0000i q^{2} -729.000i q^{3} -4096.00 q^{4} -46656.0 q^{6} +170015. i q^{7} +262144. i q^{8} -531441. q^{9} -6.06791e6 q^{11} +2.98598e6i q^{12} -3.29464e7i q^{13} +1.08810e7 q^{14} +1.67772e7 q^{16} +5.09064e7i q^{17} +3.40122e7i q^{18} +3.38083e8 q^{19} +1.23941e8 q^{21} +3.88346e8i q^{22} +9.47034e8i q^{23} +1.91103e8 q^{24} -2.10857e9 q^{26} +3.87420e8i q^{27} -6.96381e8i q^{28} -5.81785e9 q^{29} +3.79039e9 q^{31} -1.07374e9i q^{32} +4.42350e9i q^{33} +3.25801e9 q^{34} +2.17678e9 q^{36} +2.84389e10i q^{37} -2.16373e10i q^{38} -2.40179e10 q^{39} +2.20260e10 q^{41} -7.93222e9i q^{42} -3.49140e10i q^{43} +2.48541e10 q^{44} +6.06102e10 q^{46} +5.50002e10i q^{47} -1.22306e10i q^{48} +6.79839e10 q^{49} +3.71108e10 q^{51} +1.34949e11i q^{52} +3.46323e9i q^{53} +2.47949e10 q^{54} -4.45684e10 q^{56} -2.46462e11i q^{57} +3.72342e11i q^{58} -2.80284e11 q^{59} +5.28916e11 q^{61} -2.42585e11i q^{62} -9.03529e10i q^{63} -6.87195e10 q^{64} +2.83104e11 q^{66} -7.51430e9i q^{67} -2.08513e11i q^{68} +6.90388e11 q^{69} +1.83209e11 q^{71} -1.39314e11i q^{72} -2.21482e12i q^{73} +1.82009e12 q^{74} -1.38479e12 q^{76} -1.03163e12i q^{77} +1.53715e12i q^{78} +6.58669e11 q^{79} +2.82430e11 q^{81} -1.40966e12i q^{82} +4.01969e12i q^{83} -5.07662e11 q^{84} -2.23450e12 q^{86} +4.24121e12i q^{87} -1.59067e12i q^{88} +2.09375e12 q^{89} +5.60138e12 q^{91} -3.87905e12i q^{92} -2.76319e12i q^{93} +3.52001e12 q^{94} -7.82758e11 q^{96} -8.64949e12i q^{97} -4.35097e12i q^{98} +3.22473e12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16384 q^{4} - 186624 q^{6} - 2125764 q^{9} + 8037120 q^{11} - 30324736 q^{14} + 67108864 q^{16} + 181139296 q^{19} - 345417696 q^{21} + 764411904 q^{24} - 1714062848 q^{26} - 4144620456 q^{29} + 23456813552 q^{31}+ \cdots - 4271255089920 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 64.0000i − 0.707107i
\(3\) − 729.000i − 0.577350i
\(4\) −4096.00 −0.500000
\(5\) 0 0
\(6\) −46656.0 −0.408248
\(7\) 170015.i 0.546198i 0.961986 + 0.273099i \(0.0880486\pi\)
−0.961986 + 0.273099i \(0.911951\pi\)
\(8\) 262144.i 0.353553i
\(9\) −531441. −0.333333
\(10\) 0 0
\(11\) −6.06791e6 −1.03273 −0.516365 0.856369i \(-0.672715\pi\)
−0.516365 + 0.856369i \(0.672715\pi\)
\(12\) 2.98598e6i 0.288675i
\(13\) − 3.29464e7i − 1.89311i −0.322539 0.946556i \(-0.604536\pi\)
0.322539 0.946556i \(-0.395464\pi\)
\(14\) 1.08810e7 0.386220
\(15\) 0 0
\(16\) 1.67772e7 0.250000
\(17\) 5.09064e7i 0.511511i 0.966742 + 0.255755i \(0.0823242\pi\)
−0.966742 + 0.255755i \(0.917676\pi\)
\(18\) 3.40122e7i 0.235702i
\(19\) 3.38083e8 1.64864 0.824318 0.566127i \(-0.191559\pi\)
0.824318 + 0.566127i \(0.191559\pi\)
\(20\) 0 0
\(21\) 1.23941e8 0.315347
\(22\) 3.88346e8i 0.730250i
\(23\) 9.47034e8i 1.33393i 0.745087 + 0.666967i \(0.232408\pi\)
−0.745087 + 0.666967i \(0.767592\pi\)
\(24\) 1.91103e8 0.204124
\(25\) 0 0
\(26\) −2.10857e9 −1.33863
\(27\) 3.87420e8i 0.192450i
\(28\) − 6.96381e8i − 0.273099i
\(29\) −5.81785e9 −1.81625 −0.908125 0.418700i \(-0.862486\pi\)
−0.908125 + 0.418700i \(0.862486\pi\)
\(30\) 0 0
\(31\) 3.79039e9 0.767065 0.383533 0.923527i \(-0.374707\pi\)
0.383533 + 0.923527i \(0.374707\pi\)
\(32\) − 1.07374e9i − 0.176777i
\(33\) 4.42350e9i 0.596246i
\(34\) 3.25801e9 0.361693
\(35\) 0 0
\(36\) 2.17678e9 0.166667
\(37\) 2.84389e10i 1.82222i 0.412160 + 0.911112i \(0.364775\pi\)
−0.412160 + 0.911112i \(0.635225\pi\)
\(38\) − 2.16373e10i − 1.16576i
\(39\) −2.40179e10 −1.09299
\(40\) 0 0
\(41\) 2.20260e10 0.724169 0.362085 0.932145i \(-0.382065\pi\)
0.362085 + 0.932145i \(0.382065\pi\)
\(42\) − 7.93222e9i − 0.222984i
\(43\) − 3.49140e10i − 0.842276i −0.906996 0.421138i \(-0.861631\pi\)
0.906996 0.421138i \(-0.138369\pi\)
\(44\) 2.48541e10 0.516365
\(45\) 0 0
\(46\) 6.06102e10 0.943234
\(47\) 5.50002e10i 0.744265i 0.928180 + 0.372133i \(0.121373\pi\)
−0.928180 + 0.372133i \(0.878627\pi\)
\(48\) − 1.22306e10i − 0.144338i
\(49\) 6.79839e10 0.701668
\(50\) 0 0
\(51\) 3.71108e10 0.295321
\(52\) 1.34949e11i 0.946556i
\(53\) 3.46323e9i 0.0214629i 0.999942 + 0.0107314i \(0.00341599\pi\)
−0.999942 + 0.0107314i \(0.996584\pi\)
\(54\) 2.47949e10 0.136083
\(55\) 0 0
\(56\) −4.45684e10 −0.193110
\(57\) − 2.46462e11i − 0.951840i
\(58\) 3.72342e11i 1.28428i
\(59\) −2.80284e11 −0.865088 −0.432544 0.901613i \(-0.642384\pi\)
−0.432544 + 0.901613i \(0.642384\pi\)
\(60\) 0 0
\(61\) 5.28916e11 1.31445 0.657223 0.753696i \(-0.271731\pi\)
0.657223 + 0.753696i \(0.271731\pi\)
\(62\) − 2.42585e11i − 0.542397i
\(63\) − 9.03529e10i − 0.182066i
\(64\) −6.87195e10 −0.125000
\(65\) 0 0
\(66\) 2.83104e11 0.421610
\(67\) − 7.51430e9i − 0.0101485i −0.999987 0.00507426i \(-0.998385\pi\)
0.999987 0.00507426i \(-0.00161519\pi\)
\(68\) − 2.08513e11i − 0.255755i
\(69\) 6.90388e11 0.770148
\(70\) 0 0
\(71\) 1.83209e11 0.169734 0.0848670 0.996392i \(-0.472953\pi\)
0.0848670 + 0.996392i \(0.472953\pi\)
\(72\) − 1.39314e11i − 0.117851i
\(73\) − 2.21482e12i − 1.71293i −0.516202 0.856467i \(-0.672654\pi\)
0.516202 0.856467i \(-0.327346\pi\)
\(74\) 1.82009e12 1.28851
\(75\) 0 0
\(76\) −1.38479e12 −0.824318
\(77\) − 1.03163e12i − 0.564074i
\(78\) 1.53715e12i 0.772860i
\(79\) 6.58669e11 0.304853 0.152427 0.988315i \(-0.451291\pi\)
