Properties

Label 150.14.c.d
Level $150$
Weight $14$
Character orbit 150.c
Analytic conductor $160.846$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [150,14,Mod(49,150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("150.49"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 150.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-8192,0,-93312,0,0,-1062882,0,13224840] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(160.846393428\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 6)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 64 i q^{2} + 729 i q^{3} - 4096 q^{4} - 46656 q^{6} + 176336 i q^{7} - 262144 i q^{8} - 531441 q^{9} + 6612420 q^{11} - 2985984 i q^{12} + 24028978 i q^{13} - 11285504 q^{14} + 16777216 q^{16} - 154665054 i q^{17} + \cdots - 3514111097220 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8192 q^{4} - 93312 q^{6} - 1062882 q^{9} + 13224840 q^{11} - 22571008 q^{14} + 33554432 q^{16} - 380069752 q^{19} - 257097888 q^{21} + 382205952 q^{24} - 3075709184 q^{26} + 5608172532 q^{29} + 5527322416 q^{31}+ \cdots - 7028222194440 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
1.00000i
1.00000i
64.0000i 729.000i −4096.00 0 −46656.0 176336.i 262144.i −531441. 0
49.2 64.0000i 729.000i −4096.00 0 −46656.0 176336.i 262144.i −531441. 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.14.c.d 2
5.b even 2 1 inner 150.14.c.d 2
5.c odd 4 1 6.14.a.a 1
5.c odd 4 1 150.14.a.b 1
15.e even 4 1 18.14.a.a 1
20.e even 4 1 48.14.a.e 1
40.i odd 4 1 192.14.a.f 1
40.k even 4 1 192.14.a.a 1
60.l odd 4 1 144.14.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.14.a.a 1 5.c odd 4 1
18.14.a.a 1 15.e even 4 1
48.14.a.e 1 20.e even 4 1
144.14.a.b 1 60.l odd 4 1
150.14.a.b 1 5.c odd 4 1
150.14.c.d 2 1.a even 1 1 trivial
150.14.c.d 2 5.b even 2 1 inner
192.14.a.a 1 40.k even 4 1
192.14.a.f 1 40.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} + 31094384896 \) acting on \(S_{14}^{\mathrm{new}}(150, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4096 \) Copy content Toggle raw display
$3$ \( T^{2} + 531441 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 31094384896 \) Copy content Toggle raw display
$11$ \( (T - 6612420)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 577391783724484 \) Copy content Toggle raw display
$17$ \( T^{2} + 23\!\cdots\!16 \) Copy content Toggle raw display
$19$ \( (T + 190034876)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 12\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( (T - 2804086266)^{2} \) Copy content Toggle raw display
$31$ \( (T - 2763661208)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 40\!\cdots\!84 \) Copy content Toggle raw display
$41$ \( (T + 39624547206)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 66\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{2} + 11\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{2} + 47\!\cdots\!96 \) Copy content Toggle raw display
$59$ \( (T + 229219661220)^{2} \) Copy content Toggle raw display
$61$ \( (T - 9799736750)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 62\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( (T + 369504705240)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 48\!\cdots\!84 \) Copy content Toggle raw display
$79$ \( (T + 2231309995208)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 43\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( (T + 2221961096538)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 10\!\cdots\!64 \) Copy content Toggle raw display
show more
show less