Properties

Label 1470.2.m.e.1273.5
Level $1470$
Weight $2$
Character 1470.1273
Analytic conductor $11.738$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1470,2,Mod(97,1470)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1470, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1470.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7380090971\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 12 x^{14} - 48 x^{13} + 67 x^{12} - 24 x^{11} + 118 x^{10} - 176 x^{9} + 351 x^{8} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1273.5
Root \(-1.09227 - 0.838128i\) of defining polynomial
Character \(\chi\) \(=\) 1470.1273
Dual form 1470.2.m.e.97.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(0.707107 - 0.707107i) q^{3} -1.00000i q^{4} +(-1.62401 - 1.53707i) q^{5} -1.00000i q^{6} +(-0.707107 - 0.707107i) q^{8} -1.00000i q^{9} +(-2.23522 + 0.0614757i) q^{10} -4.55445 q^{11} +(-0.707107 - 0.707107i) q^{12} +(1.77772 - 1.77772i) q^{13} +(-2.23522 + 0.0614757i) q^{15} -1.00000 q^{16} +(-2.91639 - 2.91639i) q^{17} +(-0.707107 - 0.707107i) q^{18} -3.77912 q^{19} +(-1.53707 + 1.62401i) q^{20} +(-3.22048 + 3.22048i) q^{22} +(5.69431 + 5.69431i) q^{23} -1.00000 q^{24} +(0.274824 + 4.99244i) q^{25} -2.51408i q^{26} +(-0.707107 - 0.707107i) q^{27} -1.55563i q^{29} +(-1.53707 + 1.62401i) q^{30} +3.89374i q^{31} +(-0.707107 + 0.707107i) q^{32} +(-3.22048 + 3.22048i) q^{33} -4.12440 q^{34} -1.00000 q^{36} +(-8.08634 + 8.08634i) q^{37} +(-2.67224 + 2.67224i) q^{38} -2.51408i q^{39} +(0.0614757 + 2.23522i) q^{40} -11.3796i q^{41} +(0.367260 + 0.367260i) q^{43} +4.55445i q^{44} +(-1.53707 + 1.62401i) q^{45} +8.05297 q^{46} +(-3.57116 - 3.57116i) q^{47} +(-0.707107 + 0.707107i) q^{48} +(3.72452 + 3.33586i) q^{50} -4.12440 q^{51} +(-1.77772 - 1.77772i) q^{52} +(-5.96425 - 5.96425i) q^{53} -1.00000 q^{54} +(7.39647 + 7.00051i) q^{55} +(-2.67224 + 2.67224i) q^{57} +(-1.09999 - 1.09999i) q^{58} +0.443022 q^{59} +(0.0614757 + 2.23522i) q^{60} -8.19194i q^{61} +(2.75329 + 2.75329i) q^{62} +1.00000i q^{64} +(-5.61952 + 0.154555i) q^{65} +4.55445i q^{66} +(6.58705 - 6.58705i) q^{67} +(-2.91639 + 2.91639i) q^{68} +8.05297 q^{69} -6.68403 q^{71} +(-0.707107 + 0.707107i) q^{72} +(3.07520 - 3.07520i) q^{73} +11.4358i q^{74} +(3.72452 + 3.33586i) q^{75} +3.77912i q^{76} +(-1.77772 - 1.77772i) q^{78} +4.71445i q^{79} +(1.62401 + 1.53707i) q^{80} -1.00000 q^{81} +(-8.04662 - 8.04662i) q^{82} +(-3.21718 + 3.21718i) q^{83} +(0.253550 + 9.21894i) q^{85} +0.519384 q^{86} +(-1.09999 - 1.09999i) q^{87} +(3.22048 + 3.22048i) q^{88} -6.04851 q^{89} +(0.0614757 + 2.23522i) q^{90} +(5.69431 - 5.69431i) q^{92} +(2.75329 + 2.75329i) q^{93} -5.05038 q^{94} +(6.13733 + 5.80877i) q^{95} +1.00000i q^{96} +(0.462652 + 0.462652i) q^{97} +4.55445i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{10} - 8 q^{11} + 16 q^{13} + 4 q^{15} - 16 q^{16} - 24 q^{17} - 16 q^{19} + 8 q^{20} + 4 q^{22} + 8 q^{23} - 16 q^{24} + 16 q^{25} + 8 q^{30} + 4 q^{33} - 16 q^{34} - 16 q^{36} + 16 q^{37} - 8 q^{38}+ \cdots - 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times\).

