Properties

Label 1475.1.d.a
Level $1475$
Weight $1$
Character orbit 1475.d
Analytic conductor $0.736$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -59
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1475,1,Mod(1474,1475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1475.1474"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1475, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 1475 = 5^{2} \cdot 59 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1475.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.736120893634\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 59)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.59.1
Artin image: $C_4\times S_3$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - i q^{3} - q^{4} + i q^{7} + i q^{12} + q^{16} - 2 i q^{17} + q^{19} + q^{21} - i q^{27} - i q^{28} + q^{29} - q^{41} - i q^{48} - 2 q^{51} - i q^{53} - i q^{57} - q^{59} - q^{64} + 2 i q^{68} + \cdots - i q^{87} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 2 q^{16} + 2 q^{19} + 2 q^{21} + 2 q^{29} - 2 q^{41} - 4 q^{51} - 2 q^{59} - 2 q^{64} + 4 q^{71} - 2 q^{76} + 2 q^{79} - 2 q^{81} - 2 q^{84}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1475\mathbb{Z}\right)^\times\).

\(n\) \(651\) \(827\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1474.1
1.00000i
1.00000i
0 1.00000i −1.00000 0 0 1.00000i 0 0 0
1474.2 0 1.00000i −1.00000 0 0 1.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
59.b odd 2 1 CM by \(\Q(\sqrt{-59}) \)
5.b even 2 1 inner
295.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1475.1.d.a 2
5.b even 2 1 inner 1475.1.d.a 2
5.c odd 4 1 59.1.b.a 1
5.c odd 4 1 1475.1.c.b 1
15.e even 4 1 531.1.c.a 1
20.e even 4 1 944.1.h.a 1
35.f even 4 1 2891.1.c.e 1
35.k even 12 2 2891.1.g.b 2
35.l odd 12 2 2891.1.g.d 2
40.i odd 4 1 3776.1.h.b 1
40.k even 4 1 3776.1.h.a 1
59.b odd 2 1 CM 1475.1.d.a 2
295.d odd 2 1 inner 1475.1.d.a 2
295.e even 4 1 59.1.b.a 1
295.e even 4 1 1475.1.c.b 1
295.k odd 116 28 3481.1.d.a 28
295.l even 116 28 3481.1.d.a 28
885.k odd 4 1 531.1.c.a 1
1180.l odd 4 1 944.1.h.a 1
2065.l odd 4 1 2891.1.c.e 1
2065.v even 12 2 2891.1.g.d 2
2065.x odd 12 2 2891.1.g.b 2
2360.q odd 4 1 3776.1.h.a 1
2360.w even 4 1 3776.1.h.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
59.1.b.a 1 5.c odd 4 1
59.1.b.a 1 295.e even 4 1
531.1.c.a 1 15.e even 4 1
531.1.c.a 1 885.k odd 4 1
944.1.h.a 1 20.e even 4 1
944.1.h.a 1 1180.l odd 4 1
1475.1.c.b 1 5.c odd 4 1
1475.1.c.b 1 295.e even 4 1
1475.1.d.a 2 1.a even 1 1 trivial
1475.1.d.a 2 5.b even 2 1 inner
1475.1.d.a 2 59.b odd 2 1 CM
1475.1.d.a 2 295.d odd 2 1 inner
2891.1.c.e 1 35.f even 4 1
2891.1.c.e 1 2065.l odd 4 1
2891.1.g.b 2 35.k even 12 2
2891.1.g.b 2 2065.x odd 12 2
2891.1.g.d 2 35.l odd 12 2
2891.1.g.d 2 2065.v even 12 2
3481.1.d.a 28 295.k odd 116 28
3481.1.d.a 28 295.l even 116 28
3776.1.h.a 1 40.k even 4 1
3776.1.h.a 1 2360.q odd 4 1
3776.1.h.b 1 40.i odd 4 1
3776.1.h.b 1 2360.w even 4 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(1475, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 4 \) Copy content Toggle raw display
$19$ \( (T - 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T - 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( (T + 1)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 1 \) Copy content Toggle raw display
$59$ \( (T + 1)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( (T - 2)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( (T - 1)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less