Properties

Label 150.14.c.d.49.2
Level $150$
Weight $14$
Character 150.49
Analytic conductor $160.846$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [150,14,Mod(49,150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("150.49"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 150.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-8192,0,-93312,0,0,-1062882,0,13224840] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(160.846393428\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 6)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 150.49
Dual form 150.14.c.d.49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+64.0000i q^{2} +729.000i q^{3} -4096.00 q^{4} -46656.0 q^{6} +176336. i q^{7} -262144. i q^{8} -531441. q^{9} +6.61242e6 q^{11} -2.98598e6i q^{12} +2.40290e7i q^{13} -1.12855e7 q^{14} +1.67772e7 q^{16} -1.54665e8i q^{17} -3.40122e7i q^{18} -1.90035e8 q^{19} -1.28549e8 q^{21} +4.23195e8i q^{22} +3.52958e8i q^{23} +1.91103e8 q^{24} -1.53785e9 q^{26} -3.87420e8i q^{27} -7.22272e8i q^{28} +2.80409e9 q^{29} +2.76366e9 q^{31} +1.07374e9i q^{32} +4.82045e9i q^{33} +9.89856e9 q^{34} +2.17678e9 q^{36} +2.00303e10i q^{37} -1.21622e10i q^{38} -1.75171e10 q^{39} -3.96245e10 q^{41} -8.22713e9i q^{42} +8.14862e10i q^{43} -2.70845e10 q^{44} -2.25893e10 q^{46} -3.41360e10i q^{47} +1.22306e10i q^{48} +6.57946e10 q^{49} +1.12751e11 q^{51} -9.84227e10i q^{52} +2.18108e10i q^{53} +2.47949e10 q^{54} +4.62254e10 q^{56} -1.38535e11i q^{57} +1.79462e11i q^{58} -2.29220e11 q^{59} +9.79974e9 q^{61} +1.76874e11i q^{62} -9.37122e10i q^{63} -6.87195e10 q^{64} -3.08509e11 q^{66} +7.89043e11i q^{67} +6.33508e11i q^{68} -2.57306e11 q^{69} -3.69505e11 q^{71} +1.39314e11i q^{72} +6.93078e11i q^{73} -1.28194e12 q^{74} +7.78383e11 q^{76} +1.16601e12i q^{77} -1.12110e12i q^{78} -2.23131e12 q^{79} +2.82430e11 q^{81} -2.53597e12i q^{82} -2.08433e12i q^{83} +5.26536e11 q^{84} -5.21512e12 q^{86} +2.04418e12i q^{87} -1.73341e12i q^{88} -2.22196e12 q^{89} -4.23717e12 q^{91} -1.44572e12i q^{92} +2.01471e12i q^{93} +2.18471e12 q^{94} -7.82758e11 q^{96} +1.02684e13i q^{97} +4.21086e12i q^{98} -3.51411e12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8192 q^{4} - 93312 q^{6} - 1062882 q^{9} + 13224840 q^{11} - 22571008 q^{14} + 33554432 q^{16} - 380069752 q^{19} - 257097888 q^{21} + 382205952 q^{24} - 3075709184 q^{26} + 5608172532 q^{29} + 5527322416 q^{31}+ \cdots - 7028222194440 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 64.0000i 0.707107i
\(3\) 729.000i 0.577350i
\(4\) −4096.00 −0.500000
\(5\) 0 0
\(6\) −46656.0 −0.408248
\(7\) 176336.i 0.566505i 0.959045 + 0.283252i \(0.0914134\pi\)
−0.959045 + 0.283252i \(0.908587\pi\)
\(8\) − 262144.i − 0.353553i
\(9\) −531441. −0.333333
\(10\) 0 0
\(11\) 6.61242e6 1.12540 0.562701 0.826660i \(-0.309762\pi\)
0.562701 + 0.826660i \(0.309762\pi\)
\(12\) − 2.98598e6i − 0.288675i
\(13\) 2.40290e7i 1.38071i 0.723469 + 0.690357i \(0.242546\pi\)
−0.723469 + 0.690357i \(0.757454\pi\)
\(14\) −1.12855e7 −0.400580
\(15\) 0 0
\(16\) 1.67772e7 0.250000
\(17\) − 1.54665e8i − 1.55408i −0.629449 0.777041i \(-0.716719\pi\)
0.629449 0.777041i \(-0.283281\pi\)
\(18\) − 3.40122e7i − 0.235702i
\(19\) −1.90035e8 −0.926691 −0.463345 0.886178i \(-0.653351\pi\)
−0.463345 + 0.886178i \(0.653351\pi\)
\(20\) 0 0
\(21\) −1.28549e8 −0.327072
\(22\) 4.23195e8i 0.795780i
\(23\) 3.52958e8i 0.497155i 0.968612 + 0.248578i \(0.0799631\pi\)
−0.968612 + 0.248578i \(0.920037\pi\)
\(24\) 1.91103e8 0.204124
\(25\) 0 0
\(26\) −1.53785e9 −0.976312
\(27\) − 3.87420e8i − 0.192450i
\(28\) − 7.22272e8i − 0.283252i
\(29\) 2.80409e9 0.875396 0.437698 0.899122i \(-0.355794\pi\)
0.437698 + 0.899122i \(0.355794\pi\)
\(30\) 0 0
\(31\) 2.76366e9 0.559286 0.279643 0.960104i \(-0.409784\pi\)
0.279643 + 0.960104i \(0.409784\pi\)
\(32\) 1.07374e9i 0.176777i
\(33\) 4.82045e9i 0.649752i
\(34\) 9.89856e9 1.09890
\(35\) 0 0
\(36\) 2.17678e9 0.166667
\(37\) 2.00303e10i 1.28344i 0.766939 + 0.641720i \(0.221779\pi\)
−0.766939 + 0.641720i \(0.778221\pi\)
\(38\) − 1.21622e10i − 0.655269i
\(39\) −1.75171e10 −0.797155
\(40\) 0 0
\(41\) −3.96245e10 −1.30277 −0.651387 0.758745i \(-0.725813\pi\)
−0.651387 + 0.758745i \(0.725813\pi\)
\(42\) − 8.22713e9i − 0.231275i
\(43\) 8.14862e10i 1.96580i 0.184144 + 0.982899i \(0.441049\pi\)
−0.184144 + 0.982899i \(0.558951\pi\)
\(44\) −2.70845e10 −0.562701
\(45\) 0 0
\(46\) −2.25893e10 −0.351542
\(47\) − 3.41360e10i − 0.461931i −0.972962 0.230965i \(-0.925812\pi\)
0.972962 0.230965i \(-0.0741884\pi\)
\(48\) 1.22306e10i 0.144338i
\(49\) 6.57946e10 0.679072
\(50\) 0 0
\(51\) 1.12751e11 0.897250
\(52\) − 9.84227e10i − 0.690357i
\(53\) 2.18108e10i 0.135170i 0.997714 + 0.0675848i \(0.0215293\pi\)
−0.997714 + 0.0675848i \(0.978471\pi\)
\(54\) 2.47949e10 0.136083
\(55\) 0 0
\(56\) 4.62254e10 0.200290
\(57\) − 1.38535e11i − 0.535025i
\(58\) 1.79462e11i 0.618998i
\(59\) −2.29220e11 −0.707479 −0.353740 0.935344i \(-0.615090\pi\)
−0.353740 + 0.935344i \(0.615090\pi\)
\(60\) 0 0
\(61\) 9.79974e9 0.0243540 0.0121770 0.999926i \(-0.496124\pi\)
0.0121770 + 0.999926i \(0.496124\pi\)
\(62\) 1.76874e11i 0.395475i
\(63\) − 9.37122e10i − 0.188835i
\(64\) −6.87195e10 −0.125000
\(65\) 0 0
\(66\) −3.08509e11 −0.459444
\(67\) 7.89043e11i 1.06565i 0.846226 + 0.532825i \(0.178869\pi\)