\(n\) \(491\) \(1081\) \(1177\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 0.707107 0.707107i 0.408248 0.408248i
\(4\) 1.00000i 0.500000i
\(5\) −1.62401 1.53707i −0.726280 0.687399i
\(6\) 1.00000i 0.408248i
\(7\) 0 0
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 1.00000i 0.333333i
\(10\) −2.23522 + 0.0614757i −0.706839 + 0.0194403i
\(11\) −4.55445 −1.37322 −0.686609 0.727027i \(-0.740901\pi\)
−0.686609 + 0.727027i \(0.740901\pi\)
\(12\) −0.707107 0.707107i −0.204124 0.204124i
\(13\) 1.77772 1.77772i 0.493051 0.493051i −0.416215 0.909266i \(-0.636644\pi\)
0.909266 + 0.416215i \(0.136644\pi\)
\(14\) 0 0
\(15\) −2.23522 + 0.0614757i −0.577132 + 0.0158730i
\(16\) −1.00000 −0.250000
\(17\) −2.91639 2.91639i −0.707328 0.707328i 0.258645 0.965973i \(-0.416724\pi\)
−0.965973 + 0.258645i \(0.916724\pi\)
\(18\) −0.707107 0.707107i −0.166667 0.166667i
\(19\) −3.77912 −0.866989 −0.433494 0.901156i \(-0.642720\pi\)
−0.433494 + 0.901156i \(0.642720\pi\)
\(20\) −1.53707 + 1.62401i −0.343700 + 0.363140i
\(21\) 0 0
\(22\) −3.22048 + 3.22048i −0.686609 + 0.686609i
\(23\) 5.69431 + 5.69431i 1.18735 + 1.18735i 0.977799 + 0.209547i \(0.0671989\pi\)
0.209547 + 0.977799i \(0.432801\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0.274824 + 4.99244i 0.0549647 + 0.998488i
\(26\) 2.51408i 0.493051i
\(27\) −0.707107 0.707107i −0.136083 0.136083i
\(28\) 0 0
\(29\) 1.55563i 0.288873i −0.989514 0.144436i \(-0.953863\pi\)
0.989514 0.144436i \(-0.0461369\pi\)
\(30\) −1.53707 + 1.62401i −0.280630 + 0.296502i
\(31\) 3.89374i 0.699336i 0.936874 + 0.349668i \(0.113706\pi\)
−0.936874 + 0.349668i \(0.886294\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) −3.22048 + 3.22048i −0.560614 + 0.560614i
\(34\) −4.12440 −0.707328
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) −8.08634 + 8.08634i −1.32939 + 1.32939i −0.423480 + 0.905905i \(0.639192\pi\)
−0.905905 + 0.423480i \(0.860808\pi\)
\(38\) −2.67224 + 2.67224i −0.433494 + 0.433494i
\(39\) 2.51408i 0.402574i
\(40\) 0.0614757 + 2.23522i 0.00972016 + 0.353420i
\(41\) 11.3796i 1.77720i −0.458682 0.888600i \(-0.651678\pi\)
0.458682 0.888600i \(-0.348322\pi\)
\(42\) 0 0
\(43\) 0.367260 + 0.367260i 0.0560066 + 0.0560066i 0.734555 0.678549i \(-0.237391\pi\)
−0.678549 + 0.734555i \(0.737391\pi\)
\(44\) 4.55445i 0.686609i
\(45\) −1.53707 + 1.62401i −0.229133 + 0.242093i
\(46\) 8.05297 1.18735
\(47\) −3.57116 3.57116i −0.520907 0.520907i 0.396939 0.917845i \(-0.370073\pi\)
