Properties

Label 1488.2.q.l
Level $1488$
Weight $2$
Character orbit 1488.q
Analytic conductor $11.882$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1488,2,Mod(625,1488)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1488, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1488.625"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1488 = 2^{4} \cdot 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1488.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-3,0,4,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.8817398208\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.591408.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 4x^{4} + x^{3} + 10x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 744)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{4} - 1) q^{3} + (\beta_{4} + \beta_1) q^{5} + ( - \beta_{5} - \beta_{4} + \beta_{2} + \cdots + 1) q^{7} - \beta_{4} q^{9} + (2 \beta_{5} - \beta_{4} + \cdots + \beta_1) q^{11} + ( - \beta_{5} + \beta_{3} + \beta_1) q^{13}+ \cdots + ( - 2 \beta_{5} + \beta_{4} + \beta_{2} + \cdots - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{3} + 4 q^{5} + 4 q^{7} - 3 q^{9} - 2 q^{11} + q^{13} - 8 q^{15} + 2 q^{17} + q^{19} + 4 q^{21} + 3 q^{25} + 6 q^{27} + 8 q^{29} + 4 q^{33} + 20 q^{35} + 3 q^{37} - 2 q^{39} + 13 q^{43} + 4 q^{45}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} + 4x^{4} + x^{3} + 10x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} + 4\nu^{4} - 16\nu^{3} + 10\nu^{2} - 3\nu + 12 ) / 37 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -4\nu^{5} + 16\nu^{4} - 27\nu^{3} + 40\nu^{2} - 12\nu + 85 ) / 37 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 12\nu^{5} - 11\nu^{4} + 44\nu^{3} + 28\nu^{2} + 110\nu + 4 ) / 37 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -25\nu^{5} + 26\nu^{4} - 104\nu^{3} - 9\nu^{2} - 260\nu + 78 ) / 37 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + 2\beta_{4} - \beta_{2} + \beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 4\beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -4\beta_{5} - 7\beta_{4} + 4\beta_{3} - 6\beta_1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -6\beta_{5} - 8\beta_{4} + 17\beta_{2} - 17\beta _1 + 8 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1488\mathbb{Z}\right)^\times\).

\(n\) \(373\) \(497\) \(559\) \(1057\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-\beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
625.1
−0.740597 1.28275i
0.155554 + 0.269427i
1.08504 + 1.87935i
−0.740597 + 1.28275i
0.155554 0.269427i
1.08504 1.87935i
0 −0.500000 + 0.866025i 0 −0.240597 0.416726i 0 0.596968 1.03398i 0 −0.500000 0.866025i 0
625.2 0 −0.500000 + 0.866025i 0 0.655554 + 1.13545i 0 −0.451606 + 0.782204i 0 −0.500000 0.866025i 0
625.3 0 −0.500000 + 0.866025i 0 1.58504 + 2.74538i 0 1.85464 3.21233i 0 −0.500000 0.866025i 0
769.1 0 −0.500000 0.866025i 0 −0.240597 + 0.416726i 0 0.596968 + 1.03398i 0 −0.500000 + 0.866025i 0
769.2 0 −0.500000 0.866025i 0 0.655554 1.13545i 0 −0.451606 0.782204i 0 −0.500000 + 0.866025i 0
769.3 0 −0.500000 0.866025i 0 1.58504 2.74538i 0 1.85464 + 3.21233i 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 625.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1488.2.q.l 6
4.b odd 2 1 744.2.q.f 6
12.b even 2 1 2232.2.q.j 6
31.c even 3 1 inner 1488.2.q.l 6
124.i odd 6 1 744.2.q.f 6
372.p even 6 1 2232.2.q.j 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
744.2.q.f 6 4.b odd 2 1
744.2.q.f 6 124.i odd 6 1
1488.2.q.l 6 1.a even 1 1 trivial
1488.2.q.l 6 31.c even 3 1 inner
2232.2.q.j 6 12.b even 2 1
2232.2.q.j 6 372.p even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1488, [\chi])\):

\( T_{5}^{6} - 4T_{5}^{5} + 14T_{5}^{4} - 12T_{5}^{3} + 12T_{5}^{2} + 4T_{5} + 4 \) Copy content Toggle raw display
\( T_{7}^{6} - 4T_{7}^{5} + 16T_{7}^{4} - 8T_{7}^{3} + 16T_{7}^{2} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T^{2} + T + 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} - 4 T^{5} + \cdots + 4 \) Copy content Toggle raw display
$7$ \( T^{6} - 4 T^{5} + \cdots + 16 \) Copy content Toggle raw display
$11$ \( T^{6} + 2 T^{5} + \cdots + 100 \) Copy content Toggle raw display
$13$ \( T^{6} - T^{5} + \cdots + 169 \) Copy content Toggle raw display
$17$ \( T^{6} - 2 T^{5} + \cdots + 33856 \) Copy content Toggle raw display
$19$ \( T^{6} - T^{5} + \cdots + 625 \) Copy content Toggle raw display
$23$ \( T^{6} \) Copy content Toggle raw display
$29$ \( (T^{3} - 4 T^{2} - 70 T + 74)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} - 27 T^{4} + \cdots + 29791 \) Copy content Toggle raw display
$37$ \( T^{6} - 3 T^{5} + \cdots + 729 \) Copy content Toggle raw display
$41$ \( T^{6} + 58 T^{4} + \cdots + 28900 \) Copy content Toggle raw display
$43$ \( T^{6} - 13 T^{5} + \cdots + 18769 \) Copy content Toggle raw display
$47$ \( (T^{3} + 6 T^{2} + \cdots - 218)^{2} \) Copy content Toggle raw display
$53$ \( T^{6} + 14 T^{5} + \cdots + 2280100 \) Copy content Toggle raw display
$59$ \( T^{6} + 16 T^{5} + \cdots + 350464 \) Copy content Toggle raw display
$61$ \( (T^{3} - 14 T^{2} + \cdots - 68)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 100 T^{4} + \cdots + 71824 \) Copy content Toggle raw display
$71$ \( T^{6} + 8 T^{5} + \cdots + 1024 \) Copy content Toggle raw display
$73$ \( T^{6} - 13 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{6} + 4 T^{5} + \cdots + 300304 \) Copy content Toggle raw display
$83$ \( T^{6} + 12 T^{5} + \cdots + 1052676 \) Copy content Toggle raw display
$89$ \( (T^{3} - 26 T^{2} + \cdots - 310)^{2} \) Copy content Toggle raw display
$97$ \( (T^{3} + 25 T^{2} + \cdots - 1301)^{2} \) Copy content Toggle raw display
show more
show less