−0.846226 + 0.532825i \(0.821131\pi\)
\(68\) 6.33508e11i 0.777041i
\(69\) −2.57306e11 −0.287033
\(70\) 0 0
\(71\) −3.69505e11 −0.342327 −0.171163 0.985243i \(-0.554753\pi\)
−0.171163 + 0.985243i \(0.554753\pi\)
\(72\) 1.39314e11i 0.117851i
\(73\) 6.93078e11i 0.536023i 0.963416 + 0.268011i \(0.0863665\pi\)
−0.963416 + 0.268011i \(0.913633\pi\)
\(74\) −1.28194e12 −0.907529
\(75\) 0 0
\(76\) 7.78383e11 0.463345
\(77\) 1.16601e12i 0.637546i
\(78\) − 1.12110e12i − 0.563674i
\(79\) −2.23131e12 −1.03272 −0.516361 0.856371i \(-0.672714\pi\)
−0.516361 + 0.856371i \(0.672714\pi\)
\(80\) 0 0
\(81\) 2.82430e11 0.111111
\(82\) − 2.53597e12i − 0.921201i
\(83\) − 2.08433e12i − 0.699775i −0.936792 0.349888i \(-0.886220\pi\)
0.936792 0.349888i \(-0.113780\pi\)
\(84\) 5.26536e11 0.163536
\(85\) 0 0
\(86\) −5.21512e12 −1.39003
\(87\) 2.04418e12i 0.505410i
\(88\) − 1.73341e12i − 0.397890i
\(89\) −2.22196e12 −0.473916 −0.236958 0.971520i \(-0.576150\pi\)
−0.236958 + 0.971520i \(0.576150\pi\)
\(90\) 0 0
\(91\) −4.23717e12 −0.782181
\(92\) − 1.44572e12i − 0.248578i
\(93\) 2.01471e12i 0.322904i
\(94\) 2.18471e12 0.326634
\(95\) 0 0
\(96\) −7.82758e11 −0.102062
\(97\) 1.02684e13i 1.25166i 0.779960 + 0.625829i \(0.215239\pi\)
−0.779960 + 0.625829i \(0.784761\pi\)
\(98\) 4.21086e12i 0.480176i
\(99\) −3.51411e12 −0.375134
\(100\) 0 0
\(101\) −2.74433e12 −0.257245 −0.128623 0.991694i \(-0.541056\pi\)
−0.128623 + 0.991694i \(0.541056\pi\)
\(102\) 7.21605e12i 0.634452i
\(103\) 2.67772e12i 0.220964i 0.993878 + 0.110482i \(0.0352395\pi\)
−0.993878 + 0.110482i \(0.964760\pi\)
\(104\) 6.29905e12 0.488156
\(105\) 0 0
\(106\) −1.39589e12 −0.0955793
\(107\) − 1.87398e13i − 1.20718i −0.797297 0.603588i \(-0.793737\pi\)
0.797297 0.603588i \(-0.206263\pi\)
\(108\) 1.58687e12i 0.0962250i
\(109\) −1.36996e13 −0.782410 −0.391205 0.920304i \(-0.627942\pi\)
−0.391205 + 0.920304i \(0.627942\pi\)
\(110\) 0 0
\(111\) −1.46021e13 −0.740994
\(112\) 2.95843e12i 0.141626i
\(113\) − 7.96199e12i − 0.359759i −0.983689 0.179880i \(-0.942429\pi\)
0.983689 0.179880i \(-0.0575708\pi\)
\(114\) 8.86627e12 0.378320
\(115\) 0 0
\(116\) −1.14855e13 −0.437698
\(117\) − 1.27700e13i − 0.460238i
\(118\) − 1.46701e13i − 0.500263i
\(119\) 2.72730e13 0.880396
\(120\) 0 0
\(121\) 9.20139e12 0.266531
\(122\) 6.27183e11i 0.0172209i
\(123\) − 2.88863e13i − 0.752157i
\(124\) −1.13200e13 −0.279643
\(125\) 0 0
\(126\) 5.99758e12 0.133527
\(127\) 4.46432e13i 0.944129i 0.881564 + 0.472064i \(0.156491\pi\)
−0.881564 + 0.472064i \(0.843509\pi\)
\(128\) − 4.39805e12i − 0.0883883i
\(129\) −5.94034e13 −1.13495
\(130\) 0 0
\(131\) −1.87106e13 −0.323463 −0.161732 0.986835i \(-0.551708\pi\)
−0.161732 + 0.986835i \(0.551708\pi\)
\(132\) − 1.97446e13i − 0.324876i
\(133\) − 3.35100e13i − 0.524975i
\(134\) −5.04987e13 −0.753528
\(135\) 0 0
\(136\) −4.05445e13 −0.549451
\(137\) 1.36578e13i 0.176481i 0.996099 + 0.0882405i \(0.0281244\pi\)
−0.996099 + 0.0882405i \(0.971876\pi\)
\(138\) − 1.64676e13i − 0.202963i
\(139\) 9.46162e13 1.11268 0.556339 0.830956i \(-0.312206\pi\)
0.556339 + 0.830956i \(0.312206\pi\)
\(140\) 0 0
\(141\) 2.48852e13 0.266696
\(142\) − 2.36483e13i − 0.242061i
\(143\) 1.58890e14i 1.55386i
\(144\) −8.91610e12 −0.0833333
\(145\) 0 0
\(146\) −4.43570e13 −0.379025
\(147\) 4.79643e13i 0.392062i
\(148\) − 8.20439e13i − 0.641720i
\(149\) −1.22018e14 −0.913506 −0.456753 0.889593i \(-0.650988\pi\)
−0.456753 + 0.889593i \(0.650988\pi\)
\(150\) 0 0
\(151\) 1.65699e14 1.13755 0.568775 0.822493i \(-0.307418\pi\)
0.568775 + 0.822493i \(0.307418\pi\)
\(152\) 4.98165e13i 0.327635i
\(153\) 8.21954e13i 0.518028i
\(154\) −7.46245e13 −0.450813
\(155\) 0 0
\(156\) 7.17501e13 0.398578
\(157\) − 1.38407e14i − 0.737581i −0.929512 0.368791i \(-0.879772\pi\)
0.929512 0.368791i \(-0.120228\pi\)
\(158\) − 1.42804e14i − 0.730245i
\(159\) −1.59001e13 −0.0780402
\(160\) 0 0
\(161\) −6.22392e13 −0.281641
\(162\) 1.80755e13i 0.0785674i
\(163\) − 2.12316e14i − 0.886672i −0.896356 0.443336i \(-0.853795\pi\)
0.896356 0.443336i \(-0.146205\pi\)
\(164\) 1.62302e14 0.651387
\(165\) 0 0
\(166\) 1.33397e14 0.494816
\(167\) − 3.19109e14i − 1.13837i −0.822210 0.569184i \(-0.807259\pi\)
0.822210 0.569184i \(-0.192741\pi\)
\(168\) 3.36983e13i 0.115637i
\(169\) −2.74517e14 −0.906369
\(170\) 0 0
\(171\) 1.00992e14 0.308897
\(172\) − 3.33767e14i − 0.982899i
\(173\) 4.29507e13i 0.121806i 0.998144 + 0.0609032i \(0.0193981\pi\)
−0.998144 + 0.0609032i \(0.980602\pi\)
\(174\) −1.30827e14 −0.357379
\(175\) 0 0
\(176\) 1.10938e14 0.281351
\(177\) − 1.67101e14i − 0.408463i
\(178\) − 1.42206e14i − 0.335109i
\(179\) −2.87102e14 −0.652367 −0.326183 0.945307i \(-0.605763\pi\)
−0.326183 + 0.945307i \(0.605763\pi\)
\(180\) 0 0
\(181\) −4.39276e14 −0.928597 −0.464298 0.885679i \(-0.653693\pi\)
−0.464298 + 0.885679i \(0.653693\pi\)
\(182\) − 2.71179e14i − 0.553085i
\(183\) 7.14401e12i 0.0140608i
\(184\) 9.25258e13 0.175771
\(185\) 0 0
\(186\) −1.28941e14 −0.228327
\(187\) − 1.02271e15i − 1.74897i
\(188\) 1.39821e14i 0.230965i
\(189\) 6.83162e13 0.109024
\(190\) 0 0
\(191\) 6.39238e14 0.952677 0.476338 0.879262i \(-0.341964\pi\)
0.476338 + 0.879262i \(0.341964\pi\)
\(192\) − 5.00965e13i − 0.0721688i
\(193\) − 2.70674e13i − 0.0376984i −0.999822 0.0188492i \(-0.994000\pi\)