−0.917845 + 0.396939i \(0.870073\pi\)
\(48\) −0.707107 + 0.707107i −0.102062 + 0.102062i
\(49\) 0 0
\(50\) 3.72452 + 3.33586i 0.526727 + 0.471762i
\(51\) −4.12440 −0.577531
\(52\) −1.77772 1.77772i −0.246525 0.246525i
\(53\) −5.96425 5.96425i −0.819253 0.819253i 0.166746 0.986000i \(-0.446674\pi\)
−0.986000 + 0.166746i \(0.946674\pi\)
\(54\) −1.00000 −0.136083
\(55\) 7.39647 + 7.00051i 0.997340 + 0.943949i
\(56\) 0 0
\(57\) −2.67224 + 2.67224i −0.353947 + 0.353947i
\(58\) −1.09999 1.09999i −0.144436 0.144436i
\(59\) 0.443022 0.0576765 0.0288383 0.999584i \(-0.490819\pi\)
0.0288383 + 0.999584i \(0.490819\pi\)
\(60\) 0.0614757 + 2.23522i 0.00793648 + 0.288566i
\(61\) 8.19194i 1.04887i −0.851451 0.524435i \(-0.824277\pi\)
0.851451 0.524435i \(-0.175723\pi\)
\(62\) 2.75329 + 2.75329i 0.349668 + 0.349668i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −5.61952 + 0.154555i −0.697016 + 0.0191701i
\(66\) 4.55445i 0.560614i
\(67\) 6.58705 6.58705i 0.804737 0.804737i −0.179095 0.983832i \(-0.557317\pi\)
0.983832 + 0.179095i \(0.0573170\pi\)
\(68\) −2.91639 + 2.91639i −0.353664 + 0.353664i
\(69\) 8.05297 0.969464
\(70\) 0 0
\(71\) −6.68403 −0.793248 −0.396624 0.917981i \(-0.629818\pi\)
−0.396624 + 0.917981i \(0.629818\pi\)
\(72\) −0.707107 + 0.707107i −0.0833333 + 0.0833333i
\(73\) 3.07520 3.07520i 0.359925 0.359925i −0.503861 0.863785i \(-0.668087\pi\)
0.863785 + 0.503861i \(0.168087\pi\)
\(74\) 11.4358i 1.32939i
\(75\) 3.72452 + 3.33586i 0.430070 + 0.385192i
\(76\) 3.77912i 0.433494i
\(77\) 0 0
\(78\) −1.77772 1.77772i −0.201287 0.201287i
\(79\) 4.71445i 0.530417i 0.964191 + 0.265208i \(0.0854408\pi\)
−0.964191 + 0.265208i \(0.914559\pi\)
\(80\) 1.62401 + 1.53707i 0.181570 + 0.171850i
\(81\) −1.00000 −0.111111
\(82\) −8.04662 8.04662i −0.888600 0.888600i
\(83\) −3.21718 + 3.21718i −0.353131 + 0.353131i −0.861273 0.508142i \(-0.830332\pi\)
0.508142 + 0.861273i \(0.330332\pi\)
\(84\) 0 0
\(85\) 0.253550 + 9.21894i 0.0275014 + 0.999935i
\(86\) 0.519384 0.0560066
\(87\) −1.09999 1.09999i −0.117932 0.117932i
\(88\) 3.22048 + 3.22048i 0.343304 + 0.343304i
\(89\) −6.04851 −0.641141 −0.320570 0.947225i \(-0.603875\pi\)
−0.320570 + 0.947225i \(0.603875\pi\)
\(90\) 0.0614757 + 2.23522i 0.00648011 + 0.235613i
\(91\) 0 0
\(92\) 5.69431 5.69431i 0.593673 0.593673i
\(93\) 2.75329 + 2.75329i 0.285503 + 0.285503i
\(94\) −5.05038 −0.520907
\(95\) 6.13733 + 5.80877i 0.629676 + 0.595967i
\(96\) 1.00000i 0.102062i