0.152427 + 0.988315i \(0.451291\pi\)
\(80\) 0 0
\(81\) 2.82430e11 0.111111
\(82\) − 1.40966e12i − 0.512065i
\(83\) 4.01969e12i 1.34954i 0.738030 + 0.674768i \(0.235756\pi\)
−0.738030 + 0.674768i \(0.764244\pi\)
\(84\) −5.07662e11 −0.157674
\(85\) 0 0
\(86\) −2.23450e12 −0.595579
\(87\) 4.24121e12i 1.04861i
\(88\) − 1.59067e12i − 0.365125i
\(89\) 2.09375e12 0.446571 0.223285 0.974753i \(-0.428322\pi\)
0.223285 + 0.974753i \(0.428322\pi\)
\(90\) 0 0
\(91\) 5.60138e12 1.03401
\(92\) − 3.87905e12i − 0.666967i
\(93\) − 2.76319e12i − 0.442865i
\(94\) 3.52001e12 0.526275
\(95\) 0 0
\(96\) −7.82758e11 −0.102062
\(97\) − 8.64949e12i − 1.05432i −0.849765 0.527162i \(-0.823256\pi\)
0.849765 0.527162i \(-0.176744\pi\)
\(98\) − 4.35097e12i − 0.496154i
\(99\) 3.22473e12 0.344243
\(100\) 0 0
\(101\) 9.92703e12 0.930530 0.465265 0.885172i \(-0.345959\pi\)
0.465265 + 0.885172i \(0.345959\pi\)
\(102\) − 2.37509e12i − 0.208823i
\(103\) − 9.95146e12i − 0.821192i −0.911817 0.410596i \(-0.865321\pi\)
0.911817 0.410596i \(-0.134679\pi\)
\(104\) 8.63670e12 0.669316
\(105\) 0 0
\(106\) 2.21646e11 0.0151765
\(107\) − 1.03046e13i − 0.663801i −0.943314 0.331900i \(-0.892310\pi\)
0.943314 0.331900i \(-0.107690\pi\)
\(108\) − 1.58687e12i − 0.0962250i
\(109\) −2.36639e13 −1.35149 −0.675747 0.737134i \(-0.736179\pi\)
−0.675747 + 0.737134i \(0.736179\pi\)
\(110\) 0 0
\(111\) 2.07320e13 1.05206
\(112\) 2.85238e12i 0.136549i
\(113\) 2.70737e12i 0.122331i 0.998128 + 0.0611656i \(0.0194818\pi\)
−0.998128 + 0.0611656i \(0.980518\pi\)
\(114\) −1.57736e13 −0.673053
\(115\) 0 0
\(116\) 2.38299e13 0.908125
\(117\) 1.75091e13i 0.631037i
\(118\) 1.79382e13i 0.611709i
\(119\) −8.65485e12 −0.279386
\(120\) 0 0
\(121\) 2.29677e12 0.0665292
\(122\) − 3.38506e13i − 0.929454i
\(123\) − 1.60569e13i − 0.418099i
\(124\) −1.55254e13 −0.383533
\(125\) 0 0
\(126\) −5.78259e12 −0.128740
\(127\) 6.46305e12i 0.136683i 0.997662 + 0.0683413i \(0.0217707\pi\)
−0.997662 + 0.0683413i \(0.978229\pi\)
\(128\) 4.39805e12i 0.0883883i
\(129\) −2.54523e13 −0.486289
\(130\) 0 0
\(131\) −8.36401e12 −0.144594 −0.0722972 0.997383i \(-0.523033\pi\)
−0.0722972 + 0.997383i \(0.523033\pi\)
\(132\) − 1.81187e13i − 0.298123i
\(133\) 5.74791e13i 0.900481i
\(134\) −4.80915e11 −0.00717608
\(135\) 0 0
\(136\) −1.33448e13 −0.180846
\(137\) − 1.23769e14i − 1.59930i −0.600468 0.799649i \(-0.705019\pi\)
0.600468 0.799649i \(-0.294981\pi\)
\(138\) − 4.41848e13i − 0.544577i
\(139\) 1.98109e13 0.232975 0.116487 0.993192i \(-0.462837\pi\)
0.116487 + 0.993192i \(0.462837\pi\)
\(140\) 0 0
\(141\) 4.00951e13 0.429702
\(142\) − 1.17254e13i − 0.120020i
\(143\) 1.99916e14i 1.95507i
\(144\) −8.91610e12 −0.0833333
\(145\) 0 0
\(146\) −1.41749e14 −1.21123
\(147\) − 4.95603e13i − 0.405108i
\(148\) − 1.16486e14i − 0.911112i
\(149\) 1.36275e14 1.02024 0.510122 0.860102i \(-0.329600\pi\)
0.510122 + 0.860102i \(0.329600\pi\)
\(150\) 0 0
\(151\) 1.46787e14 1.00771 0.503856 0.863788i \(-0.331914\pi\)
0.503856 + 0.863788i \(0.331914\pi\)
\(152\) 8.86264e13i 0.582881i
\(153\) − 2.70538e13i − 0.170504i
\(154\) −6.60246e13 −0.398861
\(155\) 0 0
\(156\) 9.83775e13 0.546494
\(157\) − 2.46869e14i − 1.31559i −0.753199 0.657793i \(-0.771490\pi\)
0.753199 0.657793i \(-0.228510\pi\)
\(158\) − 4.21548e13i − 0.215564i
\(159\) 2.52469e12 0.0123916
\(160\) 0 0
\(161\) −1.61010e14 −0.728592
\(162\) − 1.80755e13i − 0.0785674i
\(163\) 9.21834e13i 0.384976i 0.981299 + 0.192488i \(0.0616556\pi\)
−0.981299 + 0.192488i \(0.938344\pi\)
\(164\) −9.02184e13 −0.362085
\(165\) 0 0
\(166\) 2.57260e14 0.954266
\(167\) − 7.83286e13i − 0.279424i −0.990192 0.139712i \(-0.955382\pi\)
0.990192 0.139712i \(-0.0446176\pi\)
\(168\) 3.24904e13i 0.111492i
\(169\) −7.82591e14 −2.58387
\(170\) 0 0
\(171\) −1.79671e14 −0.549545
\(172\) 1.43008e14i 0.421138i
\(173\) − 4.49950e14i − 1.27604i −0.770020 0.638020i \(-0.779754\pi\)
0.770020 0.638020i \(-0.220246\pi\)
\(174\) 2.71438e14 0.741481
\(175\) 0 0
\(176\) −1.01803e14 −0.258182
\(177\) 2.04327e14i 0.499459i
\(178\) − 1.34000e14i − 0.315773i
\(179\) 1.39179e14 0.316249 0.158124 0.987419i \(-0.449455\pi\)
0.158124 + 0.987419i \(0.449455\pi\)
\(180\) 0 0
\(181\) −5.20706e14 −1.10073 −0.550367 0.834923i \(-0.685512\pi\)
−0.550367 + 0.834923i \(0.685512\pi\)
\(182\) − 3.58488e14i − 0.731158i
\(183\) − 3.85580e14i − 0.758896i
\(184\) −2.48259e14 −0.471617
\(185\) 0 0
\(186\) −1.76844e14 −0.313153
\(187\) − 3.08895e14i − 0.528252i
\(188\) − 2.25281e14i − 0.372133i
\(189\) −6.58673e13 −0.105116
\(190\) 0 0
\(191\) 1.09463e15 1.63136 0.815682 0.578501i \(-0.196362\pi\)
0.815682 + 0.578501i \(0.196362\pi\)
\(192\) 5.00965e13i 0.0721688i
\(193\) − 6.26624e14i − 0.872739i −0.899767 0.436370i \(-0.856264\pi\)
0.899767 0.436370i \(-0.143736\pi\)
\(194\) −5.53567e14 −0.745520
\(195\) 0 0
\(196\) −2.78462e14 −0.350834
\(197\) − 3.32275e14i − 0.405012i −0.979281 0.202506i \(-0.935091\pi\)
0.979281 0.202506i \(-0.0649085\pi\)
\(198\) − 2.06383e14i − 0.243417i
\(199\) −5.22579e13 −0.0596495 −0.0298248 0.999555i \(-0.509495\pi\)
−0.0298248 + 0.999555i \(0.509495\pi\)
\(200\) 0 0
\(201\) −5.47793e12 −0.00585925