0.999822 0.0188492i \(-0.00600025\pi\)
\(194\) −6.57176e14 −0.885056
\(195\) 0 0
\(196\) −2.69495e14 −0.339536
\(197\) − 1.34873e15i − 1.64397i −0.569509 0.821985i \(-0.692866\pi\)
0.569509 0.821985i \(-0.307134\pi\)
\(198\) − 2.24903e14i − 0.265260i
\(199\) −5.78234e14 −0.660022 −0.330011 0.943977i \(-0.607053\pi\)
−0.330011 + 0.943977i \(0.607053\pi\)
\(200\) 0 0
\(201\) −5.75212e14 −0.615253
\(202\) − 1.75637e14i − 0.181900i
\(203\) 4.94461e14i 0.495916i
\(204\) −4.61827e14 −0.448625
\(205\) 0 0
\(206\) −1.71374e14 −0.156245
\(207\) − 1.87576e14i − 0.165718i
\(208\) 4.03139e14i 0.345178i
\(209\) −1.25659e15 −1.04290
\(210\) 0 0
\(211\) 1.24126e15 0.968334 0.484167 0.874976i \(-0.339123\pi\)
0.484167 + 0.874976i \(0.339123\pi\)
\(212\) − 8.93372e13i − 0.0675848i
\(213\) − 2.69369e14i − 0.197642i
\(214\) 1.19935e15 0.853602
\(215\) 0 0
\(216\) −1.01560e14 −0.0680414
\(217\) 4.87333e14i 0.316838i
\(218\) − 8.76772e14i − 0.553247i
\(219\) −5.05254e14 −0.309473
\(220\) 0 0
\(221\) 3.71644e15 2.14574
\(222\) − 9.34532e14i − 0.523962i
\(223\) − 3.28010e15i − 1.78610i −0.449959 0.893049i \(-0.648561\pi\)
0.449959 0.893049i \(-0.351439\pi\)
\(224\) −1.89339e14 −0.100145
\(225\) 0 0
\(226\) 5.09567e14 0.254388
\(227\) − 2.83811e15i − 1.37677i −0.725346 0.688384i \(-0.758320\pi\)
0.725346 0.688384i \(-0.241680\pi\)
\(228\) 5.67441e14i 0.267513i
\(229\) −2.51453e15 −1.15220 −0.576099 0.817380i \(-0.695426\pi\)
−0.576099 + 0.817380i \(0.695426\pi\)
\(230\) 0 0
\(231\) −8.50020e14 −0.368088
\(232\) − 7.35074e14i − 0.309499i
\(233\) − 1.37233e15i − 0.561882i −0.959725 0.280941i \(-0.909354\pi\)
0.959725 0.280941i \(-0.0906464\pi\)
\(234\) 8.17279e14 0.325437
\(235\) 0 0
\(236\) 9.38884e14 0.353740
\(237\) − 1.62662e15i − 0.596243i
\(238\) 1.74547e15i 0.622534i
\(239\) −2.19281e15 −0.761051 −0.380525 0.924770i \(-0.624257\pi\)
−0.380525 + 0.924770i \(0.624257\pi\)
\(240\) 0 0
\(241\) 8.93064e14 0.293611 0.146805 0.989165i \(-0.453101\pi\)
0.146805 + 0.989165i \(0.453101\pi\)
\(242\) 5.88889e14i 0.188466i
\(243\) 2.05891e14i 0.0641500i
\(244\) −4.01397e13 −0.0121770
\(245\) 0 0
\(246\) 1.84872e15 0.531855
\(247\) − 4.56634e15i − 1.27949i
\(248\) − 7.24477e14i − 0.197737i
\(249\) 1.51948e15 0.404015
\(250\) 0 0
\(251\) −7.33069e15 −1.85040 −0.925200 0.379479i \(-0.876103\pi\)
−0.925200 + 0.379479i \(0.876103\pi\)
\(252\) 3.83845e14i 0.0944175i
\(253\) 2.33391e15i 0.559500i
\(254\) −2.85717e15 −0.667600
\(255\) 0 0
\(256\) 2.81475e14 0.0625000
\(257\) 7.57064e15i 1.63896i 0.573110 + 0.819478i \(0.305737\pi\)
−0.573110 + 0.819478i \(0.694263\pi\)
\(258\) − 3.80182e15i − 0.802534i
\(259\) −3.53206e15 −0.727075
\(260\) 0 0
\(261\) −1.49021e15 −0.291799
\(262\) − 1.19748e15i − 0.228723i
\(263\) − 4.17154e15i − 0.777292i −0.921387 0.388646i \(-0.872943\pi\)
0.921387 0.388646i \(-0.127057\pi\)
\(264\) 1.26365e15 0.229722
\(265\) 0 0
\(266\) 2.14464e15 0.371213
\(267\) − 1.61981e15i − 0.273616i
\(268\) − 3.23192e15i − 0.532825i
\(269\) 1.18525e15 0.190731 0.0953654 0.995442i \(-0.469598\pi\)
0.0953654 + 0.995442i \(0.469598\pi\)
\(270\) 0 0
\(271\) −7.38509e15 −1.13254 −0.566272 0.824218i \(-0.691615\pi\)
−0.566272 + 0.824218i \(0.691615\pi\)
\(272\) − 2.59485e15i − 0.388521i
\(273\) − 3.08890e15i − 0.451592i
\(274\) −8.74101e14 −0.124791
\(275\) 0 0
\(276\) 1.05393e15 0.143516
\(277\) − 8.90718e15i − 1.18474i −0.805668 0.592368i \(-0.798193\pi\)
0.805668 0.592368i \(-0.201807\pi\)
\(278\) 6.05544e15i 0.786782i
\(279\) −1.46872e15 −0.186429
\(280\) 0 0
\(281\) 7.28107e15 0.882275 0.441137 0.897440i \(-0.354575\pi\)
0.441137 + 0.897440i \(0.354575\pi\)
\(282\) 1.59265e15i 0.188582i
\(283\) − 2.25119e15i − 0.260495i −0.991482 0.130248i \(-0.958423\pi\)
0.991482 0.130248i \(-0.0415772\pi\)
\(284\) 1.51349e15 0.171163
\(285\) 0 0
\(286\) −1.01689e16 −1.09874
\(287\) − 6.98723e15i − 0.738028i
\(288\) − 5.70630e14i − 0.0589256i
\(289\) −1.40167e16 −1.41517
\(290\) 0 0
\(291\) −7.48565e15 −0.722645
\(292\) − 2.83885e15i − 0.268011i
\(293\) 1.47912e16i 1.36572i 0.730548 + 0.682862i \(0.239265\pi\)
−0.730548 + 0.682862i \(0.760735\pi\)
\(294\) −3.06971e15 −0.277230
\(295\) 0 0
\(296\) 5.25081e15 0.453764
\(297\) − 2.56179e15i − 0.216584i
\(298\) − 7.80912e15i − 0.645947i
\(299\) −8.48122e15 −0.686429
\(300\) 0 0
\(301\) −1.43689e16 −1.11363
\(302\) 1.06048e16i 0.804369i
\(303\) − 2.00062e15i − 0.148521i
\(304\) −3.18826e15 −0.231673
\(305\) 0 0
\(306\) −5.26050e15 −0.366301
\(307\) 2.48209e16i 1.69207i 0.533129 + 0.846034i \(0.321016\pi\)
−0.533129 + 0.846034i \(0.678984\pi\)
\(308\) − 4.77597e15i − 0.318773i
\(309\) −1.95205e15 −0.127574
\(310\) 0 0
\(311\) −3.32199e15 −0.208188 −0.104094 0.994567i \(-0.533194\pi\)
−0.104094 + 0.994567i \(0.533194\pi\)
\(312\) 4.59201e15i 0.281837i
\(313\) − 9.51146e15i − 0.571754i −0.958266 0.285877i \(-0.907715\pi\)
0.958266 0.285877i \(-0.0922848\pi\)
\(314\) 8.85804e15 0.521549
\(315\) 0 0
\(316\) 9.13945e15 0.516361
\(317\) − 1.51151e16i − 0.836614i −0.908306 0.418307i \(-0.862624\pi\)
0.908306 0.418307i \(-0.137376\pi\)
\(318\) − 1.01761e15i − 0.0551828i
\(319\) 1.85418e16 0.985173
\(320\) 0 0
\(321\) 1.36613e16 0.696963
\(322\) − 3.98331e15i − 0.199150i
\(323\) 2.93918e16i 1.44015i
\(324\) −1.15683e15 −0.0555556
\(325\) 0 0
\(326\) 1.35882e16 0.626972
