Properties

Label 1472.1.s
Level $1472$
Weight $1$
Character orbit 1472.s
Rep. character $\chi_{1472}(45,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $24$
Newform subspaces $2$
Sturm bound $192$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1472.s (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1472 \)
Character field: \(\Q(\zeta_{16})\)
Newform subspaces: \( 2 \)
Sturm bound: \(192\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1472, [\chi])\).

Total New Old
Modular forms 40 40 0
Cusp forms 24 24 0
Eisenstein series 16 16 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 24 0 0 0

Trace form

\( 24 q + 24 q^{58} + 24 q^{72} - 24 q^{78}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1472, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1472.1.s.a 1472.s 1472.s $8$ $0.735$ \(\Q(\zeta_{16})\) $D_{16}$ \(\Q(\sqrt{-23}) \) None 1472.1.s.a \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{16}q^{2}+(\zeta_{16}-\zeta_{16}^{4})q^{3}+\zeta_{16}^{2}q^{4}+\cdots\)
1472.1.s.b 1472.s 1472.s $16$ $0.735$ \(\Q(\zeta_{48})\) $D_{48}$ \(\Q(\sqrt{-23}) \) None 1472.1.s.b \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{48}q^{2}+(-\zeta_{48}^{4}+\zeta_{48}^{17})q^{3}+\cdots\)