\(202\) − 6.35330e14i − 0.657984i
\(203\) − 9.89121e14i − 0.992031i
\(204\) −1.52006e14 −0.147660
\(205\) 0 0
\(206\) −6.36893e14 −0.580670
\(207\) − 5.03293e14i − 0.444645i
\(208\) − 5.52749e14i − 0.473278i
\(209\) −2.05145e15 −1.70259
\(210\) 0 0
\(211\) −1.36362e15 −1.06379 −0.531896 0.846810i \(-0.678520\pi\)
−0.531896 + 0.846810i \(0.678520\pi\)
\(212\) − 1.41854e13i − 0.0107314i
\(213\) − 1.33560e14i − 0.0979959i
\(214\) −6.59496e14 −0.469378
\(215\) 0 0
\(216\) −1.01560e14 −0.0680414
\(217\) 6.44422e14i 0.418969i
\(218\) 1.51449e15i 0.955650i
\(219\) −1.61461e15 −0.988963
\(220\) 0 0
\(221\) 1.67718e15 0.968347
\(222\) − 1.32685e15i − 0.743920i
\(223\) 2.47259e15i 1.34639i 0.739464 + 0.673196i \(0.235079\pi\)
−0.739464 + 0.673196i \(0.764921\pi\)
\(224\) 1.82552e14 0.0965550
\(225\) 0 0
\(226\) 1.73271e14 0.0865012
\(227\) − 1.16478e15i − 0.565034i −0.959262 0.282517i \(-0.908831\pi\)
0.959262 0.282517i \(-0.0911693\pi\)
\(228\) 1.00951e15i 0.475920i
\(229\) 2.63317e15 1.20656 0.603279 0.797530i \(-0.293860\pi\)
0.603279 + 0.797530i \(0.293860\pi\)
\(230\) 0 0
\(231\) −7.52062e14 −0.325668
\(232\) − 1.52511e15i − 0.642141i
\(233\) − 1.81315e15i − 0.742369i −0.928559 0.371185i \(-0.878952\pi\)
0.928559 0.371185i \(-0.121048\pi\)
\(234\) 1.12058e15 0.446211
\(235\) 0 0
\(236\) 1.14804e15 0.432544
\(237\) − 4.80170e14i − 0.176007i
\(238\) 5.53911e14i 0.197556i
\(239\) −5.57074e15 −1.93342 −0.966710 0.255874i \(-0.917637\pi\)
−0.966710 + 0.255874i \(0.917637\pi\)
\(240\) 0 0
\(241\) −6.85386e14 −0.225333 −0.112666 0.993633i \(-0.535939\pi\)
−0.112666 + 0.993633i \(0.535939\pi\)
\(242\) − 1.46993e14i − 0.0470433i
\(243\) − 2.05891e14i − 0.0641500i
\(244\) −2.16644e15 −0.657223
\(245\) 0 0
\(246\) −1.02764e15 −0.295641
\(247\) − 1.11386e16i − 3.12105i
\(248\) 9.93627e14i 0.271199i
\(249\) 2.93035e15 0.779155
\(250\) 0 0
\(251\) 7.27308e14 0.183586 0.0917929 0.995778i \(-0.470740\pi\)
0.0917929 + 0.995778i \(0.470740\pi\)
\(252\) 3.70085e14i 0.0910329i
\(253\) − 5.74651e15i − 1.37759i
\(254\) 4.13635e14 0.0966492
\(255\) 0 0
\(256\) 2.81475e14 0.0625000
\(257\) − 2.83845e14i − 0.0614491i −0.999528 0.0307245i \(-0.990219\pi\)
0.999528 0.0307245i \(-0.00978147\pi\)
\(258\) 1.62895e15i 0.343858i
\(259\) −4.83504e15 −0.995294
\(260\) 0 0
\(261\) 3.09184e15 0.605416
\(262\) 5.35297e14i 0.102244i
\(263\) 3.35049e15i 0.624303i 0.950032 + 0.312152i \(0.101050\pi\)
−0.950032 + 0.312152i \(0.898950\pi\)
\(264\) −1.15959e15 −0.210805
\(265\) 0 0
\(266\) 3.67866e15 0.636736
\(267\) − 1.52635e15i − 0.257828i
\(268\) 3.07786e13i 0.00507426i
\(269\) −7.65805e15 −1.23233 −0.616167 0.787615i \(-0.711315\pi\)
−0.616167 + 0.787615i \(0.711315\pi\)
\(270\) 0 0
\(271\) 4.60099e14 0.0705588 0.0352794 0.999377i \(-0.488768\pi\)
0.0352794 + 0.999377i \(0.488768\pi\)
\(272\) 8.54068e14i 0.127878i
\(273\) − 4.08341e15i − 0.596988i
\(274\) −7.92124e15 −1.13087
\(275\) 0 0
\(276\) −2.82783e15 −0.385074
\(277\) − 7.55123e15i − 1.00438i −0.864757 0.502191i \(-0.832527\pi\)
0.864757 0.502191i \(-0.167473\pi\)
\(278\) − 1.26790e15i − 0.164738i
\(279\) −2.01437e15 −0.255688
\(280\) 0 0
\(281\) 5.96982e15 0.723386 0.361693 0.932297i \(-0.382199\pi\)
0.361693 + 0.932297i \(0.382199\pi\)
\(282\) − 2.56609e15i − 0.303845i
\(283\) − 1.32479e16i − 1.53297i −0.642260 0.766486i \(-0.722003\pi\)
0.642260 0.766486i \(-0.277997\pi\)
\(284\) −7.50426e14 −0.0848670
\(285\) 0 0
\(286\) 1.27946e16 1.38244
\(287\) 3.74474e15i 0.395539i
\(288\) 5.70630e14i 0.0589256i
\(289\) 7.31311e15 0.738357
\(290\) 0 0
\(291\) −6.30548e15 −0.608714
\(292\) 9.07192e15i 0.856467i
\(293\) 4.74056e15i 0.437714i 0.975757 + 0.218857i \(0.0702327\pi\)
−0.975757 + 0.218857i \(0.929767\pi\)
\(294\) −3.17186e15 −0.286455
\(295\) 0 0
\(296\) −7.45509e15 −0.644253
\(297\) − 2.35083e15i − 0.198749i
\(298\) − 8.72157e15i − 0.721421i
\(299\) 3.12014e16 2.52529
\(300\) 0 0
\(301\) 5.93590e15 0.460049
\(302\) − 9.39435e15i − 0.712560i
\(303\) − 7.23680e15i − 0.537242i
\(304\) 5.67209e15 0.412159
\(305\) 0 0
\(306\) −1.73144e15 −0.120564
\(307\) − 3.78865e15i − 0.258276i −0.991627 0.129138i \(-0.958779\pi\)
0.991627 0.129138i \(-0.0412211\pi\)
\(308\) 4.22558e15i 0.282037i
\(309\) −7.25461e15 −0.474115
\(310\) 0 0
\(311\) 1.46650e16 0.919050 0.459525 0.888165i \(-0.348020\pi\)
0.459525 + 0.888165i \(0.348020\pi\)
\(312\) − 6.29616e15i − 0.386430i
\(313\) 5.58982e15i 0.336016i 0.985786 + 0.168008i \(0.0537334\pi\)
−0.985786 + 0.168008i \(0.946267\pi\)
\(314\) −1.57996e16 −0.930260
\(315\) 0 0
\(316\) −2.69791e15 −0.152427
\(317\) − 1.75354e16i − 0.970578i −0.874354 0.485289i \(-0.838714\pi\)
0.874354 0.485289i \(-0.161286\pi\)
\(318\) − 1.61580e14i − 0.00876218i
\(319\) 3.53022e16 1.87569
\(320\) 0 0
\(321\) −7.51207e15 −0.383246
\(322\) 1.03046e16i 0.515192i
\(323\) 1.72106e16i 0.843295i
\(324\) −1.15683e15 −0.0555556
\(325\) 0 0
\(326\) 5.89974e15 0.272219
\(327\) 1.72510e16i 0.780285i
\(328\) 5.77398e15i 0.256032i
\(329\) −9.35085e15 −0.406516
\(330\) 0 0
\(331\) −2.66488e16 −1.11377 −0.556886 0.830589i \(-0.688004\pi\)
−0.556886 + 0.830589i \(0.688004\pi\)
\(332\) − 1.64646e16i − 0.674768i
\(333\) − 1.51136e16i − 0.607408i