\(327\) − 9.98698e15i − 0.451725i
\(328\) 1.03873e16i 0.460600i
\(329\) 6.01941e15 0.261686
\(330\) 0 0
\(331\) 3.67739e15 0.153694 0.0768472 0.997043i \(-0.475515\pi\)
0.0768472 + 0.997043i \(0.475515\pi\)
\(332\) 8.53741e15i 0.349888i
\(333\) − 1.06449e16i − 0.427813i
\(334\) 2.04230e16 0.804947
\(335\) 0 0
\(336\) −2.15669e15 −0.0817679
\(337\) 2.85819e16i 1.06291i 0.847087 + 0.531454i \(0.178354\pi\)
−0.847087 + 0.531454i \(0.821646\pi\)
\(338\) − 1.75691e16i − 0.640900i
\(339\) 5.80429e15 0.207707
\(340\) 0 0
\(341\) 1.82745e16 0.629422
\(342\) 6.46351e15i 0.218423i
\(343\) 2.86870e16i 0.951203i
\(344\) 2.13611e16 0.695015
\(345\) 0 0
\(346\) −2.74884e15 −0.0861302
\(347\) 1.94892e16i 0.599311i 0.954047 + 0.299655i \(0.0968717\pi\)
−0.954047 + 0.299655i \(0.903128\pi\)
\(348\) − 8.37296e15i − 0.252705i
\(349\) −5.84726e16 −1.73216 −0.866079 0.499908i \(-0.833367\pi\)
−0.866079 + 0.499908i \(0.833367\pi\)
\(350\) 0 0
\(351\) 9.30932e15 0.265718
\(352\) 7.10003e15i 0.198945i
\(353\) 4.93208e16i 1.35673i 0.734724 + 0.678366i \(0.237312\pi\)
−0.734724 + 0.678366i \(0.762688\pi\)
\(354\) 1.06945e16 0.288827
\(355\) 0 0
\(356\) 9.10115e15 0.236958
\(357\) 1.98820e16i 0.508297i
\(358\) − 1.83745e16i − 0.461293i
\(359\) −2.83880e16 −0.699875 −0.349937 0.936773i \(-0.613797\pi\)
−0.349937 + 0.936773i \(0.613797\pi\)
\(360\) 0 0
\(361\) −5.93973e15 −0.141244
\(362\) − 2.81137e16i − 0.656617i
\(363\) 6.70781e15i 0.153882i
\(364\) 1.73555e16 0.391090
\(365\) 0 0
\(366\) −4.57217e14 −0.00994248
\(367\) − 3.05678e16i − 0.653032i −0.945192 0.326516i \(-0.894125\pi\)
0.945192 0.326516i \(-0.105875\pi\)
\(368\) 5.92165e15i 0.124289i
\(369\) 2.10581e16 0.434258
\(370\) 0 0
\(371\) −3.84603e15 −0.0765743
\(372\) − 8.25225e15i − 0.161452i
\(373\) − 4.67482e16i − 0.898789i −0.893333 0.449394i \(-0.851640\pi\)
0.893333 0.449394i \(-0.148360\pi\)
\(374\) 6.54535e16 1.23671
\(375\) 0 0
\(376\) −8.94855e15 −0.163317
\(377\) 6.73793e16i 1.20867i
\(378\) 4.37224e15i 0.0770916i
\(379\) 7.93540e16 1.37535 0.687677 0.726017i \(-0.258631\pi\)
0.687677 + 0.726017i \(0.258631\pi\)
\(380\) 0 0
\(381\) −3.25449e16 −0.545093
\(382\) 4.09112e16i 0.673644i
\(383\) 1.12647e17i 1.82360i 0.410640 + 0.911798i \(0.365305\pi\)
−0.410640 + 0.911798i \(0.634695\pi\)
\(384\) 3.20618e15 0.0510310
\(385\) 0 0
\(386\) 1.73231e15 0.0266568
\(387\) − 4.33051e16i − 0.655266i
\(388\) − 4.20593e16i − 0.625829i
\(389\) 7.86645e16 1.15108 0.575541 0.817773i \(-0.304791\pi\)
0.575541 + 0.817773i \(0.304791\pi\)
\(390\) 0 0
\(391\) 5.45902e16 0.772620
\(392\) − 1.72477e16i − 0.240088i
\(393\) − 1.36400e16i − 0.186751i
\(394\) 8.63186e16 1.16246
\(395\) 0 0
\(396\) 1.43938e16 0.187567
\(397\) 4.32882e16i 0.554921i 0.960737 + 0.277461i \(0.0894928\pi\)
−0.960737 + 0.277461i \(0.910507\pi\)
\(398\) − 3.70070e16i − 0.466706i
\(399\) 2.44288e16 0.303094
\(400\) 0 0
\(401\) 1.01567e17 1.21987 0.609936 0.792451i \(-0.291195\pi\)
0.609936 + 0.792451i \(0.291195\pi\)
\(402\) − 3.68136e16i − 0.435049i
\(403\) 6.64080e16i 0.772213i
\(404\) 1.12408e16 0.128623
\(405\) 0 0
\(406\) −3.16455e16 −0.350666
\(407\) 1.32448e17i 1.44439i
\(408\) − 2.95570e16i − 0.317226i
\(409\) 9.64582e16 1.01891 0.509457 0.860496i \(-0.329846\pi\)
0.509457 + 0.860496i \(0.329846\pi\)
\(410\) 0 0
\(411\) −9.95656e15 −0.101891
\(412\) − 1.09679e16i − 0.110482i
\(413\) − 4.04197e16i − 0.400791i
\(414\) 1.20049e16 0.117181
\(415\) 0 0
\(416\) −2.58009e16 −0.244078
\(417\) 6.89752e16i 0.642405i
\(418\) − 8.04218e16i − 0.737442i
\(419\) −2.92985e16 −0.264517 −0.132259 0.991215i \(-0.542223\pi\)
−0.132259 + 0.991215i \(0.542223\pi\)
\(420\) 0 0
\(421\) −1.81553e17 −1.58917 −0.794584 0.607154i \(-0.792311\pi\)
−0.794584 + 0.607154i \(0.792311\pi\)
\(422\) 7.94404e16i 0.684716i
\(423\) 1.81413e16i 0.153977i
\(424\) 5.71758e15 0.0477897
\(425\) 0 0
\(426\) 1.72396e16 0.139754
\(427\) 1.72805e15i 0.0137967i
\(428\) 7.67582e16i 0.603588i
\(429\) −1.15831e17 −0.897121
\(430\) 0 0
\(431\) −5.10999e16 −0.383988 −0.191994 0.981396i \(-0.561495\pi\)
−0.191994 + 0.981396i \(0.561495\pi\)
\(432\) − 6.49984e15i − 0.0481125i
\(433\) 2.04438e17i 1.49070i 0.666675 + 0.745348i \(0.267717\pi\)
−0.666675 + 0.745348i \(0.732283\pi\)
\(434\) −3.11893e16 −0.224038
\(435\) 0 0
\(436\) 5.61134e16 0.391205
\(437\) − 6.70743e16i − 0.460709i
\(438\) − 3.23362e16i − 0.218830i
\(439\) −2.41391e17 −1.60954 −0.804770 0.593586i \(-0.797712\pi\)
−0.804770 + 0.593586i \(0.797712\pi\)
\(440\) 0 0
\(441\) −3.49660e16 −0.226357
\(442\) 2.37852e17i 1.51727i
\(443\) − 1.69539e17i − 1.06573i −0.846201 0.532864i \(-0.821116\pi\)
0.846201 0.532864i \(-0.178884\pi\)
\(444\) 5.98100e16 0.370497
\(445\) 0 0
\(446\) 2.09926e17 1.26296
\(447\) − 8.89508e16i − 0.527413i
\(448\) − 1.21177e16i − 0.0708131i
\(449\) −1.46735e17 −0.845149 −0.422575 0.906328i \(-0.638874\pi\)
−0.422575 + 0.906328i \(0.638874\pi\)
\(450\) 0 0
\(451\) −2.62014e17 −1.46615
\(452\) 3.26123e16i 0.179880i
\(453\) 1.20795e17i 0.656765i
\(454\) 1.81639e17 0.973522
\(455\) 0 0
\(456\) −3.63162e16 −0.189160
\(457\) 3.53190e17i 1.81365i 0.421508 + 0.906825i \(0.361501\pi\)
−0.421508 + 0.906825i \(0.638499\pi\)
\(458\) − 1.60930e17i − 0.814726i
\(459\) −5.99204e16 −0.299083
\(460\) 0 0