\(97\) 0.462652 + 0.462652i 0.0469752 + 0.0469752i 0.730204 0.683229i \(-0.239425\pi\)
−0.683229 + 0.730204i \(0.739425\pi\)
\(98\) 0 0
\(99\) 4.55445i 0.457739i
\(100\) 4.99244 0.274824i 0.499244 0.0274824i
\(101\) 5.60204i 0.557423i −0.960375 0.278712i \(-0.910093\pi\)
0.960375 0.278712i \(-0.0899074\pi\)
\(102\) −2.91639 + 2.91639i −0.288765 + 0.288765i
\(103\) −3.93011 + 3.93011i −0.387245 + 0.387245i −0.873704 0.486458i \(-0.838289\pi\)
0.486458 + 0.873704i \(0.338289\pi\)
\(104\) −2.51408 −0.246525
\(105\) 0 0
\(106\) −8.43473 −0.819253
\(107\) 5.29649 5.29649i 0.512031 0.512031i −0.403118 0.915148i \(-0.632073\pi\)
0.915148 + 0.403118i \(0.132073\pi\)
\(108\) −0.707107 + 0.707107i −0.0680414 + 0.0680414i
\(109\) 1.46687i 0.140500i 0.997529 + 0.0702501i \(0.0223797\pi\)
−0.997529 + 0.0702501i \(0.977620\pi\)
\(110\) 10.1802 0.279988i 0.970644 0.0266958i
\(111\) 11.4358i 1.08544i
\(112\) 0 0
\(113\) 7.08834 + 7.08834i 0.666815 + 0.666815i 0.956977 0.290163i \(-0.0937094\pi\)
−0.290163 + 0.956977i \(0.593709\pi\)
\(114\) 3.77912i 0.353947i
\(115\) −0.495062 18.0002i −0.0461648 1.67853i
\(116\) −1.55563 −0.144436
\(117\) −1.77772 1.77772i −0.164350 0.164350i
\(118\) 0.313264 0.313264i 0.0288383 0.0288383i
\(119\) 0 0
\(120\) 1.62401 + 1.53707i 0.148251 + 0.140315i
\(121\) 9.74299 0.885727
\(122\) −5.79257 5.79257i −0.524435 0.524435i
\(123\) −8.04662 8.04662i −0.725539 0.725539i
\(124\) 3.89374 0.349668
\(125\) 7.22742 8.53020i 0.646440 0.762965i
\(126\) 0 0
\(127\) 12.9176 12.9176i 1.14625 1.14625i 0.158971 0.987283i \(-0.449182\pi\)
0.987283 0.158971i \(-0.0508176\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 0.519384 0.0457292
\(130\) −3.86431 + 4.08289i −0.338923 + 0.358093i
\(131\) 0.373725i 0.0326525i −0.999867 0.0163262i \(-0.994803\pi\)
0.999867 0.0163262i \(-0.00519704\pi\)
\(132\) 3.22048 + 3.22048i 0.280307 + 0.280307i
\(133\) 0 0
\(134\) 9.31550i 0.804737i
\(135\) 0.0614757 + 2.23522i 0.00529099 + 0.192377i
\(136\) 4.12440i 0.353664i
\(137\) −1.87991 + 1.87991i −0.160611 + 0.160611i −0.782837 0.622226i \(-0.786228\pi\)
0.622226 + 0.782837i \(0.286228\pi\)
\(138\) 5.69431 5.69431i 0.484732 0.484732i
\(139\) 4.58070 0.388530 0.194265 0.980949i \(-0.437768\pi\)
0.194265 + 0.980949i \(0.437768\pi\)
\(140\) 0 0
\(141\) −5.05038 −0.425319
\(142\) −4.72632 + 4.72632i −0.396624 + 0.396624i
\(143\) −8.09653 + 8.09653i −0.677066 + 0.677066i
\(144\) 1.00000i 0.0833333i
\(145\) −2.39111 + 2.52636i −0.198571 + 0.209802i