\(334\) −5.01303e15 −0.197582
\(335\) 0 0
\(336\) 2.07938e15 0.0788368
\(337\) 2.82770e16i 1.05157i 0.850617 + 0.525786i \(0.176229\pi\)
−0.850617 + 0.525786i \(0.823771\pi\)
\(338\) 5.00858e16i 1.82707i
\(339\) 1.97367e15 0.0706279
\(340\) 0 0
\(341\) −2.29997e16 −0.792171
\(342\) 1.14989e16i 0.388587i
\(343\) 2.80309e16i 0.929447i
\(344\) 9.15250e15 0.297790
\(345\) 0 0
\(346\) −2.87968e16 −0.902297
\(347\) 4.37490e16i 1.34532i 0.739950 + 0.672662i \(0.234849\pi\)
−0.739950 + 0.672662i \(0.765151\pi\)
\(348\) − 1.73720e16i − 0.524306i
\(349\) 9.77276e15 0.289502 0.144751 0.989468i \(-0.453762\pi\)
0.144751 + 0.989468i \(0.453762\pi\)
\(350\) 0 0
\(351\) 1.27641e16 0.364330
\(352\) 6.51536e15i 0.182562i
\(353\) − 3.36370e16i − 0.925297i −0.886542 0.462649i \(-0.846899\pi\)
0.886542 0.462649i \(-0.153101\pi\)
\(354\) 1.30769e16 0.353171
\(355\) 0 0
\(356\) −8.57601e15 −0.223285
\(357\) 6.30939e15i 0.161304i
\(358\) − 8.90746e15i − 0.223622i
\(359\) 5.73427e16 1.41372 0.706861 0.707353i \(-0.250111\pi\)
0.706861 + 0.707353i \(0.250111\pi\)
\(360\) 0 0
\(361\) 7.22470e16 1.71800
\(362\) 3.33252e16i 0.778336i
\(363\) − 1.67434e15i − 0.0384107i
\(364\) −2.29433e16 −0.517007
\(365\) 0 0
\(366\) −2.46771e16 −0.536620
\(367\) 1.30762e15i 0.0279352i 0.999902 + 0.0139676i \(0.00444617\pi\)
−0.999902 + 0.0139676i \(0.995554\pi\)
\(368\) 1.58886e16i 0.333484i
\(369\) −1.17055e16 −0.241390
\(370\) 0 0
\(371\) −5.88800e14 −0.0117230
\(372\) 1.13180e16i 0.221433i
\(373\) − 5.05383e16i − 0.971658i −0.874054 0.485829i \(-0.838518\pi\)
0.874054 0.485829i \(-0.161482\pi\)
\(374\) −1.97693e16 −0.373531
\(375\) 0 0
\(376\) −1.44180e16 −0.263138
\(377\) 1.91677e17i 3.43836i
\(378\) 4.21550e15i 0.0743281i
\(379\) −3.58137e16 −0.620719 −0.310359 0.950619i \(-0.600449\pi\)
−0.310359 + 0.950619i \(0.600449\pi\)
\(380\) 0 0
\(381\) 4.71156e15 0.0789137
\(382\) − 7.00564e16i − 1.15355i
\(383\) 1.16220e17i 1.88143i 0.339203 + 0.940713i \(0.389843\pi\)
−0.339203 + 0.940713i \(0.610157\pi\)
\(384\) 3.20618e15 0.0510310
\(385\) 0 0
\(386\) −4.01039e16 −0.617120
\(387\) 1.85547e16i 0.280759i
\(388\) 3.54283e16i 0.527162i
\(389\) −2.44732e16 −0.358112 −0.179056 0.983839i \(-0.557304\pi\)
−0.179056 + 0.983839i \(0.557304\pi\)
\(390\) 0 0
\(391\) −4.82101e16 −0.682322
\(392\) 1.78216e16i 0.248077i
\(393\) 6.09736e15i 0.0834816i
\(394\) −2.12656e16 −0.286386
\(395\) 0 0
\(396\) −1.32085e16 −0.172122
\(397\) 7.19607e16i 0.922481i 0.887275 + 0.461240i \(0.152595\pi\)
−0.887275 + 0.461240i \(0.847405\pi\)
\(398\) 3.34451e15i 0.0421786i
\(399\) 4.19023e16 0.519893
\(400\) 0 0
\(401\) 2.77695e16 0.333526 0.166763 0.985997i \(-0.446669\pi\)
0.166763 + 0.985997i \(0.446669\pi\)
\(402\) 3.50587e14i 0.00414311i
\(403\) − 1.24880e17i − 1.45214i
\(404\) −4.06611e16 −0.465265
\(405\) 0 0
\(406\) −6.33038e16 −0.701472
\(407\) − 1.72565e17i − 1.88186i
\(408\) 9.72837e15i 0.104412i
\(409\) 1.50306e17 1.58772 0.793859 0.608102i \(-0.208069\pi\)
0.793859 + 0.608102i \(0.208069\pi\)
\(410\) 0 0
\(411\) −9.02278e16 −0.923355
\(412\) 4.07612e16i 0.410596i
\(413\) − 4.76525e16i − 0.472509i
\(414\) −3.22107e16 −0.314411
\(415\) 0 0
\(416\) −3.53759e16 −0.334658
\(417\) − 1.44422e16i − 0.134508i
\(418\) 1.31293e17i 1.20392i
\(419\) 9.26732e16 0.836687 0.418343 0.908289i \(-0.362611\pi\)
0.418343 + 0.908289i \(0.362611\pi\)
\(420\) 0 0
\(421\) 4.68568e16 0.410146 0.205073 0.978747i \(-0.434257\pi\)
0.205073 + 0.978747i \(0.434257\pi\)
\(422\) 8.72715e16i 0.752214i
\(423\) − 2.92293e16i − 0.248088i
\(424\) −9.07864e14 −0.00758827
\(425\) 0 0
\(426\) −8.54782e15 −0.0692936
\(427\) 8.99236e16i 0.717947i
\(428\) 4.22078e16i 0.331900i
\(429\) 1.45739e17 1.12876
\(430\) 0 0
\(431\) 2.33764e17 1.75661 0.878304 0.478103i \(-0.158676\pi\)
0.878304 + 0.478103i \(0.158676\pi\)
\(432\) 6.49984e15i 0.0481125i
\(433\) 1.57411e17i 1.14779i 0.818927 + 0.573897i \(0.194569\pi\)
−0.818927 + 0.573897i \(0.805431\pi\)
\(434\) 4.12430e16 0.296256
\(435\) 0 0
\(436\) 9.69273e16 0.675747
\(437\) 3.20176e17i 2.19917i
\(438\) 1.03335e17i 0.699302i
\(439\) 2.21873e17 1.47940 0.739698 0.672939i \(-0.234968\pi\)
0.739698 + 0.672939i \(0.234968\pi\)
\(440\) 0 0
\(441\) −3.61295e16 −0.233889
\(442\) − 1.07340e17i − 0.684725i
\(443\) − 1.42772e17i − 0.897470i −0.893665 0.448735i \(-0.851875\pi\)
0.893665 0.448735i \(-0.148125\pi\)
\(444\) −8.49181e16 −0.526031
\(445\) 0 0
\(446\) 1.58246e17 0.952042
\(447\) − 9.93441e16i − 0.589038i
\(448\) − 1.16833e16i − 0.0682747i
\(449\) 1.94696e17 1.12139 0.560693 0.828024i \(-0.310535\pi\)
0.560693 + 0.828024i \(0.310535\pi\)
\(450\) 0 0
\(451\) −1.33652e17 −0.747871
\(452\) − 1.10894e16i − 0.0611656i
\(453\) − 1.07007e17i − 0.581803i
\(454\) −7.45457e16 −0.399539
\(455\) 0 0
\(456\) 6.46086e16 0.336526
\(457\) − 2.06061e17i − 1.05813i −0.848580 0.529067i \(-0.822542\pi\)
0.848580 0.529067i \(-0.177458\pi\)
\(458\) − 1.68523e17i − 0.853166i
\(459\) −1.97222e16 −0.0984403
\(460\) 0 0
\(461\) −3.50887e17 −1.70260 −0.851298 0.524682i \(-0.824184\pi\)
−0.851298 + 0.524682i \(0.824184\pi\)
\(462\) 4.81319e16i 0.230282i
\(463\) − 3.11707e16i − 0.147052i −0.997293 0.0735259i \(-0.976575\pi\)