\(461\) 8.13033e15 0.0394505 0.0197252 0.999805i \(-0.493721\pi\)
0.0197252 + 0.999805i \(0.493721\pi\)
\(462\) − 5.44013e16i − 0.260277i
\(463\) 4.12513e16i 0.194608i 0.995255 + 0.0973040i \(0.0310219\pi\)
−0.995255 + 0.0973040i \(0.968978\pi\)
\(464\) 4.70448e16 0.218849
\(465\) 0 0
\(466\) 8.78291e16 0.397310
\(467\) − 1.76637e17i − 0.787991i −0.919112 0.393995i \(-0.871093\pi\)
0.919112 0.393995i \(-0.128907\pi\)
\(468\) 5.23059e16i 0.230119i
\(469\) −1.39137e17 −0.603696
\(470\) 0 0
\(471\) 1.00899e17 0.425843
\(472\) 6.00886e16i 0.250132i
\(473\) 5.38821e17i 2.21231i
\(474\) 1.04104e17 0.421607
\(475\) 0 0
\(476\) −1.11710e17 −0.440198
\(477\) − 1.15912e16i − 0.0450565i
\(478\) − 1.40340e17i − 0.538144i
\(479\) −5.71489e16 −0.216186 −0.108093 0.994141i \(-0.534474\pi\)
−0.108093 + 0.994141i \(0.534474\pi\)
\(480\) 0 0
\(481\) −4.81307e17 −1.77206
\(482\) 5.71561e16i 0.207614i
\(483\) − 4.53724e16i − 0.162605i
\(484\) −3.76889e16 −0.133266
\(485\) 0 0
\(486\) −1.31770e16 −0.0453609
\(487\) − 1.70959e17i − 0.580703i −0.956920 0.290352i \(-0.906228\pi\)
0.956920 0.290352i \(-0.0937723\pi\)
\(488\) − 2.56894e15i − 0.00861044i
\(489\) 1.54778e17 0.511920
\(490\) 0 0
\(491\) 7.30125e15 0.0235162 0.0117581 0.999931i \(-0.496257\pi\)
0.0117581 + 0.999931i \(0.496257\pi\)
\(492\) 1.18318e17i 0.376079i
\(493\) − 4.33694e17i − 1.36044i
\(494\) 2.92246e17 0.904739
\(495\) 0 0
\(496\) 4.63665e16 0.139821
\(497\) − 6.51570e16i − 0.193930i
\(498\) 9.72464e16i 0.285682i
\(499\) −3.45599e17 −1.00212 −0.501059 0.865413i \(-0.667056\pi\)
−0.501059 + 0.865413i \(0.667056\pi\)
\(500\) 0 0
\(501\) 2.32631e17 0.657237
\(502\) − 4.69164e17i − 1.30843i
\(503\) 8.21237e16i 0.226087i 0.993590 + 0.113044i \(0.0360600\pi\)
−0.993590 + 0.113044i \(0.963940\pi\)
\(504\) −2.45661e16 −0.0667633
\(505\) 0 0
\(506\) −1.49370e17 −0.395626
\(507\) − 2.00123e17i − 0.523293i
\(508\) − 1.82859e17i − 0.472064i
\(509\) −6.11607e17 −1.55886 −0.779430 0.626489i \(-0.784491\pi\)
−0.779430 + 0.626489i \(0.784491\pi\)
\(510\) 0 0
\(511\) −1.22215e17 −0.303660
\(512\) 1.80144e16i 0.0441942i
\(513\) 7.36234e16i 0.178342i
\(514\) −4.84521e17 −1.15892
\(515\) 0 0
\(516\) 2.43316e17 0.567477
\(517\) − 2.25722e17i − 0.519858i
\(518\) − 2.26052e17i − 0.514119i
\(519\) −3.13110e16 −0.0703250
\(520\) 0 0
\(521\) 2.42378e17 0.530944 0.265472 0.964119i \(-0.414472\pi\)
0.265472 + 0.964119i \(0.414472\pi\)
\(522\) − 9.53732e16i − 0.206333i
\(523\) 6.89943e17i 1.47419i 0.675791 + 0.737093i \(0.263802\pi\)
−0.675791 + 0.737093i \(0.736198\pi\)
\(524\) 7.66387e16 0.161732
\(525\) 0 0
\(526\) 2.66979e17 0.549629
\(527\) − 4.27442e17i − 0.869177i
\(528\) 8.08738e16i 0.162438i
\(529\) 3.79457e17 0.752837
\(530\) 0 0
\(531\) 1.21817e17 0.235826
\(532\) 1.37257e17i 0.262488i
\(533\) − 9.52137e17i − 1.79876i
\(534\) 1.03668e17 0.193475
\(535\) 0 0
\(536\) 2.06843e17 0.376764
\(537\) − 2.09297e17i − 0.376644i
\(538\) 7.58561e16i 0.134867i
\(539\) 4.35062e17 0.764230
\(540\) 0 0
\(541\) −3.61547e17 −0.619986 −0.309993 0.950739i \(-0.600327\pi\)
−0.309993 + 0.950739i \(0.600327\pi\)
\(542\) − 4.72646e17i − 0.800830i
\(543\) − 3.20232e17i − 0.536126i
\(544\) 1.66070e17 0.274726
\(545\) 0 0
\(546\) 1.97690e17 0.319324
\(547\) 7.88310e17i 1.25829i 0.777290 + 0.629143i \(0.216594\pi\)
−0.777290 + 0.629143i \(0.783406\pi\)
\(548\) − 5.59425e16i − 0.0882405i
\(549\) −5.20798e15 −0.00811800
\(550\) 0 0
\(551\) −5.32874e17 −0.811221
\(552\) 6.74513e16i 0.101481i
\(553\) − 3.93460e17i − 0.585043i
\(554\) 5.70059e17 0.837735
\(555\) 0 0
\(556\) −3.87548e17 −0.556339
\(557\) − 1.25406e18i − 1.77934i −0.456601 0.889672i \(-0.650933\pi\)
0.456601 0.889672i \(-0.349067\pi\)
\(558\) − 9.39983e16i − 0.131825i
\(559\) −1.95803e18 −2.71420
\(560\) 0 0
\(561\) 7.45556e17 1.00977
\(562\) 4.65988e17i 0.623863i
\(563\) − 9.12869e17i − 1.20810i −0.796945 0.604052i \(-0.793552\pi\)
0.796945 0.604052i \(-0.206448\pi\)
\(564\) −1.01930e17 −0.133348
\(565\) 0 0
\(566\) 1.44076e17 0.184198
\(567\) 4.98025e16i 0.0629450i
\(568\) 9.68634e16i 0.121031i
\(569\) −2.67735e17 −0.330731 −0.165366 0.986232i \(-0.552880\pi\)
−0.165366 + 0.986232i \(0.552880\pi\)
\(570\) 0 0
\(571\) 7.01225e17 0.846687 0.423343 0.905969i \(-0.360856\pi\)
0.423343 + 0.905969i \(0.360856\pi\)
\(572\) − 6.50812e17i − 0.776929i
\(573\) 4.66004e17i 0.550028i
\(574\) 4.47183e17 0.521865
\(575\) 0 0
\(576\) 3.65203e16 0.0416667
\(577\) − 5.15072e17i − 0.581066i −0.956865 0.290533i \(-0.906167\pi\)
0.956865 0.290533i \(-0.0938325\pi\)
\(578\) − 8.97069e17i − 1.00068i
\(579\) 1.97321e16 0.0217652
\(580\) 0 0
\(581\) 3.67542e17 0.396426
\(582\) − 4.79082e17i − 0.510987i
\(583\) 1.44222e17i 0.152120i
\(584\) 1.81686e17 0.189513
\(585\) 0 0
\(586\) −9.46634e17 −0.965712
\(587\) − 1.23894e18i − 1.24998i −0.780635 0.624988i \(-0.785104\pi\)
0.780635 0.624988i \(-0.214896\pi\)
\(588\) − 1.96462e17i − 0.196031i
\(589\) −5.25192e17 −0.518285
\(590\) 0 0
\(591\) 9.83223e17 0.949147
\(592\) 3.36052e17i 0.320860i
\(593\) 1.33259e18i 1.25846i 0.777219 + 0.629230i \(0.216630\pi\)
−0.777219 + 0.629230i \(0.783370\pi\)
\(594\) 1.63954e17 0.153148
\(595\) 0 0
\(596\) 4.99784e17 0.456753
\(597\) − 4.21533e17i − 0.381064i
\(598\) − 5.42798e17i − 0.485378i
\(599\) −7.57281e17 −0.669858 −0.334929 0.942243i \(-0.608712\pi\)