\(146\) 4.34898i 0.359925i
\(147\) 0 0
\(148\) 8.08634 + 8.08634i 0.664693 + 0.664693i
\(149\) 17.2441i 1.41269i −0.707869 0.706344i \(-0.750343\pi\)
0.707869 0.706344i \(-0.249657\pi\)
\(150\) 4.99244 0.274824i 0.407631 0.0224393i
\(151\) −5.56770 −0.453093 −0.226546 0.974000i \(-0.572744\pi\)
−0.226546 + 0.974000i \(0.572744\pi\)
\(152\) 2.67224 + 2.67224i 0.216747 + 0.216747i
\(153\) −2.91639 + 2.91639i −0.235776 + 0.235776i
\(154\) 0 0
\(155\) 5.98495 6.32347i 0.480723 0.507914i
\(156\) −2.51408 −0.201287
\(157\) −2.92099 2.92099i −0.233120 0.233120i 0.580874 0.813994i \(-0.302711\pi\)
−0.813994 + 0.580874i \(0.802711\pi\)
\(158\) 3.33362 + 3.33362i 0.265208 + 0.265208i
\(159\) −8.43473 −0.668918
\(160\) 2.23522 0.0614757i 0.176710 0.00486008i
\(161\) 0 0
\(162\) −0.707107 + 0.707107i −0.0555556 + 0.0555556i
\(163\) −15.3717 15.3717i −1.20401 1.20401i −0.972937 0.231069i \(-0.925778\pi\)
−0.231069 0.972937i \(-0.574222\pi\)
\(164\) −11.3796 −0.888600
\(165\) 10.1802 0.279988i 0.792528 0.0217970i
\(166\) 4.54978i 0.353131i
\(167\) −17.4949 17.4949i −1.35380 1.35380i −0.881371 0.472425i \(-0.843379\pi\)
−0.472425 0.881371i \(-0.656621\pi\)
\(168\) 0 0
\(169\) 6.67942i 0.513802i
\(170\) 6.69806 + 6.33949i 0.513718 + 0.486217i
\(171\) 3.77912i 0.288996i
\(172\) 0.367260 0.367260i 0.0280033 0.0280033i
\(173\) −11.7140 + 11.7140i −0.890601 + 0.890601i −0.994580 0.103979i \(-0.966843\pi\)
0.103979 + 0.994580i \(0.466843\pi\)
\(174\) −1.55563 −0.117932
\(175\) 0 0
\(176\) 4.55445 0.343304
\(177\) 0.313264 0.313264i 0.0235463 0.0235463i
\(178\) −4.27694 + 4.27694i −0.320570 + 0.320570i
\(179\) 12.7273i 0.951285i −0.879639 0.475643i \(-0.842216\pi\)
0.879639 0.475643i \(-0.157784\pi\)
\(180\) 1.62401 + 1.53707i 0.121047 + 0.114567i
\(181\) 9.09951i 0.676361i 0.941081 + 0.338180i \(0.109811\pi\)
−0.941081 + 0.338180i \(0.890189\pi\)
\(182\) 0 0
\(183\) −5.79257 5.79257i −0.428199 0.428199i
\(184\) 8.05297i 0.593673i
\(185\) 25.5616 0.703024i 1.87932 0.0516874i
\(186\) 3.89374 0.285503
\(187\) 13.2825 + 13.2825i 0.971315 + 0.971315i
\(188\) −3.57116 + 3.57116i −0.260453 + 0.260453i
\(189\) 0 0
\(190\) 8.44717 0.232324i 0.612822 0.0168545i
\(191\) 18.2062 1.31735 0.658676 0.752427i \(-0.271117\pi\)
0.658676 + 0.752427i \(0.271117\pi\)
\(192\) 0.707107 + 0.707107i 0.0510310 + 0.0510310i
\(193\) −7.12147 7.12147i −0.512614 0.512614i 0.402712 0.915327i \(-0.368068\pi\)
−0.915327 + 0.402712i \(0.868068\pi\)