0.997293 0.0735259i \(-0.0234252\pi\)
\(464\) −9.76073e16 −0.454062
\(465\) 0 0
\(466\) −1.16042e17 −0.524934
\(467\) − 3.16096e17i − 1.41013i −0.709141 0.705066i \(-0.750917\pi\)
0.709141 0.705066i \(-0.249083\pi\)
\(468\) − 7.17172e16i − 0.315519i
\(469\) 1.27754e15 0.00554309
\(470\) 0 0
\(471\) −1.79968e17 −0.759554
\(472\) − 7.34748e16i − 0.305855i
\(473\) 2.11855e17i 0.869843i
\(474\) −3.07309e16 −0.124456
\(475\) 0 0
\(476\) 3.54503e16 0.139693
\(477\) − 1.84050e15i − 0.00715429i
\(478\) 3.56527e17i 1.36713i
\(479\) −7.59224e16 −0.287203 −0.143601 0.989636i \(-0.545868\pi\)
−0.143601 + 0.989636i \(0.545868\pi\)
\(480\) 0 0
\(481\) 9.36960e17 3.44967
\(482\) 4.38647e16i 0.159334i
\(483\) 1.17376e17i 0.420653i
\(484\) −9.40756e15 −0.0332646
\(485\) 0 0
\(486\) −1.31770e16 −0.0453609
\(487\) − 3.20670e17i − 1.08923i −0.838686 0.544615i \(-0.816676\pi\)
0.838686 0.544615i \(-0.183324\pi\)
\(488\) 1.38652e17i 0.464727i
\(489\) 6.72017e16 0.222266
\(490\) 0 0
\(491\) 4.08390e17 1.31536 0.657681 0.753296i \(-0.271537\pi\)
0.657681 + 0.753296i \(0.271537\pi\)
\(492\) 6.57692e16i 0.209050i
\(493\) − 2.96166e17i − 0.929031i
\(494\) −7.12871e17 −2.20692
\(495\) 0 0
\(496\) 6.35921e16 0.191766
\(497\) 3.11483e16i 0.0927083i
\(498\) − 1.87542e17i − 0.550946i
\(499\) 2.29462e17 0.665361 0.332680 0.943040i \(-0.392047\pi\)
0.332680 + 0.943040i \(0.392047\pi\)
\(500\) 0 0
\(501\) −5.71015e16 −0.161325
\(502\) − 4.65477e16i − 0.129815i
\(503\) − 6.88434e17i − 1.89527i −0.319361 0.947633i \(-0.603468\pi\)
0.319361 0.947633i \(-0.396532\pi\)
\(504\) 2.36855e16 0.0643700
\(505\) 0 0
\(506\) −3.67777e17 −0.974105
\(507\) 5.70509e17i 1.49180i
\(508\) − 2.64726e16i − 0.0683413i
\(509\) 2.88019e17 0.734101 0.367051 0.930201i \(-0.380368\pi\)
0.367051 + 0.930201i \(0.380368\pi\)
\(510\) 0 0
\(511\) 3.76553e17 0.935601
\(512\) − 1.80144e16i − 0.0441942i
\(513\) 1.30980e17i 0.317280i
\(514\) −1.81661e16 −0.0434511
\(515\) 0 0
\(516\) 1.04253e17 0.243144
\(517\) − 3.33736e17i − 0.768624i
\(518\) 3.09442e17i 0.703779i
\(519\) −3.28013e17 −0.736722
\(520\) 0 0
\(521\) −3.07194e17 −0.672926 −0.336463 0.941697i \(-0.609231\pi\)
−0.336463 + 0.941697i \(0.609231\pi\)
\(522\) − 1.97878e17i − 0.428094i
\(523\) − 5.25192e17i − 1.12217i −0.827760 0.561083i \(-0.810385\pi\)
0.827760 0.561083i \(-0.189615\pi\)
\(524\) 3.42590e16 0.0722972
\(525\) 0 0
\(526\) 2.14431e17 0.441449
\(527\) 1.92955e17i 0.392362i
\(528\) 7.42141e16i 0.149062i
\(529\) −3.92837e17 −0.779382
\(530\) 0 0
\(531\) 1.48954e17 0.288363
\(532\) − 2.35434e17i − 0.450240i
\(533\) − 7.25677e17i − 1.37093i
\(534\) −9.76861e16 −0.182312
\(535\) 0 0
\(536\) 1.96983e15 0.00358804
\(537\) − 1.01462e17i − 0.182586i
\(538\) 4.90115e17i 0.871392i
\(539\) −4.12520e17 −0.724633
\(540\) 0 0
\(541\) −6.85158e16 −0.117492 −0.0587460 0.998273i \(-0.518710\pi\)
−0.0587460 + 0.998273i \(0.518710\pi\)
\(542\) − 2.94463e16i − 0.0498926i
\(543\) 3.79595e17i 0.635509i
\(544\) 5.46604e16 0.0904232
\(545\) 0 0
\(546\) −2.61338e17 −0.422134
\(547\) − 7.30717e17i − 1.16636i −0.812344 0.583179i \(-0.801809\pi\)
0.812344 0.583179i \(-0.198191\pi\)
\(548\) 5.06959e17i 0.799649i
\(549\) −2.81088e17 −0.438149
\(550\) 0 0
\(551\) −1.96691e18 −2.99433
\(552\) 1.80981e17i 0.272288i
\(553\) 1.11984e17i 0.166510i
\(554\) −4.83279e17 −0.710206
\(555\) 0 0
\(556\) −8.11456e16 −0.116487
\(557\) − 1.23097e18i − 1.74658i −0.487199 0.873291i \(-0.661981\pi\)
0.487199 0.873291i \(-0.338019\pi\)
\(558\) 1.28919e17i 0.180799i
\(559\) −1.15029e18 −1.59452
\(560\) 0 0
\(561\) −2.25185e17 −0.304986
\(562\) − 3.82069e17i − 0.511511i
\(563\) − 4.06336e16i − 0.0537751i −0.999638 0.0268876i \(-0.991440\pi\)
0.999638 0.0268876i \(-0.00855960\pi\)
\(564\) −1.64230e17 −0.214851
\(565\) 0 0
\(566\) −8.47864e17 −1.08398
\(567\) 4.80172e16i 0.0606886i
\(568\) 4.80273e16i 0.0600100i
\(569\) 2.95112e17 0.364550 0.182275 0.983248i \(-0.441654\pi\)
0.182275 + 0.983248i \(0.441654\pi\)
\(570\) 0 0
\(571\) 1.05610e18 1.27518 0.637590 0.770376i \(-0.279932\pi\)
0.637590 + 0.770376i \(0.279932\pi\)
\(572\) − 8.18855e17i − 0.977536i
\(573\) − 7.97986e17i − 0.941868i
\(574\) 2.39664e17 0.279689
\(575\) 0 0
\(576\) 3.65203e16 0.0416667
\(577\) 5.39539e17i 0.608667i 0.952566 + 0.304334i \(0.0984338\pi\)
−0.952566 + 0.304334i \(0.901566\pi\)
\(578\) − 4.68039e17i − 0.522097i
\(579\) −4.56809e17 −0.503876
\(580\) 0 0
\(581\) −6.83406e17 −0.737113
\(582\) 4.03550e17i 0.430426i
\(583\) − 2.10145e16i − 0.0221653i
\(584\) 5.80603e17 0.605614
\(585\) 0 0
\(586\) 3.03396e17 0.309510
\(587\) − 8.49866e16i − 0.0857438i −0.999081 0.0428719i \(-0.986349\pi\)
0.999081 0.0428719i \(-0.0136507\pi\)
\(588\) 2.02999e17i 0.202554i
\(589\) 1.28146e18 1.26461
\(590\) 0 0
\(591\) −2.42229e17 −0.233834
\(592\) 4.77126e17i 0.455556i
\(593\) 4.33934e17i 0.409796i 0.978783 + 0.204898i \(0.0656863\pi\)
−0.978783 + 0.204898i \(0.934314\pi\)
\(594\) −1.50453e17 −0.140537
\(595\) 0 0
\(596\) −5.58180e17 −0.510122
\(597\) 3.80960e16i 0.0344387i
\(598\) − 1.99689e18i − 1.78565i
\(599\) −1.08180e18 −0.956909 −0.478455 0.878112i \(-0.658803\pi\)
−0.478455 + 0.878112i \(0.658803\pi\)
\(600\) 0 0