−0.334929 + 0.942243i \(0.608712\pi\)
\(600\) 0 0
\(601\) −3.36665e17 −0.291416 −0.145708 0.989328i \(-0.546546\pi\)
−0.145708 + 0.989328i \(0.546546\pi\)
\(602\) − 9.19613e17i − 0.787459i
\(603\) − 4.19330e17i − 0.355216i
\(604\) −6.78704e17 −0.568775
\(605\) 0 0
\(606\) 1.28040e17 0.105020
\(607\) 3.04072e17i 0.246746i 0.992360 + 0.123373i \(0.0393711\pi\)
−0.992360 + 0.123373i \(0.960629\pi\)
\(608\) − 2.04048e17i − 0.163817i
\(609\) −3.60462e17 −0.286317
\(610\) 0 0
\(611\) 8.20254e17 0.637794
\(612\) − 3.36672e17i − 0.259014i
\(613\) 1.31576e18i 1.00157i 0.865571 + 0.500786i \(0.166956\pi\)
−0.865571 + 0.500786i \(0.833044\pi\)
\(614\) −1.58854e18 −1.19647
\(615\) 0 0
\(616\) 3.05662e17 0.225407
\(617\) 3.45123e15i 0.00251837i 0.999999 + 0.00125919i \(0.000400812\pi\)
−0.999999 + 0.00125919i \(0.999599\pi\)
\(618\) − 1.24931e17i − 0.0902084i
\(619\) −2.18078e17 −0.155820 −0.0779100 0.996960i \(-0.524825\pi\)
−0.0779100 + 0.996960i \(0.524825\pi\)
\(620\) 0 0
\(621\) 1.36743e17 0.0956775
\(622\) − 2.12608e17i − 0.147211i
\(623\) − 3.91812e17i − 0.268476i
\(624\) −2.93889e17 −0.199289
\(625\) 0 0
\(626\) 6.08733e17 0.404291
\(627\) − 9.16054e17i − 0.602119i
\(628\) 5.66914e17i 0.368791i
\(629\) 3.09798e18 1.99457
\(630\) 0 0
\(631\) −1.17875e18 −0.743417 −0.371708 0.928350i \(-0.621228\pi\)
−0.371708 + 0.928350i \(0.621228\pi\)
\(632\) 5.84925e17i 0.365123i
\(633\) 9.04875e17i 0.559068i
\(634\) 9.67365e17 0.591575
\(635\) 0 0
\(636\) 6.51268e16 0.0390201
\(637\) 1.58098e18i 0.937604i
\(638\) 1.18667e18i 0.696622i
\(639\) 1.96370e17 0.114109
\(640\) 0 0
\(641\) 6.21780e16 0.0354046 0.0177023 0.999843i \(-0.494365\pi\)
0.0177023 + 0.999843i \(0.494365\pi\)
\(642\) 8.74324e17i 0.492827i
\(643\) − 8.88490e17i − 0.495771i −0.968789 0.247886i \(-0.920264\pi\)
0.968789 0.247886i \(-0.0797357\pi\)
\(644\) 2.54932e17 0.140820
\(645\) 0 0
\(646\) −1.88107e18 −1.01834
\(647\) − 4.06655e17i − 0.217945i −0.994045 0.108973i \(-0.965244\pi\)
0.994045 0.108973i \(-0.0347561\pi\)
\(648\) − 7.40372e16i − 0.0392837i
\(649\) −1.51570e18 −0.796199
\(650\) 0 0
\(651\) −3.55266e17 −0.182927
\(652\) 8.69645e17i 0.443336i
\(653\) 9.49096e17i 0.479043i 0.970891 + 0.239521i \(0.0769906\pi\)
−0.970891 + 0.239521i \(0.923009\pi\)
\(654\) 6.39167e17 0.319418
\(655\) 0 0
\(656\) −6.64790e17 −0.325694
\(657\) − 3.68330e17i − 0.178674i
\(658\) 3.85242e17i 0.185040i
\(659\) 6.18766e17 0.294287 0.147143 0.989115i \(-0.452992\pi\)
0.147143 + 0.989115i \(0.452992\pi\)
\(660\) 0 0
\(661\) −2.04001e18 −0.951312 −0.475656 0.879632i \(-0.657789\pi\)
−0.475656 + 0.879632i \(0.657789\pi\)
\(662\) 2.35353e17i 0.108678i
\(663\) 2.70929e18i 1.23885i
\(664\) −5.46394e17 −0.247408
\(665\) 0 0
\(666\) 6.81274e17 0.302510
\(667\) 9.89724e17i 0.435207i
\(668\) 1.30707e18i 0.569184i
\(669\) 2.39119e18 1.03120
\(670\) 0 0
\(671\) 6.48000e16 0.0274081
\(672\) − 1.38028e17i − 0.0578187i
\(673\) − 5.44223e17i − 0.225777i −0.993608 0.112888i \(-0.963990\pi\)
0.993608 0.112888i \(-0.0360102\pi\)
\(674\) −1.82924e18 −0.751590
\(675\) 0 0
\(676\) 1.12442e18 0.453185
\(677\) 3.81683e18i 1.52362i 0.647801 + 0.761810i \(0.275689\pi\)
−0.647801 + 0.761810i \(0.724311\pi\)
\(678\) 3.71475e17i 0.146871i
\(679\) −1.81069e18 −0.709070
\(680\) 0 0
\(681\) 2.06898e18 0.794877
\(682\) 1.16957e18i 0.445068i
\(683\) − 4.08234e18i − 1.53877i −0.638782 0.769387i \(-0.720562\pi\)
0.638782 0.769387i \(-0.279438\pi\)
\(684\) −4.13665e17 −0.154448
\(685\) 0 0
\(686\) −1.83597e18 −0.672602
\(687\) − 1.83309e18i − 0.665221i
\(688\) 1.36711e18i 0.491450i
\(689\) −5.24092e17 −0.186630
\(690\) 0 0
\(691\) −4.38187e18 −1.53127 −0.765635 0.643275i \(-0.777575\pi\)
−0.765635 + 0.643275i \(0.777575\pi\)
\(692\) − 1.75926e17i − 0.0609032i
\(693\) − 6.19664e17i − 0.212515i
\(694\) −1.24731e18 −0.423777
\(695\) 0 0
\(696\) 5.35869e17 0.178689
\(697\) 6.12853e18i 2.02462i
\(698\) − 3.74225e18i − 1.22482i
\(699\) 1.00043e18 0.324402
\(700\) 0 0
\(701\) −3.88454e18 −1.23644 −0.618220 0.786005i \(-0.712146\pi\)
−0.618220 + 0.786005i \(0.712146\pi\)
\(702\) 5.95796e17i 0.187891i
\(703\) − 3.80645e18i − 1.18935i
\(704\) −4.54402e17 −0.140675
\(705\) 0 0
\(706\) −3.15653e18 −0.959355
\(707\) − 4.83925e17i − 0.145731i
\(708\) 6.84446e17i 0.204232i
\(709\) 6.58185e18 1.94602 0.973011 0.230758i \(-0.0741207\pi\)
0.973011 + 0.230758i \(0.0741207\pi\)
\(710\) 0 0
\(711\) 1.18581e18 0.344241
\(712\) 5.82474e17i 0.167555i
\(713\) 9.75456e17i 0.278052i
\(714\) −1.27245e18 −0.359420
\(715\) 0 0
\(716\) 1.17597e18 0.326183
\(717\) − 1.59855e18i − 0.439393i
\(718\) − 1.81683e18i − 0.494886i
\(719\) 1.83431e18 0.495147 0.247573 0.968869i \(-0.420367\pi\)
0.247573 + 0.968869i \(0.420367\pi\)
\(720\) 0 0
\(721\) −4.72178e17 −0.125177
\(722\) − 3.80143e17i − 0.0998746i
\(723\) 6.51044e17i 0.169516i
\(724\) 1.79928e18 0.464298
\(725\) 0 0
\(726\) −4.29300e17 −0.108811
\(727\) 5.49594e18i 1.38060i 0.723522 + 0.690301i \(0.242522\pi\)
−0.723522 + 0.690301i \(0.757478\pi\)
\(728\) 1.11075e18i 0.276543i
\(729\) −1.50095e17 −0.0370370
\(730\) 0 0
\(731\) 1.26031e19 3.05501
\(732\) − 2.92619e16i − 0.00703040i
\(733\) − 1.68080e18i − 0.400259i −0.979769 0.200130i \(-0.935864\pi\)
0.979769 0.200130i \(-0.0641363\pi\)
\(734\) 1.95634e18 0.461763
\(735\) 0 0
\(736\) −3.78986e17 −0.0878854
