Properties

Label 1488.2.q.f
Level $1488$
Weight $2$
Character orbit 1488.q
Analytic conductor $11.882$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1488,2,Mod(625,1488)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1488, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1488.625"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1488 = 2^{4} \cdot 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1488.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.8817398208\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 186)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + 2 \beta_1 q^{5} + ( - \beta_{3} - \beta_{2} - \beta_1) q^{7} + ( - \beta_{2} - 1) q^{9} + (\beta_{2} + \beta_1 + 1) q^{11} - 4 \beta_1 q^{13} + 2 \beta_{3} q^{15} + ( - 3 \beta_{3} - 2 \beta_{2} - 3 \beta_1) q^{17}+ \cdots + ( - \beta_{3} - \beta_{2} - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 2 q^{7} - 2 q^{9} + 2 q^{11} + 4 q^{17} + 8 q^{19} + 2 q^{21} + 8 q^{23} - 6 q^{25} + 4 q^{27} + 12 q^{29} + 10 q^{31} - 4 q^{33} + 16 q^{35} - 16 q^{41} + 8 q^{43} - 16 q^{47} + 8 q^{49}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1488\mathbb{Z}\right)^\times\).

\(n\) \(373\) \(497\) \(559\) \(1057\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1 - \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
625.1
−0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 + 1.22474i
0.707107 1.22474i
0 −0.500000 + 0.866025i 0 −1.41421 2.44949i 0 −0.207107 + 0.358719i 0 −0.500000 0.866025i 0
625.2 0 −0.500000 + 0.866025i 0 1.41421 + 2.44949i 0 1.20711 2.09077i 0 −0.500000 0.866025i 0
769.1 0 −0.500000 0.866025i 0 −1.41421 + 2.44949i 0 −0.207107 0.358719i 0 −0.500000 + 0.866025i 0
769.2 0 −0.500000 0.866025i 0 1.41421 2.44949i 0 1.20711 + 2.09077i 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1488.2.q.f 4
4.b odd 2 1 186.2.e.d 4
12.b even 2 1 558.2.e.e 4
31.c even 3 1 inner 1488.2.q.f 4
124.g even 6 1 5766.2.a.t 2
124.i odd 6 1 186.2.e.d 4
124.i odd 6 1 5766.2.a.r 2
372.p even 6 1 558.2.e.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
186.2.e.d 4 4.b odd 2 1
186.2.e.d 4 124.i odd 6 1
558.2.e.e 4 12.b even 2 1
558.2.e.e 4 372.p even 6 1
1488.2.q.f 4 1.a even 1 1 trivial
1488.2.q.f 4 31.c even 3 1 inner
5766.2.a.r 2 124.i odd 6 1
5766.2.a.t 2 124.g even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1488, [\chi])\):

\( T_{5}^{4} + 8T_{5}^{2} + 64 \) Copy content Toggle raw display
\( T_{7}^{4} - 2T_{7}^{3} + 5T_{7}^{2} + 2T_{7} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 8T^{2} + 64 \) Copy content Toggle raw display
$7$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{4} + 32T^{2} + 1024 \) Copy content Toggle raw display
$17$ \( T^{4} - 4 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$19$ \( T^{4} - 8 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$23$ \( (T^{2} - 4 T - 14)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 6 T + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} - 10 T^{3} + \cdots + 961 \) Copy content Toggle raw display
$37$ \( T^{4} + 50T^{2} + 2500 \) Copy content Toggle raw display
$41$ \( T^{4} + 16 T^{3} + \cdots + 3844 \) Copy content Toggle raw display
$43$ \( T^{4} - 8 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$47$ \( (T^{2} + 8 T - 2)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 2 T^{3} + \cdots + 5041 \) Copy content Toggle raw display
$59$ \( T^{4} - 6 T^{3} + \cdots + 7921 \) Copy content Toggle raw display
$61$ \( (T^{2} - 50)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 4 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$71$ \( T^{4} - 8 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$73$ \( T^{4} + 8 T^{3} + \cdots + 3136 \) Copy content Toggle raw display
$79$ \( T^{4} - 8 T^{3} + \cdots + 3136 \) Copy content Toggle raw display
$83$ \( T^{4} + 10 T^{3} + \cdots + 529 \) Copy content Toggle raw display
$89$ \( (T^{2} - 4 T - 124)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 6 T - 119)^{2} \) Copy content Toggle raw display
show more
show less