\(601\) 8.22862e17 0.712267 0.356134 0.934435i \(-0.384095\pi\)
0.356134 + 0.934435i \(0.384095\pi\)
\(602\) − 3.79898e17i − 0.325304i
\(603\) 3.99341e15i 0.00338284i
\(604\) −6.01238e17 −0.503856
\(605\) 0 0
\(606\) −4.63155e17 −0.379887
\(607\) − 6.79810e17i − 0.551647i −0.961208 0.275823i \(-0.911049\pi\)
0.961208 0.275823i \(-0.0889505\pi\)
\(608\) − 3.63014e17i − 0.291440i
\(609\) −7.21069e17 −0.572749
\(610\) 0 0
\(611\) 1.81206e18 1.40898
\(612\) 1.10812e17i 0.0852518i
\(613\) 9.66682e17i 0.735852i 0.929855 + 0.367926i \(0.119932\pi\)
−0.929855 + 0.367926i \(0.880068\pi\)
\(614\) −2.42473e17 −0.182629
\(615\) 0 0
\(616\) 2.70437e17 0.199430
\(617\) 7.79322e17i 0.568674i 0.958724 + 0.284337i \(0.0917734\pi\)
−0.958724 + 0.284337i \(0.908227\pi\)
\(618\) 4.64295e17i 0.335250i
\(619\) 1.30527e18 0.932636 0.466318 0.884617i \(-0.345580\pi\)
0.466318 + 0.884617i \(0.345580\pi\)
\(620\) 0 0
\(621\) −3.66900e17 −0.256716
\(622\) − 9.38559e17i − 0.649866i
\(623\) 3.55969e17i 0.243916i
\(624\) −4.02954e17 −0.273247
\(625\) 0 0
\(626\) 3.57749e17 0.237599
\(627\) 1.49551e18i 0.982993i
\(628\) 1.01118e18i 0.657793i
\(629\) −1.44772e18 −0.932087
\(630\) 0 0
\(631\) 2.48848e18 1.56944 0.784718 0.619853i \(-0.212808\pi\)
0.784718 + 0.619853i \(0.212808\pi\)
\(632\) 1.72666e17i 0.107782i
\(633\) 9.94077e17i 0.614180i
\(634\) −1.12227e18 −0.686302
\(635\) 0 0
\(636\) −1.03411e16 −0.00619579
\(637\) − 2.23983e18i − 1.32834i
\(638\) − 2.25934e18i − 1.32632i
\(639\) −9.73650e16 −0.0565780
\(640\) 0 0
\(641\) −1.11455e18 −0.634634 −0.317317 0.948320i \(-0.602782\pi\)
−0.317317 + 0.948320i \(0.602782\pi\)
\(642\) 4.80773e17i 0.270995i
\(643\) − 1.21634e18i − 0.678710i −0.940658 0.339355i \(-0.889791\pi\)
0.940658 0.339355i \(-0.110209\pi\)
\(644\) 6.59496e17 0.364296
\(645\) 0 0
\(646\) 1.10148e18 0.596299
\(647\) 3.56728e18i 1.91188i 0.293567 + 0.955939i \(0.405158\pi\)
−0.293567 + 0.955939i \(0.594842\pi\)
\(648\) 7.40372e16i 0.0392837i
\(649\) 1.70074e18 0.893401
\(650\) 0 0
\(651\) 4.69784e17 0.241892
\(652\) − 3.77583e17i − 0.192488i
\(653\) − 1.05284e18i − 0.531408i −0.964055 0.265704i \(-0.914396\pi\)
0.964055 0.265704i \(-0.0856043\pi\)
\(654\) 1.10406e18 0.551745
\(655\) 0 0
\(656\) 3.69535e17 0.181042
\(657\) 1.17705e18i 0.570978i
\(658\) 5.98454e17i 0.287450i
\(659\) 1.06619e18 0.507085 0.253542 0.967324i \(-0.418404\pi\)
0.253542 + 0.967324i \(0.418404\pi\)
\(660\) 0 0
\(661\) −3.83025e17 −0.178615 −0.0893075 0.996004i \(-0.528465\pi\)
−0.0893075 + 0.996004i \(0.528465\pi\)
\(662\) 1.70553e18i 0.787556i
\(663\) − 1.22267e18i − 0.559076i
\(664\) −1.05374e18 −0.477133
\(665\) 0 0
\(666\) −9.67270e17 −0.429502
\(667\) − 5.50970e18i − 2.42276i
\(668\) 3.20834e17i 0.139712i
\(669\) 1.80252e18 0.777339
\(670\) 0 0
\(671\) −3.20941e18 −1.35747
\(672\) − 1.33081e17i − 0.0557461i
\(673\) 3.12295e18i 1.29559i 0.761816 + 0.647793i \(0.224308\pi\)
−0.761816 + 0.647793i \(0.775692\pi\)
\(674\) 1.80973e18 0.743573
\(675\) 0 0
\(676\) 3.20549e18 1.29194
\(677\) 1.03569e18i 0.413431i 0.978401 + 0.206716i \(0.0662775\pi\)
−0.978401 + 0.206716i \(0.933723\pi\)
\(678\) − 1.26315e17i − 0.0499415i
\(679\) 1.47054e18 0.575869
\(680\) 0 0
\(681\) −8.49122e17 −0.326222
\(682\) 1.47198e18i 0.560149i
\(683\) − 2.86963e18i − 1.08166i −0.841131 0.540831i \(-0.818110\pi\)
0.841131 0.540831i \(-0.181890\pi\)
\(684\) 7.35933e17 0.274773
\(685\) 0 0
\(686\) 1.79398e18 0.657218
\(687\) − 1.91958e18i − 0.696607i
\(688\) − 5.85760e17i − 0.210569i
\(689\) 1.14101e17 0.0406316
\(690\) 0 0
\(691\) 1.70272e18 0.595026 0.297513 0.954718i \(-0.403843\pi\)
0.297513 + 0.954718i \(0.403843\pi\)
\(692\) 1.84299e18i 0.638020i
\(693\) 5.48253e17i 0.188025i
\(694\) 2.79994e18 0.951288
\(695\) 0 0
\(696\) −1.11181e18 −0.370740
\(697\) 1.12126e18i 0.370420i
\(698\) − 6.25457e17i − 0.204709i
\(699\) −1.32179e18 −0.428607
\(700\) 0 0
\(701\) −1.89524e18 −0.603249 −0.301624 0.953427i \(-0.597529\pi\)
−0.301624 + 0.953427i \(0.597529\pi\)
\(702\) − 8.16903e17i − 0.257620i
\(703\) 9.61470e18i 3.00418i
\(704\) 4.16983e17 0.129091
\(705\) 0 0
\(706\) −2.15277e18 −0.654284
\(707\) 1.68774e18i 0.508253i
\(708\) − 8.36923e17i − 0.249729i
\(709\) 1.81610e18 0.536957 0.268479 0.963286i \(-0.413479\pi\)
0.268479 + 0.963286i \(0.413479\pi\)
\(710\) 0 0
\(711\) −3.50044e17 −0.101618
\(712\) 5.48864e17i 0.157887i
\(713\) 3.58962e18i 1.02322i
\(714\) 4.03801e17 0.114059
\(715\) 0 0
\(716\) −5.70077e17 −0.158124
\(717\) 4.06107e18i 1.11626i
\(718\) − 3.66993e18i − 0.999652i
\(719\) −4.07912e18 −1.10110 −0.550552 0.834801i \(-0.685583\pi\)
−0.550552 + 0.834801i \(0.685583\pi\)
\(720\) 0 0
\(721\) 1.69190e18 0.448533
\(722\) − 4.62381e18i − 1.21481i
\(723\) 4.99646e17i 0.130096i
\(724\) 2.13281e18 0.550367
\(725\) 0 0
\(726\) −1.07158e17 −0.0271604
\(727\) − 3.30463e18i − 0.830136i −0.909790 0.415068i \(-0.863758\pi\)
0.909790 0.415068i \(-0.136242\pi\)
\(728\) 1.46837e18i 0.365579i
\(729\) −1.50095e17 −0.0370370
\(730\) 0 0
\(731\) 1.77735e18 0.430833
\(732\) 1.57934e18i 0.379448i
\(733\) 2.10951e18i 0.502350i 0.967942 + 0.251175i \(0.0808169\pi\)
−0.967942 + 0.251175i \(0.919183\pi\)
\(734\) 8.36876e16 0.0197532
