Properties

Label 4-1475e2-1.1-c0e2-0-1
Degree $4$
Conductor $2175625$
Sign $1$
Analytic cond. $0.541873$
Root an. cond. $0.857974$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 9-s + 3·16-s + 2·19-s + 2·29-s − 2·36-s − 2·41-s + 49-s − 2·59-s − 4·64-s + 4·71-s − 4·76-s + 2·79-s − 4·116-s + 2·121-s + 127-s + 131-s + 137-s + 139-s + 3·144-s + 149-s + 151-s + 157-s + 163-s + 4·164-s + 167-s − 2·169-s + ⋯
L(s)  = 1  − 2·4-s + 9-s + 3·16-s + 2·19-s + 2·29-s − 2·36-s − 2·41-s + 49-s − 2·59-s − 4·64-s + 4·71-s − 4·76-s + 2·79-s − 4·116-s + 2·121-s + 127-s + 131-s + 137-s + 139-s + 3·144-s + 149-s + 151-s + 157-s + 163-s + 4·164-s + 167-s − 2·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2175625\)    =    \(5^{4} \cdot 59^{2}\)
Sign: $1$
Analytic conductor: \(0.541873\)
Root analytic conductor: \(0.857974\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2175625,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8246668873\)
\(L(\frac12)\) \(\approx\) \(0.8246668873\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
59$C_1$ \( ( 1 + T )^{2} \)
good2$C_2$ \( ( 1 + T^{2} )^{2} \)
3$C_2^2$ \( 1 - T^{2} + T^{4} \)
7$C_2^2$ \( 1 - T^{2} + T^{4} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_2$ \( ( 1 + T^{2} )^{2} \)
19$C_2$ \( ( 1 - T + T^{2} )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_2$ \( ( 1 - T + T^{2} )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
41$C_2$ \( ( 1 + T + T^{2} )^{2} \)
43$C_2$ \( ( 1 + T^{2} )^{2} \)
47$C_2$ \( ( 1 + T^{2} )^{2} \)
53$C_2^2$ \( 1 - T^{2} + T^{4} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
67$C_2$ \( ( 1 + T^{2} )^{2} \)
71$C_1$ \( ( 1 - T )^{4} \)
73$C_2$ \( ( 1 + T^{2} )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.945826660555327794197667741707, −9.480129619530206138576788579576, −9.178777683657520965747773266920, −8.740500216264505303932462431537, −8.353602308357405452278563195226, −7.956948618646354368416497079220, −7.63347650989305275420538295227, −7.22132896509127137856520811057, −6.52453096764973979675555908017, −6.35304892711875341882813006434, −5.45405101313080788572919415799, −5.29047218150297243434544037814, −4.79332800926440087125155738542, −4.61994960548872640396167089395, −3.97217197845135319073125238752, −3.36794109633057234360602774170, −3.36457973803491779224947195532, −2.35822295102411041191841247252, −1.31362682131113756051108051552, −0.930032885137165132047674498048, 0.930032885137165132047674498048, 1.31362682131113756051108051552, 2.35822295102411041191841247252, 3.36457973803491779224947195532, 3.36794109633057234360602774170, 3.97217197845135319073125238752, 4.61994960548872640396167089395, 4.79332800926440087125155738542, 5.29047218150297243434544037814, 5.45405101313080788572919415799, 6.35304892711875341882813006434, 6.52453096764973979675555908017, 7.22132896509127137856520811057, 7.63347650989305275420538295227, 7.956948618646354368416497079220, 8.353602308357405452278563195226, 8.740500216264505303932462431537, 9.178777683657520965747773266920, 9.480129619530206138576788579576, 9.945826660555327794197667741707

Graph of the $Z$-function along the critical line