Properties

Label 1488.2.q
Level $1488$
Weight $2$
Character orbit 1488.q
Rep. character $\chi_{1488}(625,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $64$
Newform subspaces $15$
Sturm bound $512$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1488 = 2^{4} \cdot 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1488.q (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 31 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 15 \)
Sturm bound: \(512\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1488, [\chi])\).

Total New Old
Modular forms 536 64 472
Cusp forms 488 64 424
Eisenstein series 48 0 48

Trace form

\( 64 q - 2 q^{3} - 4 q^{7} - 32 q^{9} - 8 q^{15} - 2 q^{19} - 24 q^{25} + 4 q^{27} - 4 q^{31} + 8 q^{33} - 24 q^{35} - 4 q^{39} - 10 q^{43} - 48 q^{47} - 44 q^{49} - 4 q^{51} - 8 q^{53} + 16 q^{55} + 4 q^{57}+ \cdots - 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1488, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1488.2.q.a 1488.q 31.c $2$ $11.882$ \(\Q(\sqrt{-3}) \) None 744.2.q.c \(0\) \(-1\) \(-2\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}-2\zeta_{6}q^{5}+(-5+5\zeta_{6})q^{7}+\cdots\)
1488.2.q.b 1488.q 31.c $2$ $11.882$ \(\Q(\sqrt{-3}) \) None 186.2.e.a \(0\) \(-1\) \(-2\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}-2\zeta_{6}q^{5}+(-1+\zeta_{6})q^{7}+\cdots\)
1488.2.q.c 1488.q 31.c $2$ $11.882$ \(\Q(\sqrt{-3}) \) None 744.2.q.a \(0\) \(1\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{3}-4\zeta_{6}q^{5}-\zeta_{6}q^{9}-2\zeta_{6}q^{11}+\cdots\)
1488.2.q.d 1488.q 31.c $2$ $11.882$ \(\Q(\sqrt{-3}) \) None 744.2.q.b \(0\) \(1\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{3}-2\zeta_{6}q^{5}-\zeta_{6}q^{9}-4\zeta_{6}q^{11}+\cdots\)
1488.2.q.e 1488.q 31.c $2$ $11.882$ \(\Q(\sqrt{-3}) \) None 186.2.e.b \(0\) \(1\) \(2\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{3}+2\zeta_{6}q^{5}+(1-\zeta_{6})q^{7}+\cdots\)
1488.2.q.f 1488.q 31.c $4$ $11.882$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 186.2.e.d \(0\) \(-2\) \(0\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{2}q^{3}+2\beta _{1}q^{5}+(-\beta _{1}-\beta _{2}-\beta _{3})q^{7}+\cdots\)
1488.2.q.g 1488.q 31.c $4$ $11.882$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 93.2.e.a \(0\) \(-2\) \(4\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{2})q^{3}+(-\beta _{1}-2\beta _{2}-\beta _{3})q^{5}+\cdots\)
1488.2.q.h 1488.q 31.c $4$ $11.882$ \(\Q(\sqrt{-3}, \sqrt{19})\) None 186.2.e.c \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{2})q^{3}+\beta _{1}q^{7}+\beta _{2}q^{9}+(-\beta _{1}+\cdots)q^{11}+\cdots\)
1488.2.q.i 1488.q 31.c $4$ $11.882$ \(\Q(\sqrt{-3}, \sqrt{7})\) None 372.2.i.a \(0\) \(2\) \(2\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{3}+(1+\beta _{1}+\beta _{2})q^{5}+2\beta _{2}q^{7}+\cdots\)
1488.2.q.j 1488.q 31.c $4$ $11.882$ \(\Q(\sqrt{-3}, \sqrt{41})\) None 744.2.q.d \(0\) \(2\) \(4\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{2}q^{3}+(2-2\beta _{2})q^{5}+(\beta _{1}-2\beta _{2}+\cdots)q^{7}+\cdots\)
1488.2.q.k 1488.q 31.c $6$ $11.882$ 6.0.65370672.1 None 372.2.i.b \(0\) \(-3\) \(-2\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{4}q^{3}+(-1-\beta _{1}+\beta _{2}-\beta _{4})q^{5}+\cdots\)
1488.2.q.l 1488.q 31.c $6$ $11.882$ 6.0.591408.1 None 744.2.q.f \(0\) \(-3\) \(4\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{4})q^{3}+(\beta _{1}+\beta _{4})q^{5}+(1-\beta _{1}+\cdots)q^{7}+\cdots\)
1488.2.q.m 1488.q 31.c $6$ $11.882$ 6.0.591408.1 None 93.2.e.b \(0\) \(3\) \(-4\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{4})q^{3}+(2\beta _{1}-\beta _{3}-2\beta _{4}+\beta _{5})q^{5}+\cdots\)
1488.2.q.n 1488.q 31.c $6$ $11.882$ 6.0.349142832.2 None 744.2.q.e \(0\) \(3\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{3}q^{3}-\beta _{1}q^{7}+(-1+\beta _{3})q^{9}+(2+\cdots)q^{11}+\cdots\)
1488.2.q.o 1488.q 31.c $10$ $11.882$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 744.2.q.g \(0\) \(-5\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{3}q^{3}+\beta _{2}q^{5}-\beta _{6}q^{7}+(-1+\beta _{3}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1488, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1488, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(62, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(93, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(124, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(186, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(248, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(372, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(496, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(744, [\chi])\)\(^{\oplus 2}\)