\(735\) 0 0
\(736\) 1.01687e18 0.235809
\(737\) 4.55961e16i 0.0104807i
\(738\) 7.49152e17i 0.170688i
\(739\) −3.64707e18 −0.823673 −0.411837 0.911258i \(-0.635113\pi\)
−0.411837 + 0.911258i \(0.635113\pi\)
\(740\) 0 0
\(741\) −8.12005e18 −1.80194
\(742\) 3.76832e16i 0.00828939i
\(743\) − 4.43149e18i − 0.966324i −0.875531 0.483162i \(-0.839488\pi\)
0.875531 0.483162i \(-0.160512\pi\)
\(744\) 7.24354e17 0.156577
\(745\) 0 0
\(746\) −3.23445e18 −0.687066
\(747\) − 2.13623e18i − 0.449845i
\(748\) 1.26524e18i 0.264126i
\(749\) 1.75194e18 0.362566
\(750\) 0 0
\(751\) 4.80237e18 0.976779 0.488389 0.872626i \(-0.337585\pi\)
0.488389 + 0.872626i \(0.337585\pi\)
\(752\) 9.22749e17i 0.186066i
\(753\) − 5.30207e17i − 0.105993i
\(754\) 1.22673e19 2.43129
\(755\) 0 0
\(756\) 2.69792e17 0.0525579
\(757\) 5.04669e18i 0.974729i 0.873199 + 0.487364i \(0.162042\pi\)
−0.873199 + 0.487364i \(0.837958\pi\)
\(758\) 2.29208e18i 0.438914i
\(759\) −4.18921e18 −0.795354
\(760\) 0 0
\(761\) 1.68626e18 0.314720 0.157360 0.987541i \(-0.449702\pi\)
0.157360 + 0.987541i \(0.449702\pi\)
\(762\) − 3.01540e17i − 0.0558004i
\(763\) − 4.02322e18i − 0.738183i
\(764\) −4.48361e18 −0.815682
\(765\) 0 0
\(766\) 7.43805e18 1.33037
\(767\) 9.23435e18i 1.63771i
\(768\) − 2.05195e17i − 0.0360844i
\(769\) −1.11315e18 −0.194104 −0.0970519 0.995279i \(-0.530941\pi\)
−0.0970519 + 0.995279i \(0.530941\pi\)
\(770\) 0 0
\(771\) −2.06923e17 −0.0354777
\(772\) 2.56665e18i 0.436370i
\(773\) 9.65963e18i 1.62852i 0.580499 + 0.814261i \(0.302858\pi\)
−0.580499 + 0.814261i \(0.697142\pi\)
\(774\) 1.18750e18 0.198526
\(775\) 0 0
\(776\) 2.26741e18 0.372760
\(777\) 3.52474e18i 0.574633i
\(778\) 1.56629e18i 0.253223i
\(779\) 7.44660e18 1.19389
\(780\) 0 0
\(781\) −1.11170e18 −0.175289
\(782\) 3.08545e18i 0.482474i
\(783\) − 2.25395e18i − 0.349537i
\(784\) 1.14058e18 0.175417
\(785\) 0 0
\(786\) 3.90231e17 0.0590304
\(787\) 1.40037e18i 0.210091i 0.994467 + 0.105045i \(0.0334988\pi\)
−0.994467 + 0.105045i \(0.966501\pi\)
\(788\) 1.36100e18i 0.202506i
\(789\) 2.44251e18 0.360442
\(790\) 0 0
\(791\) −4.60293e17 −0.0668170
\(792\) 8.45345e17i 0.121708i
\(793\) − 1.74259e19i − 2.48839i
\(794\) 4.60549e18 0.652292
\(795\) 0 0
\(796\) 2.14048e17 0.0298248
\(797\) 9.30010e18i 1.28531i 0.766155 + 0.642656i \(0.222168\pi\)
−0.766155 + 0.642656i \(0.777832\pi\)
\(798\) − 2.68175e18i − 0.367620i
\(799\) −2.79986e18 −0.380700
\(800\) 0 0
\(801\) −1.11271e18 −0.148857
\(802\) − 1.77725e18i − 0.235838i
\(803\) 1.34393e19i 1.76900i
\(804\) 2.24376e16 0.00292962
\(805\) 0 0
\(806\) −7.99230e18 −1.02682
\(807\) 5.58272e18i 0.711488i
\(808\) 2.60231e18i 0.328992i
\(809\) −3.89357e18 −0.488296 −0.244148 0.969738i \(-0.578508\pi\)
−0.244148 + 0.969738i \(0.578508\pi\)
\(810\) 0 0
\(811\) −1.53890e19 −1.89922 −0.949610 0.313434i \(-0.898521\pi\)
−0.949610 + 0.313434i \(0.898521\pi\)
\(812\) 4.05144e18i 0.496016i
\(813\) − 3.35412e17i − 0.0407371i
\(814\) −1.10441e19 −1.33068
\(815\) 0 0
\(816\) 6.22616e17 0.0738302
\(817\) − 1.18038e19i − 1.38861i
\(818\) − 9.61955e18i − 1.12269i
\(819\) −2.97680e18 −0.344671
\(820\) 0 0
\(821\) 3.58141e18 0.408153 0.204077 0.978955i \(-0.434581\pi\)
0.204077 + 0.978955i \(0.434581\pi\)
\(822\) 5.77458e18i 0.652911i
\(823\) 8.98746e18i 1.00818i 0.863651 + 0.504090i \(0.168172\pi\)
−0.863651 + 0.504090i \(0.831828\pi\)
\(824\) 2.60871e18 0.290335
\(825\) 0 0
\(826\) −3.04976e18 −0.334114
\(827\) 1.73077e18i 0.188129i 0.995566 + 0.0940643i \(0.0299859\pi\)
−0.995566 + 0.0940643i \(0.970014\pi\)
\(828\) 2.06149e18i 0.222322i
\(829\) −7.78822e18 −0.833362 −0.416681 0.909053i \(-0.636807\pi\)
−0.416681 + 0.909053i \(0.636807\pi\)
\(830\) 0 0
\(831\) −5.50485e18 −0.579881
\(832\) 2.26406e18i 0.236639i
\(833\) 3.46082e18i 0.358911i
\(834\) −9.24299e17 −0.0951116
\(835\) 0 0
\(836\) 8.40276e18 0.851297
\(837\) 1.46847e18i 0.147622i
\(838\) − 5.93108e18i − 0.591627i
\(839\) 3.26310e18 0.322981 0.161491 0.986874i \(-0.448370\pi\)
0.161491 + 0.986874i \(0.448370\pi\)
\(840\) 0 0
\(841\) 2.35867e19 2.29876
\(842\) − 2.99883e18i − 0.290017i
\(843\) − 4.35200e18i − 0.417647i
\(844\) 5.58538e18 0.531896
\(845\) 0 0
\(846\) −1.87068e18 −0.175425
\(847\) 3.90485e17i 0.0363381i
\(848\) 5.81033e16i 0.00536571i
\(849\) −9.65770e18 −0.885062
\(850\) 0 0
\(851\) −2.69326e19 −2.43073
\(852\) 5.47061e17i 0.0489980i
\(853\) − 5.82090e18i − 0.517394i −0.965958 0.258697i \(-0.916707\pi\)
0.965958 0.258697i \(-0.0832932\pi\)
\(854\) 5.75511e18 0.507666
\(855\) 0 0
\(856\) 2.70130e18 0.234689
\(857\) − 9.30539e18i − 0.802342i −0.916003 0.401171i \(-0.868603\pi\)
0.916003 0.401171i \(-0.131397\pi\)
\(858\) − 9.32727e18i − 0.798155i
\(859\) 1.20727e19 1.02530 0.512649 0.858598i \(-0.328664\pi\)
0.512649 + 0.858598i \(0.328664\pi\)
\(860\) 0 0
\(861\) 2.72992e18 0.228365
\(862\) − 1.49609e19i − 1.24211i
\(863\) 6.75985e18i 0.557015i 0.960434 + 0.278508i \(0.0898397\pi\)
−0.960434 + 0.278508i \(0.910160\pi\)
\(864\) 4.15990e17 0.0340207
\(865\) 0 0
\(866\) 1.00743e19 0.811613
\(867\) − 5.33126e18i − 0.426290i
\(868\) − 2.63955e18i − 0.209485i
\(869\) −3.99674e18 −0.314831
\(870\) 0 0
\(871\) −2.47569e17 −0.0192123