\(194\) 0.654289 0.0469752
\(195\) −3.86431 + 4.08289i −0.276729 + 0.292382i
\(196\) 0 0
\(197\) 16.2439 16.2439i 1.15733 1.15733i 0.172283 0.985048i \(-0.444886\pi\)
0.985048 0.172283i \(-0.0551142\pi\)
\(198\) 3.22048 + 3.22048i 0.228870 + 0.228870i
\(199\) 25.3969 1.80034 0.900168 0.435542i \(-0.143443\pi\)
0.900168 + 0.435542i \(0.143443\pi\)
\(200\) 3.33586 3.72452i 0.235881 0.263363i
\(201\) 9.31550i 0.657065i
\(202\) −3.96124 3.96124i −0.278712 0.278712i
\(203\) 0 0
\(204\) 4.12440i 0.288765i
\(205\) −17.4913 + 18.4807i −1.22165 + 1.29075i
\(206\) 5.55802i 0.387245i
\(207\) 5.69431 5.69431i 0.395782 0.395782i
\(208\) −1.77772 + 1.77772i −0.123263 + 0.123263i
\(209\) 17.2118 1.19056
\(210\) 0 0
\(211\) −13.6182 −0.937517 −0.468759 0.883326i \(-0.655299\pi\)
−0.468759 + 0.883326i \(0.655299\pi\)
\(212\) −5.96425 + 5.96425i −0.409627 + 0.409627i
\(213\) −4.72632 + 4.72632i −0.323842 + 0.323842i
\(214\) 7.49036i 0.512031i
\(215\) −0.0319295 1.16094i −0.00217757 0.0791753i
\(216\) 1.00000i 0.0680414i
\(217\) 0 0
\(218\) 1.03723 + 1.03723i 0.0702501 + 0.0702501i
\(219\) 4.34898i 0.293877i
\(220\) 7.00051 7.39647i 0.471974 0.498670i
\(221\) −10.3690 −0.697497
\(222\) 8.08634 + 8.08634i 0.542719 + 0.542719i
\(223\) 15.8412 15.8412i 1.06081 1.06081i 0.0627803 0.998027i \(-0.480003\pi\)
0.998027 0.0627803i \(-0.0199968\pi\)
\(224\) 0 0
\(225\) 4.99244 0.274824i 0.332829 0.0183216i
\(226\) 10.0244 0.666815
\(227\) −7.74471 7.74471i −0.514035 0.514035i 0.401726 0.915760i \(-0.368411\pi\)
−0.915760 + 0.401726i \(0.868411\pi\)
\(228\) 2.67224 + 2.67224i 0.176973 + 0.176973i
\(229\) 28.9443 1.91269 0.956347 0.292233i \(-0.0943984\pi\)
0.956347 + 0.292233i \(0.0943984\pi\)
\(230\) −13.0781 12.3780i −0.862345 0.816180i
\(231\) 0 0
\(232\) −1.09999 + 1.09999i −0.0722182 + 0.0722182i
\(233\) 0.998499 + 0.998499i 0.0654138 + 0.0654138i 0.739057 0.673643i \(-0.235271\pi\)
−0.673643 + 0.739057i \(0.735271\pi\)
\(234\) −2.51408 −0.164350
\(235\) 0.310475 + 11.2887i 0.0202532 + 0.736395i
\(236\) 0.443022i 0.0288383i
\(237\) 3.33362 + 3.33362i 0.216542 + 0.216542i
\(238\) 0 0
\(239\) 4.36430i 0.282303i −0.989988 0.141152i \(-0.954920\pi\)
0.989988 0.141152i \(-0.0450805\pi\)
\(240\) 2.23522 0.0614757i 0.144283 0.00396824i
\(241\) 3.06991i 0.197750i −0.995100 0.0988752i \(-0.968476\pi\)
0.995100 0.0988752i \(-0.0315245\pi\)
\(242\) 6.88934 6.88934i 0.442863 0.442863i
\(243\) −0.707107 + 0.707107i −0.0453609 + 0.0453609i
\(244\) −8.19194 −0.524435
