Properties

Label 1472.1.s.a
Level 14721472
Weight 11
Character orbit 1472.s
Analytic conductor 0.7350.735
Analytic rank 00
Dimension 88
Projective image D16D_{16}
CM discriminant -23
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1472,1,Mod(45,1472)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1472, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 7, 8])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1472.45"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 1472=2623 1472 = 2^{6} \cdot 23
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1472.s (of order 1616, degree 88, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.7346236985960.734623698596
Analytic rank: 00
Dimension: 88
Coefficient field: Q(ζ16)\Q(\zeta_{16})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x8+1 x^{8} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D16D_{16}
Projective field: Galois closure of Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ16q2+(ζ164+ζ16)q3+ζ162q4+(ζ165+ζ162)q6+ζ163q8+(ζ165+ζ1621)q9++ζ167q98+O(q100) q + \zeta_{16} q^{2} + ( - \zeta_{16}^{4} + \zeta_{16}) q^{3} + \zeta_{16}^{2} q^{4} + ( - \zeta_{16}^{5} + \zeta_{16}^{2}) q^{6} + \zeta_{16}^{3} q^{8} + ( - \zeta_{16}^{5} + \zeta_{16}^{2} - 1) q^{9}+ \cdots + \zeta_{16}^{7} q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q98q47+8q48+8q508q52+8q58+8q71+8q72+8q7516q78+8q81+8q87+O(q100) 8 q - 8 q^{9} - 8 q^{47} + 8 q^{48} + 8 q^{50} - 8 q^{52} + 8 q^{58} + 8 q^{71} + 8 q^{72} + 8 q^{75} - 16 q^{78} + 8 q^{81} + 8 q^{87}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1472Z)×\left(\mathbb{Z}/1472\mathbb{Z}\right)^\times.

nn 645645 833833 11511151
χ(n)\chi(n) ζ167-\zeta_{16}^{7} 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
45.1
−0.923880 0.382683i
−0.923880 + 0.382683i
−0.382683 + 0.923880i
0.382683 + 0.923880i
0.923880 + 0.382683i
0.923880 0.382683i
0.382683 0.923880i
−0.382683 0.923880i
−0.923880 0.382683i −0.923880 1.38268i 0.707107 + 0.707107i 0 0.324423 + 1.63099i 0 −0.382683 0.923880i −0.675577 + 1.63099i 0
229.1 −0.923880 + 0.382683i −0.923880 + 1.38268i 0.707107 0.707107i 0 0.324423 1.63099i 0 −0.382683 + 0.923880i −0.675577 1.63099i 0
413.1 −0.382683 + 0.923880i −0.382683 0.0761205i −0.707107 0.707107i 0 0.216773 0.324423i 0 0.923880 0.382683i −0.783227 0.324423i 0
597.1 0.382683 + 0.923880i 0.382683 + 1.92388i −0.707107 + 0.707107i 0 −1.63099 + 1.08979i 0 −0.923880 0.382683i −2.63099 + 1.08979i 0
781.1 0.923880 + 0.382683i 0.923880 0.617317i 0.707107 + 0.707107i 0 1.08979 0.216773i 0 0.382683 + 0.923880i 0.0897902 0.216773i 0
965.1 0.923880 0.382683i 0.923880 + 0.617317i 0.707107 0.707107i 0 1.08979 + 0.216773i 0 0.382683 0.923880i 0.0897902 + 0.216773i 0
1149.1 0.382683 0.923880i 0.382683 1.92388i −0.707107 0.707107i 0 −1.63099 1.08979i 0 −0.923880 + 0.382683i −2.63099 1.08979i 0
1333.1 −0.382683 0.923880i −0.382683 + 0.0761205i −0.707107 + 0.707107i 0 0.216773 + 0.324423i 0 0.923880 + 0.382683i −0.783227 + 0.324423i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 45.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 CM by Q(23)\Q(\sqrt{-23})
64.i even 16 1 inner
1472.s odd 16 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1472.1.s.a 8
23.b odd 2 1 CM 1472.1.s.a 8
64.i even 16 1 inner 1472.1.s.a 8
1472.s odd 16 1 inner 1472.1.s.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1472.1.s.a 8 1.a even 1 1 trivial
1472.1.s.a 8 23.b odd 2 1 CM
1472.1.s.a 8 64.i even 16 1 inner
1472.1.s.a 8 1472.s odd 16 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T38+4T36+6T348T33+4T32+8T3+2 T_{3}^{8} + 4T_{3}^{6} + 6T_{3}^{4} - 8T_{3}^{3} + 4T_{3}^{2} + 8T_{3} + 2 acting on S1new(1472,[χ])S_{1}^{\mathrm{new}}(1472, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8+1 T^{8} + 1 Copy content Toggle raw display
33 T8+4T6++2 T^{8} + 4 T^{6} + \cdots + 2 Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T8 T^{8} Copy content Toggle raw display
1111 T8 T^{8} Copy content Toggle raw display
1313 T8+2T4++2 T^{8} + 2 T^{4} + \cdots + 2 Copy content Toggle raw display
1717 T8 T^{8} Copy content Toggle raw display
1919 T8 T^{8} Copy content Toggle raw display
2323 T8+1 T^{8} + 1 Copy content Toggle raw display
2929 T8+2T4++2 T^{8} + 2 T^{4} + \cdots + 2 Copy content Toggle raw display
3131 (T4+4T2+2)2 (T^{4} + 4 T^{2} + 2)^{2} Copy content Toggle raw display
3737 T8 T^{8} Copy content Toggle raw display
4141 T8+256 T^{8} + 256 Copy content Toggle raw display
4343 T8 T^{8} Copy content Toggle raw display
4747 (T2+2T+2)4 (T^{2} + 2 T + 2)^{4} Copy content Toggle raw display
5353 T8 T^{8} Copy content Toggle raw display
5959 T88T5++2 T^{8} - 8 T^{5} + \cdots + 2 Copy content Toggle raw display
6161 T8 T^{8} Copy content Toggle raw display
6767 T8 T^{8} Copy content Toggle raw display
7171 (T44T3+6T2++2)2 (T^{4} - 4 T^{3} + 6 T^{2} + \cdots + 2)^{2} Copy content Toggle raw display
7373 T8+16 T^{8} + 16 Copy content Toggle raw display
7979 T8 T^{8} Copy content Toggle raw display
8383 T8 T^{8} Copy content Toggle raw display
8989 T8 T^{8} Copy content Toggle raw display
9797 T8 T^{8} Copy content Toggle raw display
show more
show less