Properties

Label 1488.2.q.n
Level $1488$
Weight $2$
Character orbit 1488.q
Analytic conductor $11.882$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1488,2,Mod(625,1488)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1488, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1488.625"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1488 = 2^{4} \cdot 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1488.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,3,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.8817398208\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.349142832.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 11x^{4} - 16x^{3} + 121x^{2} - 88x + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 744)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{3} - \beta_1 q^{7} + (\beta_{3} - 1) q^{9} + ( - 2 \beta_{3} + \beta_{2} + \beta_1 + 2) q^{11} + (\beta_{5} - \beta_{2} - \beta_1) q^{13} + (\beta_{5} - \beta_{4} - \beta_{3}) q^{17} + ( - \beta_{3} - \beta_1) q^{19}+ \cdots + (2 \beta_{3} - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{3} - 3 q^{9} + 6 q^{11} - q^{13} - 2 q^{17} - 3 q^{19} - 16 q^{23} + 15 q^{25} - 6 q^{27} + 20 q^{29} + 8 q^{31} + 12 q^{33} - q^{37} - 2 q^{39} + 8 q^{41} - q^{43} + 28 q^{47} - q^{49} + 2 q^{51}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 11x^{4} - 16x^{3} + 121x^{2} - 88x + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 8 ) / 11 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} + 11\nu^{3} - 8\nu^{2} + 121\nu ) / 88 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} + \nu^{3} + 11\nu^{2} - 8\nu + 69 ) / 11 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -7\nu^{5} - 69\nu^{3} + 144\nu^{2} - 759\nu + 552 ) / 88 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + 7\beta_{3} - \beta_{2} - \beta _1 - 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 11\beta_{2} + 8 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -11\beta_{5} + 11\beta_{4} - 77\beta_{3} + 19\beta_1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 8\beta_{5} + 144\beta_{3} - 129\beta_{2} - 129\beta _1 - 144 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1488\mathbb{Z}\right)^\times\).

\(n\) \(373\) \(497\) \(559\) \(1057\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1 + \beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
625.1
1.43244 2.48106i
0.384270 0.665575i
−1.81671 + 3.14664i
1.43244 + 2.48106i
0.384270 + 0.665575i
−1.81671 3.14664i
0 0.500000 0.866025i 0 0 0 −1.43244 + 2.48106i 0 −0.500000 0.866025i 0
625.2 0 0.500000 0.866025i 0 0 0 −0.384270 + 0.665575i 0 −0.500000 0.866025i 0
625.3 0 0.500000 0.866025i 0 0 0 1.81671 3.14664i 0 −0.500000 0.866025i 0
769.1 0 0.500000 + 0.866025i 0 0 0 −1.43244 2.48106i 0 −0.500000 + 0.866025i 0
769.2 0 0.500000 + 0.866025i 0 0 0 −0.384270 0.665575i 0 −0.500000 + 0.866025i 0
769.3 0 0.500000 + 0.866025i 0 0 0 1.81671 + 3.14664i 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 625.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1488.2.q.n 6
4.b odd 2 1 744.2.q.e 6
12.b even 2 1 2232.2.q.l 6
31.c even 3 1 inner 1488.2.q.n 6
124.i odd 6 1 744.2.q.e 6
372.p even 6 1 2232.2.q.l 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
744.2.q.e 6 4.b odd 2 1
744.2.q.e 6 124.i odd 6 1
1488.2.q.n 6 1.a even 1 1 trivial
1488.2.q.n 6 31.c even 3 1 inner
2232.2.q.l 6 12.b even 2 1
2232.2.q.l 6 372.p even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1488, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{7}^{6} + 11T_{7}^{4} + 16T_{7}^{3} + 121T_{7}^{2} + 88T_{7} + 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 11 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$11$ \( T^{6} - 6 T^{5} + \cdots + 36 \) Copy content Toggle raw display
$13$ \( T^{6} + T^{5} + \cdots + 2304 \) Copy content Toggle raw display
$17$ \( T^{6} + 2 T^{5} + \cdots + 1024 \) Copy content Toggle raw display
$19$ \( T^{6} + 3 T^{5} + \cdots + 324 \) Copy content Toggle raw display
$23$ \( (T^{3} + 8 T^{2} + \cdots - 372)^{2} \) Copy content Toggle raw display
$29$ \( (T^{3} - 10 T^{2} + \cdots + 36)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} - 8 T^{5} + \cdots + 29791 \) Copy content Toggle raw display
$37$ \( T^{6} + T^{5} + \cdots + 3364 \) Copy content Toggle raw display
$41$ \( T^{6} - 8 T^{5} + \cdots + 16 \) Copy content Toggle raw display
$43$ \( T^{6} + T^{5} + \cdots + 2304 \) Copy content Toggle raw display
$47$ \( (T^{3} - 14 T^{2} + \cdots + 424)^{2} \) Copy content Toggle raw display
$53$ \( T^{6} - 4 T^{5} + \cdots + 54756 \) Copy content Toggle raw display
$59$ \( T^{6} + 11 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$61$ \( (T^{3} - 8 T^{2} + \cdots + 1716)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} - 10 T^{5} + \cdots + 10816 \) Copy content Toggle raw display
$71$ \( T^{6} + 2 T^{5} + \cdots + 147456 \) Copy content Toggle raw display
$73$ \( T^{6} + 25 T^{5} + \cdots + 43264 \) Copy content Toggle raw display
$79$ \( T^{6} + 4 T^{5} + \cdots + 65536 \) Copy content Toggle raw display
$83$ \( T^{6} + 4 T^{5} + \cdots + 97344 \) Copy content Toggle raw display
$89$ \( (T + 2)^{6} \) Copy content Toggle raw display
$97$ \( (T^{3} - 7 T^{2} + \cdots - 157)^{2} \) Copy content Toggle raw display
show more
show less