\(245\) 0 0
\(246\) −11.3796 −0.725539
\(247\) −6.71821 + 6.71821i −0.427469 + 0.427469i
\(248\) 2.75329 2.75329i 0.174834 0.174834i
\(249\) 4.54978i 0.288330i
\(250\) −0.921206 11.1423i −0.0582622 0.704702i
\(251\) 1.25355i 0.0791234i −0.999217 0.0395617i \(-0.987404\pi\)
0.999217 0.0395617i \(-0.0125962\pi\)
\(252\) 0 0
\(253\) −25.9344 25.9344i −1.63048 1.63048i
\(254\) 18.2683i 1.14625i
\(255\) 6.69806 + 6.33949i 0.419449 + 0.396994i
\(256\) 1.00000 0.0625000
\(257\) −4.99100 4.99100i −0.311330 0.311330i 0.534095 0.845425i \(-0.320653\pi\)
−0.845425 + 0.534095i \(0.820653\pi\)
\(258\) 0.367260 0.367260i 0.0228646 0.0228646i
\(259\) 0 0
\(260\) 0.154555 + 5.61952i 0.00958507 + 0.348508i
\(261\) −1.55563 −0.0962909
\(262\) −0.264263 0.264263i −0.0163262 0.0163262i
\(263\) −4.02195 4.02195i −0.248004 0.248004i 0.572147 0.820151i \(-0.306111\pi\)
−0.820151 + 0.572147i \(0.806111\pi\)
\(264\) 4.55445 0.280307
\(265\) 0.518531 + 18.8535i 0.0318531 + 1.15816i
\(266\) 0 0
\(267\) −4.27694 + 4.27694i −0.261745 + 0.261745i
\(268\) −6.58705 6.58705i −0.402368 0.402368i
\(269\) −7.70782 −0.469954 −0.234977 0.972001i \(-0.575501\pi\)
−0.234977 + 0.972001i \(0.575501\pi\)
\(270\) 1.62401 + 1.53707i 0.0988342 + 0.0935432i
\(271\) 17.8863i 1.08652i 0.839566 + 0.543258i \(0.182810\pi\)
−0.839566 + 0.543258i \(0.817190\pi\)
\(272\) 2.91639 + 2.91639i 0.176832 + 0.176832i
\(273\) 0 0
\(274\) 2.65859i 0.160611i
\(275\) −1.25167 22.7378i −0.0754786 1.37114i
\(276\) 8.05297i 0.484732i
\(277\) 10.4272 10.4272i 0.626512 0.626512i −0.320676 0.947189i \(-0.603910\pi\)
0.947189 + 0.320676i \(0.103910\pi\)
\(278\) 3.23904 3.23904i 0.194265 0.194265i
\(279\) 3.89374 0.233112
\(280\) 0 0
\(281\) 0.587402 0.0350415 0.0175207 0.999847i \(-0.494423\pi\)
0.0175207 + 0.999847i \(0.494423\pi\)
\(282\) −3.57116 + 3.57116i −0.212659 + 0.212659i
\(283\) −13.1629 + 13.1629i −0.782453 + 0.782453i −0.980244 0.197791i \(-0.936623\pi\)
0.197791 + 0.980244i \(0.436623\pi\)
\(284\) 6.68403i 0.396624i
\(285\) 8.44717 0.232324i 0.500367 0.0137617i
\(286\) 11.4502i 0.677066i
\(287\) 0 0
\(288\) 0.707107 + 0.707107i 0.0416667 + 0.0416667i
\(289\) 0.0106359i 0.000625638i
\(290\) 0.0956333 + 3.47717i 0.00561578 + 0.204187i
\(291\) 0.654289 0.0383551
\(292\) −3.07520 3.07520i −0.179962 0.179962i
\(293\) −20.6736 + 20.6736i −1.20777 + 1.20777i −0.236018 + 0.971749i \(0.575842\pi\)
−0.971749 + 0.236018i \(0.924158\pi\)
\(294\) 0 0
