gp: [N,k,chi] = [1472,1,Mod(45,1472)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1472, base_ring=CyclotomicField(16))
chi = DirichletCharacter(H, H._module([0, 7, 8]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1472.45");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = [8]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 1472 Z ) × \left(\mathbb{Z}/1472\mathbb{Z}\right)^\times ( Z / 1 4 7 2 Z ) × .
n n n
645 645 6 4 5
833 833 8 3 3
1151 1151 1 1 5 1
χ ( n ) \chi(n) χ ( n )
− ζ 16 7 -\zeta_{16}^{7} − ζ 1 6 7
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 8 + 4 T 3 6 + 6 T 3 4 − 8 T 3 3 + 4 T 3 2 + 8 T 3 + 2 T_{3}^{8} + 4T_{3}^{6} + 6T_{3}^{4} - 8T_{3}^{3} + 4T_{3}^{2} + 8T_{3} + 2 T 3 8 + 4 T 3 6 + 6 T 3 4 − 8 T 3 3 + 4 T 3 2 + 8 T 3 + 2
T3^8 + 4*T3^6 + 6*T3^4 - 8*T3^3 + 4*T3^2 + 8*T3 + 2
acting on S 1 n e w ( 1472 , [ χ ] ) S_{1}^{\mathrm{new}}(1472, [\chi]) S 1 n e w ( 1 4 7 2 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 + 1 T^{8} + 1 T 8 + 1
T^8 + 1
3 3 3
T 8 + 4 T 6 + ⋯ + 2 T^{8} + 4 T^{6} + \cdots + 2 T 8 + 4 T 6 + ⋯ + 2
T^8 + 4*T^6 + 6*T^4 - 8*T^3 + 4*T^2 + 8*T + 2
5 5 5
T 8 T^{8} T 8
T^8
7 7 7
T 8 T^{8} T 8
T^8
11 11 1 1
T 8 T^{8} T 8
T^8
13 13 1 3
T 8 + 2 T 4 + ⋯ + 2 T^{8} + 2 T^{4} + \cdots + 2 T 8 + 2 T 4 + ⋯ + 2
T^8 + 2*T^4 + 16*T^3 + 20*T^2 + 8*T + 2
17 17 1 7
T 8 T^{8} T 8
T^8
19 19 1 9
T 8 T^{8} T 8
T^8
23 23 2 3
T 8 + 1 T^{8} + 1 T 8 + 1
T^8 + 1
29 29 2 9
T 8 + 2 T 4 + ⋯ + 2 T^{8} + 2 T^{4} + \cdots + 2 T 8 + 2 T 4 + ⋯ + 2
T^8 + 2*T^4 - 16*T^3 + 20*T^2 - 8*T + 2
31 31 3 1
( T 4 + 4 T 2 + 2 ) 2 (T^{4} + 4 T^{2} + 2)^{2} ( T 4 + 4 T 2 + 2 ) 2
(T^4 + 4*T^2 + 2)^2
37 37 3 7
T 8 T^{8} T 8
T^8
41 41 4 1
T 8 + 256 T^{8} + 256 T 8 + 2 5 6
T^8 + 256
43 43 4 3
T 8 T^{8} T 8
T^8
47 47 4 7
( T 2 + 2 T + 2 ) 4 (T^{2} + 2 T + 2)^{4} ( T 2 + 2 T + 2 ) 4
(T^2 + 2*T + 2)^4
53 53 5 3
T 8 T^{8} T 8
T^8
59 59 5 9
T 8 − 8 T 5 + ⋯ + 2 T^{8} - 8 T^{5} + \cdots + 2 T 8 − 8 T 5 + ⋯ + 2
T^8 - 8*T^5 + 2*T^4 + 12*T^2 + 8*T + 2
61 61 6 1
T 8 T^{8} T 8
T^8
67 67 6 7
T 8 T^{8} T 8
T^8
71 71 7 1
( T 4 − 4 T 3 + 6 T 2 + ⋯ + 2 ) 2 (T^{4} - 4 T^{3} + 6 T^{2} + \cdots + 2)^{2} ( T 4 − 4 T 3 + 6 T 2 + ⋯ + 2 ) 2
(T^4 - 4*T^3 + 6*T^2 - 4*T + 2)^2
73 73 7 3
T 8 + 16 T^{8} + 16 T 8 + 1 6
T^8 + 16
79 79 7 9
T 8 T^{8} T 8
T^8
83 83 8 3
T 8 T^{8} T 8
T^8
89 89 8 9
T 8 T^{8} T 8
T^8
97 97 9 7
T 8 T^{8} T 8
T^8
show more
show less