\(872\) − 6.20335e18i − 0.477825i
\(873\) 4.59669e18i 0.351441i
\(874\) 2.04913e19 1.55505
\(875\) 0 0
\(876\) 6.61343e18 0.494482
\(877\) − 6.38272e18i − 0.473706i −0.971546 0.236853i \(-0.923884\pi\)
0.971546 0.236853i \(-0.0761159\pi\)
\(878\) − 1.41998e19i − 1.04609i
\(879\) 3.45587e18 0.252714
\(880\) 0 0
\(881\) −1.38731e19 −0.999609 −0.499804 0.866138i \(-0.666595\pi\)
−0.499804 + 0.866138i \(0.666595\pi\)
\(882\) 2.31228e18i 0.165385i
\(883\) 6.03335e18i 0.428365i 0.976794 + 0.214183i \(0.0687087\pi\)
−0.976794 + 0.214183i \(0.931291\pi\)
\(884\) −6.86975e18 −0.484174
\(885\) 0 0
\(886\) −9.13744e18 −0.634607
\(887\) − 1.56332e19i − 1.07781i −0.842365 0.538907i \(-0.818838\pi\)
0.842365 0.538907i \(-0.181162\pi\)
\(888\) 5.43476e18i 0.371960i
\(889\) −1.09881e18 −0.0746557
\(890\) 0 0
\(891\) −1.71376e18 −0.114748
\(892\) − 1.01277e19i − 0.673196i
\(893\) 1.85946e19i 1.22702i
\(894\) −6.35802e18 −0.416513
\(895\) 0 0
\(896\) −7.47734e17 −0.0482775
\(897\) − 2.27458e19i − 1.45798i
\(898\) − 1.24605e19i − 0.792940i
\(899\) −2.20519e19 −1.39318
\(900\) 0 0
\(901\) −1.76300e17 −0.0109785
\(902\) 8.55370e18i 0.528824i
\(903\) − 4.32727e18i − 0.265610i
\(904\) −7.09720e17 −0.0432506
\(905\) 0 0
\(906\) −6.84848e18 −0.411397
\(907\) − 1.67708e19i − 1.00025i −0.865954 0.500123i \(-0.833288\pi\)
0.865954 0.500123i \(-0.166712\pi\)
\(908\) 4.77092e18i 0.282517i
\(909\) −5.27563e18 −0.310177
\(910\) 0 0
\(911\) 1.90416e19 1.10366 0.551828 0.833958i \(-0.313930\pi\)
0.551828 + 0.833958i \(0.313930\pi\)
\(912\) − 4.13495e18i − 0.237960i
\(913\) − 2.43911e19i − 1.39370i
\(914\) −1.31879e19 −0.748213
\(915\) 0 0
\(916\) −1.07855e19 −0.603279
\(917\) − 1.42201e18i − 0.0789771i
\(918\) 1.26222e18i 0.0696078i
\(919\) 1.55602e19 0.852050 0.426025 0.904711i \(-0.359914\pi\)
0.426025 + 0.904711i \(0.359914\pi\)
\(920\) 0 0
\(921\) −2.76192e18 −0.149116
\(922\) 2.24568e19i 1.20392i
\(923\) − 6.03609e18i − 0.321325i
\(924\) 3.08044e18 0.162834
\(925\) 0 0
\(926\) −1.99493e18 −0.103981
\(927\) 5.28861e18i 0.273731i
\(928\) 6.24687e18i 0.321071i
\(929\) −2.03127e19 −1.03673 −0.518364 0.855160i \(-0.673459\pi\)
−0.518364 + 0.855160i \(0.673459\pi\)
\(930\) 0 0
\(931\) 2.29842e19 1.15680
\(932\) 7.42666e18i 0.371185i
\(933\) − 1.06908e19i − 0.530614i
\(934\) −2.02302e19 −0.997114
\(935\) 0 0
\(936\) −4.58990e18 −0.223105
\(937\) 3.27979e19i 1.58321i 0.611033 + 0.791605i \(0.290754\pi\)
−0.611033 + 0.791605i \(0.709246\pi\)
\(938\) − 8.17628e16i − 0.00391956i
\(939\) 4.07498e18 0.193999
\(940\) 0 0
\(941\) 2.39618e19 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(942\) 1.15179e19i 0.537086i
\(943\) 2.08593e19i 0.965994i
\(944\) −4.70238e18 −0.216272
\(945\) 0 0
\(946\) 1.35587e19 0.615072
\(947\) − 1.88259e19i − 0.848166i −0.905623 0.424083i \(-0.860597\pi\)
0.905623 0.424083i \(-0.139403\pi\)
\(948\) 1.96678e18i 0.0880036i
\(949\) −7.29705e19 −3.24278
\(950\) 0 0
\(951\) −1.27833e19 −0.560363
\(952\) − 2.26882e18i − 0.0987778i
\(953\) − 1.74009e19i − 0.752431i −0.926532 0.376215i \(-0.877225\pi\)
0.926532 0.376215i \(-0.122775\pi\)
\(954\) −1.17792e17 −0.00505884
\(955\) 0 0
\(956\) 2.28177e19 0.966710
\(957\) − 2.57353e19i − 1.08293i
\(958\) 4.85903e18i 0.203083i
\(959\) 2.10426e19 0.873532
\(960\) 0 0
\(961\) −1.00505e19 −0.411611
\(962\) − 5.99654e19i − 2.43929i
\(963\) 5.47630e18i 0.221267i
\(964\) 2.80734e18 0.112666
\(965\) 0 0
\(966\) 7.51208e18 0.297446
\(967\) − 3.44802e19i − 1.35612i −0.735007 0.678059i \(-0.762821\pi\)
0.735007 0.678059i \(-0.237179\pi\)
\(968\) 6.02084e17i 0.0235216i
\(969\) 1.25465e19 0.486877
\(970\) 0 0
\(971\) 4.55517e19 1.74413 0.872067 0.489387i \(-0.162780\pi\)
0.872067 + 0.489387i \(0.162780\pi\)
\(972\) 8.43330e17i 0.0320750i
\(973\) 3.36816e18i 0.127250i
\(974\) −2.05229e19 −0.770202
\(975\) 0 0
\(976\) 8.87374e18 0.328612
\(977\) 3.55127e19i 1.30638i 0.757194 + 0.653189i \(0.226569\pi\)
−0.757194 + 0.653189i \(0.773431\pi\)
\(978\) − 4.30091e18i − 0.157166i
\(979\) −1.27047e19 −0.461186
\(980\) 0 0
\(981\) 1.25760e19 0.450498
\(982\) − 2.61370e19i − 0.930102i
\(983\) − 5.22615e19i − 1.84750i −0.382998 0.923749i \(-0.625108\pi\)
0.382998 0.923749i \(-0.374892\pi\)
\(984\) 4.20923e18 0.147820
\(985\) 0 0
\(986\) −1.89546e19 −0.656924
\(987\) 6.81677e18i 0.234702i
\(988\) 4.56238e19i 1.56053i
\(989\) 3.30647e19 1.12354
\(990\) 0 0
\(991\) −2.90393e18 −0.0973885 −0.0486943 0.998814i \(-0.515506\pi\)
−0.0486943 + 0.998814i \(0.515506\pi\)
\(992\) − 4.06990e18i − 0.135599i
\(993\) 1.94270e19i 0.643036i
\(994\) 1.99349e18 0.0655546
\(995\) 0 0
\(996\) −1.20027e19 −0.389577
\(997\) − 1.88720e19i − 0.608555i −0.952583 0.304278i \(-0.901585\pi\)
0.952583 0.304278i \(-0.0984151\pi\)
\(998\) − 1.46856e19i − 0.470481i
\(999\) −1.10178e19 −0.350687
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.14.c.j.49.2 4
5.2 odd 4 150.14.a.n.1.1 2
5.3 odd 4 30.14.a.g.1.2 2
5.4 even 2 inner 150.14.c.j.49.3 4
15.8 even 4 90.14.a.m.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.14.a.g.1.2 2 5.3 odd 4
90.14.a.m.1.2 2 15.8 even 4
150.14.a.n.1.1 2 5.2 odd 4
150.14.c.j.49.2 4 1.1 even 1 trivial
150.14.c.j.49.3 4 5.4 even 2 inner