\(737\) 5.21748e18i 1.19928i
\(738\) 1.34772e18i 0.307067i
\(739\) 7.12858e18 1.60996 0.804979 0.593304i \(-0.202177\pi\)
0.804979 + 0.593304i \(0.202177\pi\)
\(740\) 0 0
\(741\) 3.32886e18 0.738716
\(742\) − 2.46146e17i − 0.0541462i
\(743\) 4.83565e18i 1.05445i 0.849725 + 0.527227i \(0.176768\pi\)
−0.849725 + 0.527227i \(0.823232\pi\)
\(744\) 5.28144e17 0.114164
\(745\) 0 0
\(746\) 2.99189e18 0.635540
\(747\) 1.10770e18i 0.233258i
\(748\) 4.18902e18i 0.874485i
\(749\) 3.30450e18 0.683871
\(750\) 0 0
\(751\) −6.52041e18 −1.32622 −0.663110 0.748522i \(-0.730764\pi\)
−0.663110 + 0.748522i \(0.730764\pi\)
\(752\) − 5.72707e17i − 0.115483i
\(753\) − 5.34407e18i − 1.06833i
\(754\) −4.31228e18 −0.854659
\(755\) 0 0
\(756\) −2.79823e17 −0.0545120
\(757\) 5.37572e18i 1.03828i 0.854690 + 0.519138i \(0.173747\pi\)
−0.854690 + 0.519138i \(0.826253\pi\)
\(758\) 5.07866e18i 0.972521i
\(759\) −1.70142e18 −0.323027
\(760\) 0 0
\(761\) −6.77293e17 −0.126408 −0.0632042 0.998001i \(-0.520132\pi\)
−0.0632042 + 0.998001i \(0.520132\pi\)
\(762\) − 2.08287e18i − 0.385439i
\(763\) − 2.41573e18i − 0.443239i
\(764\) −2.61832e18 −0.476338
\(765\) 0 0
\(766\) −7.20942e18 −1.28948
\(767\) − 5.50791e18i − 0.976826i
\(768\) 2.05195e17i 0.0360844i
\(769\) 1.97210e18 0.343881 0.171941 0.985107i \(-0.444996\pi\)
0.171941 + 0.985107i \(0.444996\pi\)
\(770\) 0 0
\(771\) −5.51900e18 −0.946252
\(772\) 1.10868e17i 0.0188492i
\(773\) 3.13942e17i 0.0529277i 0.999650 + 0.0264639i \(0.00842469\pi\)
−0.999650 + 0.0264639i \(0.991575\pi\)
\(774\) 2.77153e18 0.463343
\(775\) 0 0
\(776\) 2.69179e18 0.442528
\(777\) − 2.57487e18i − 0.419777i
\(778\) 5.03453e18i 0.813938i
\(779\) 7.53005e18 1.20727
\(780\) 0 0
\(781\) −2.44332e18 −0.385255
\(782\) 3.49378e18i 0.546325i
\(783\) − 1.08636e18i − 0.168470i
\(784\) 1.10385e18 0.169768
\(785\) 0 0
\(786\) 8.72963e17 0.132053
\(787\) 6.80238e18i 1.02053i 0.860018 + 0.510264i \(0.170452\pi\)
−0.860018 + 0.510264i \(0.829548\pi\)
\(788\) 5.52439e18i 0.821985i
\(789\) 3.04105e18 0.448770
\(790\) 0 0
\(791\) 1.40399e18 0.203805
\(792\) 9.21203e17i 0.132630i
\(793\) 2.35478e17i 0.0336259i
\(794\) −2.77045e18 −0.392389
\(795\) 0 0
\(796\) 2.36845e18 0.330011
\(797\) − 7.76728e18i − 1.07347i −0.843751 0.536735i \(-0.819657\pi\)
0.843751 0.536735i \(-0.180343\pi\)
\(798\) 1.56344e18i 0.214320i
\(799\) −5.27965e18 −0.717879
\(800\) 0 0
\(801\) 1.18084e18 0.157972
\(802\) 6.50029e18i 0.862580i
\(803\) 4.58292e18i 0.603242i
\(804\) 2.35607e18 0.307626
\(805\) 0 0
\(806\) −4.25011e18 −0.546037
\(807\) 8.64049e17i 0.110119i
\(808\) 7.19410e17i 0.0909500i
\(809\) 6.55504e18 0.822072 0.411036 0.911619i \(-0.365167\pi\)
0.411036 + 0.911619i \(0.365167\pi\)
\(810\) 0 0
\(811\) 8.02074e18 0.989871 0.494936 0.868930i \(-0.335192\pi\)
0.494936 + 0.868930i \(0.335192\pi\)
\(812\) − 2.02531e18i − 0.247958i
\(813\) − 5.38373e18i − 0.653875i
\(814\) −8.47670e18 −1.02134
\(815\) 0 0
\(816\) 1.89164e18 0.224313
\(817\) − 1.54852e19i − 1.82169i
\(818\) 6.17332e18i 0.720481i
\(819\) 2.25181e18 0.260727
\(820\) 0 0
\(821\) 1.05423e19 1.20145 0.600723 0.799457i \(-0.294880\pi\)
0.600723 + 0.799457i \(0.294880\pi\)
\(822\) − 6.37220e17i − 0.0720481i
\(823\) − 6.50382e18i − 0.729574i −0.931091 0.364787i \(-0.881142\pi\)
0.931091 0.364787i \(-0.118858\pi\)
\(824\) 7.01947e17 0.0781227
\(825\) 0 0
\(826\) 2.58686e18 0.283402
\(827\) 1.47825e19i 1.60680i 0.595442 + 0.803398i \(0.296977\pi\)
−0.595442 + 0.803398i \(0.703023\pi\)
\(828\) 7.68312e17i 0.0828592i
\(829\) −4.72547e18 −0.505639 −0.252820 0.967513i \(-0.581358\pi\)
−0.252820 + 0.967513i \(0.581358\pi\)
\(830\) 0 0
\(831\) 6.49333e18 0.684008
\(832\) − 1.65126e18i − 0.172589i
\(833\) − 1.01761e19i − 1.05533i
\(834\) −4.41441e18 −0.454249
\(835\) 0 0
\(836\) 5.14699e18 0.521450
\(837\) − 1.07070e18i − 0.107635i
\(838\) − 1.87510e18i − 0.187042i
\(839\) 1.19196e19 1.17980 0.589899 0.807477i \(-0.299168\pi\)
0.589899 + 0.807477i \(0.299168\pi\)
\(840\) 0 0
\(841\) −2.39773e18 −0.233682
\(842\) − 1.16194e19i − 1.12371i
\(843\) 5.30790e18i 0.509382i
\(844\) −5.08418e18 −0.484167
\(845\) 0 0
\(846\) −1.16104e18 −0.108878
\(847\) 1.62254e18i 0.150991i
\(848\) 3.65925e17i 0.0337924i
\(849\) 1.64111e18 0.150397
\(850\) 0 0
\(851\) −7.06984e18 −0.638068
\(852\) 1.10334e18i 0.0988212i
\(853\) 1.10343e19i 0.980786i 0.871501 + 0.490393i \(0.163147\pi\)
−0.871501 + 0.490393i \(0.836853\pi\)
\(854\) −1.10595e17 −0.00975572
\(855\) 0 0
\(856\) −4.91252e18 −0.426801
\(857\) 1.61936e18i 0.139627i 0.997560 + 0.0698134i \(0.0222404\pi\)
−0.997560 + 0.0698134i \(0.977760\pi\)
\(858\) − 7.41316e18i − 0.634360i
\(859\) −1.01776e19 −0.864354 −0.432177 0.901789i \(-0.642254\pi\)
−0.432177 + 0.901789i \(0.642254\pi\)
\(860\) 0 0
\(861\) 5.09369e18 0.426101
\(862\) − 3.27039e18i − 0.271520i
\(863\) 1.21087e19i 0.997765i 0.866670 + 0.498882i \(0.166256\pi\)
−0.866670 + 0.498882i \(0.833744\pi\)
\(864\) 4.15990e17 0.0340207
\(865\) 0 0
\(866\) −1.30840e19 −1.05408
\(867\) − 1.02182e19i − 0.817051i
\(868\) − 1.99612e18i − 0.158419i
\(869\) −1.47544e19 −1.16223
\(870\) 0 0
\(871\) −1.89599e19 −1.47136
\(872\) 3.59126e18i 0.276624i
\(873\) − 5.45704e18i − 0.417219i
\(874\) 4.29275e18 0.325771
\(875\) 0 0
\(876\) 2.06952e18 0.154736
\(877\) − 1.48201e18i − 0.109990i −0.998487 0.0549952i \(-0.982486\pi\)
0.998487 0.0549952i \(-0.0175144\pi\)
\(878\) − 1.54490e19i − 1.13812i
\(879\) −1.07828e19 −0.788501
\(880\) 0 0
\(881\) 2.07849e19 1.49763 0.748814 0.662780i \(-0.230624\pi\)
0.748814 + 0.662780i \(0.230624\pi\)
\(882\) − 2.23782e18i − 0.160059i
\(883\) − 6.95449e18i − 0.493765i −0.969045 0.246883i \(-0.920594\pi\)
0.969045 0.246883i \(-0.0794062\pi\)
\(884\) −1.52226e19 −1.07287
\(885\) 0 0
\(886\) 1.08505e19 0.753583
\(887\) − 1.85085e19i − 1.27605i −0.770015 0.638026i \(-0.779751\pi\)
0.770015 0.638026i \(-0.220249\pi\)
\(888\) 3.82784e18i 0.261981i
\(889\) −7.87221e18 −0.534854
\(890\) 0 0
\(891\) 1.86754e18 0.125045
\(892\) 1.34353e19i 0.893049i
\(893\) 6.48703e18i 0.428067i
\(894\) 5.69285e18 0.372937
\(895\) 0 0
\(896\) 7.75534e17 0.0500724
\(897\) − 6.18281e18i − 0.396310i
\(898\) − 9.39106e18i − 0.597611i
\(899\) 7.74954e18 0.489596
\(900\) 0 0
\(901\) 3.37337e18 0.210065
\(902\) − 1.67689e19i − 1.03672i
\(903\) − 1.04750e19i − 0.642957i
\(904\) −2.08719e18 −0.127194
\(905\) 0 0
\(906\) −7.73087e18 −0.464403
\(907\) − 1.68306e19i − 1.00381i −0.864922 0.501906i \(-0.832632\pi\)
0.864922 0.501906i \(-0.167368\pi\)
\(908\) 1.16249e19i 0.688384i
\(909\) 1.45845e18 0.0857485
\(910\) 0 0
\(911\) 2.31651e17 0.0134266 0.00671328 0.999977i \(-0.497863\pi\)
0.00671328 + 0.999977i \(0.497863\pi\)
\(912\) − 2.32424e18i − 0.133756i
\(913\) − 1.37825e19i − 0.787529i
\(914\) −2.26042e19 −1.28244
\(915\) 0 0
\(916\) 1.02995e19 0.576099
\(917\) − 3.29936e18i − 0.183243i
\(918\) − 3.83491e18i − 0.211484i
\(919\) 1.51806e19 0.831261 0.415631 0.909533i \(-0.363561\pi\)
0.415631 + 0.909533i \(0.363561\pi\)
\(920\) 0 0
\(921\) −1.80944e19 −0.976916
\(922\) 5.20341e17i 0.0278957i
\(923\) − 8.87882e18i − 0.472655i
\(924\) 3.48168e18 0.184044
\(925\) 0 0
\(926\) −2.64008e18 −0.137609
\(927\) − 1.42305e18i − 0.0736548i
\(928\) 3.01086e18i 0.154750i
\(929\) −8.58574e17 −0.0438203 −0.0219102 0.999760i \(-0.506975\pi\)
−0.0219102 + 0.999760i \(0.506975\pi\)
\(930\) 0 0
\(931\) −1.25033e19 −0.629290
\(932\) 5.62106e18i 0.280941i
\(933\) − 2.42173e18i − 0.120198i
\(934\) 1.13047e19 0.557194
\(935\) 0 0
\(936\) −3.34757e18 −0.162719
\(937\) − 7.24328e18i − 0.349645i −0.984600 0.174823i \(-0.944065\pi\)
0.984600 0.174823i \(-0.0559352\pi\)
\(938\) − 8.90474e18i − 0.426877i
\(939\) 6.93385e18 0.330102
\(940\) 0 0
\(941\) 1.32405e19 0.621685 0.310842 0.950461i \(-0.399389\pi\)
0.310842 + 0.950461i \(0.399389\pi\)
\(942\) 6.45751e18i 0.301116i
\(943\) − 1.39858e19i − 0.647681i
\(944\) −3.84567e18 −0.176870
\(945\) 0 0
\(946\) −3.44845e19 −1.56434
\(947\) 3.98644e19i 1.79601i 0.439981 + 0.898007i \(0.354985\pi\)
−0.439981 + 0.898007i \(0.645015\pi\)
\(948\) 6.66266e18i 0.298121i
\(949\) −1.66539e19 −0.740094
\(950\) 0 0
\(951\) 1.10189e19 0.483019
\(952\) − 7.14946e18i − 0.311267i
\(953\) − 1.00415e19i − 0.434206i −0.976149 0.217103i \(-0.930339\pi\)
0.976149 0.217103i \(-0.0696607\pi\)
\(954\) 7.41835e17 0.0318598
\(955\) 0 0
\(956\) 8.98173e18 0.380525
\(957\) 1.35170e19i 0.568790i
\(958\) − 3.65753e18i − 0.152867i
\(959\) −2.40837e18 −0.0999774
\(960\) 0 0
\(961\) −1.67797e19 −0.687199
\(962\) − 3.08036e19i − 1.25304i
\(963\) 9.95910e18i 0.402392i
\(964\) −3.65799e18 −0.146805
\(965\) 0 0
\(966\) 2.90383e18 0.114979
\(967\) − 6.52823e18i − 0.256758i −0.991725 0.128379i \(-0.959023\pi\)
0.991725 0.128379i \(-0.0409773\pi\)
\(968\) − 2.41209e18i − 0.0942331i
\(969\) −2.14266e19 −0.831474
\(970\) 0 0
\(971\) −3.40758e19 −1.30473 −0.652365 0.757905i \(-0.726223\pi\)
−0.652365 + 0.757905i \(0.726223\pi\)
\(972\) − 8.43330e17i − 0.0320750i
\(973\) 1.66842e19i 0.630337i
\(974\) 1.09414e19 0.410619
\(975\) 0 0
\(976\) 1.64412e17 0.00608850
\(977\) 1.53719e18i 0.0565473i 0.999600 + 0.0282737i \(0.00900099\pi\)
−0.999600 + 0.0282737i \(0.990999\pi\)
\(978\) 9.90580e18i 0.361982i
\(979\) −1.46925e19 −0.533346
\(980\) 0 0
\(981\) 7.28051e18 0.260803
\(982\) 4.67280e17i 0.0166285i
\(983\) 1.30768e19i 0.462279i 0.972921 + 0.231140i \(0.0742454\pi\)
−0.972921 + 0.231140i \(0.925755\pi\)
\(984\) −7.57237e18 −0.265928
\(985\) 0 0
\(986\) 2.77564e19 0.961975
\(987\) 4.38815e18i 0.151084i
\(988\) 1.87037e19i 0.639747i
\(989\) −2.87612e19 −0.977307
\(990\) 0 0
\(991\) 4.81640e19 1.61526 0.807632 0.589687i \(-0.200749\pi\)
0.807632 + 0.589687i \(0.200749\pi\)
\(992\) 2.96746e18i 0.0988687i
\(993\) 2.68082e18i 0.0887355i
\(994\) 4.17005e18 0.137129
\(995\) 0 0
\(996\) −6.22377e18 −0.202008
\(997\) − 3.51994e19i − 1.13506i −0.823354 0.567528i \(-0.807900\pi\)
0.823354 0.567528i \(-0.192100\pi\)
\(998\) − 2.21183e19i − 0.708604i
\(999\) 7.76013e18 0.246998
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.14.c.d.49.2 2
5.2 odd 4 150.14.a.b.1.1 1
5.3 odd 4 6.14.a.a.1.1 1
5.4 even 2 inner 150.14.c.d.49.1 2
15.8 even 4 18.14.a.a.1.1 1
20.3 even 4 48.14.a.e.1.1 1
40.3 even 4 192.14.a.a.1.1 1
40.13 odd 4 192.14.a.f.1.1 1
60.23 odd 4 144.14.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6.14.a.a.1.1 1 5.3 odd 4
18.14.a.a.1.1 1 15.8 even 4
48.14.a.e.1.1 1 20.3 even 4
144.14.a.b.1.1 1 60.23 odd 4
150.14.a.b.1.1 1 5.2 odd 4
150.14.c.d.49.1 2 5.4 even 2 inner
150.14.c.d.49.2 2 1.1 even 1 trivial
192.14.a.a.1.1 1 40.3 even 4
192.14.a.f.1.1 1 40.13 odd 4