\(295\) −0.719472 0.680956i −0.0418893 0.0396468i
\(296\) 11.4358 0.664693
\(297\) 3.22048 + 3.22048i 0.186871 + 0.186871i
\(298\) −12.1934 12.1934i −0.706344 0.706344i
\(299\) 20.2458 1.17084
\(300\) 3.33586 3.72452i 0.192596 0.215035i
\(301\) 0 0
\(302\) −3.93696 + 3.93696i −0.226546 + 0.226546i
\(303\) −3.96124 3.96124i −0.227567 0.227567i
\(304\) 3.77912 0.216747
\(305\) −12.5916 + 13.3038i −0.720992 + 0.761773i
\(306\) 4.12440i 0.235776i
\(307\) −1.63464 1.63464i −0.0932937 0.0932937i 0.658920 0.752213i \(-0.271014\pi\)
−0.752213 + 0.658920i \(0.771014\pi\)
\(308\) 0 0
\(309\) 5.55802i 0.316185i
\(310\) −0.239370 8.70337i −0.0135953 0.494318i
\(311\) 13.8839i 0.787286i 0.919263 + 0.393643i \(0.128785\pi\)
−0.919263 + 0.393643i \(0.871215\pi\)
\(312\) −1.77772 + 1.77772i −0.100644 + 0.100644i
\(313\) 9.53915 9.53915i 0.539185 0.539185i −0.384105 0.923289i \(-0.625490\pi\)
0.923289 + 0.384105i \(0.125490\pi\)
\(314\) −4.13090 −0.233120
\(315\) 0 0
\(316\) 4.71445 0.265208
\(317\) 9.69943 9.69943i 0.544774 0.544774i −0.380150 0.924925i \(-0.624128\pi\)
0.924925 + 0.380150i \(0.124128\pi\)
\(318\) −5.96425 + 5.96425i −0.334459 + 0.334459i
\(319\) 7.08502i 0.396685i
\(320\) 1.53707 1.62401i 0.0859249 0.0907850i
\(321\) 7.49036i 0.418071i
\(322\) 0 0
\(323\) 11.0214 + 11.0214i 0.613245 + 0.613245i
\(324\) 1.00000i 0.0555556i
\(325\) 9.36372 + 8.38660i 0.519406 + 0.465205i
\(326\) −21.7389 −1.20401
\(327\) 1.03723 + 1.03723i 0.0573590 + 0.0573590i
\(328\) −8.04662 + 8.04662i −0.444300 + 0.444300i
\(329\) 0 0
\(330\) 7.00051 7.39647i 0.385365 0.407162i
\(331\) 33.2387 1.82697 0.913483 0.406878i \(-0.133383\pi\)
0.913483 + 0.406878i \(0.133383\pi\)
\(332\) 3.21718 + 3.21718i 0.176566 + 0.176566i
\(333\) 8.08634 + 8.08634i 0.443129 + 0.443129i
\(334\) −24.7415 −1.35380
\(335\) −20.8222 + 0.572677i −1.13764 + 0.0312887i
\(336\) 0 0
\(337\) −17.0329 + 17.0329i −0.927842 + 0.927842i −0.997566 0.0697246i \(-0.977788\pi\)
0.0697246 + 0.997566i \(0.477788\pi\)
\(338\) 4.72307 + 4.72307i 0.256901 + 0.256901i
\(339\) 10.0244 0.544452
\(340\) 9.21894 0.253550i 0.499967 0.0137507i
\(341\) 17.7338i 0.960341i
\(342\) 2.67224 + 2.67224i 0.144498 + 0.144498i
\(343\) 0 0
\(344\) 0.519384i 0.0280033i
\(345\) −13.0781 12.3780i −0.704102 0.666409i
\(346\) 16.5661i 0.890601i
\(347\) 1.45458 1.45458i 0.0780861 0.0780861i −0.666985 0.745071i \(-0.732416\pi\)
0.745071 + 0.666985i \(0.232416\pi\)
\(348\) −1.09999 + 1.09999i −0.0589659 + 0.0589659i
\(349\) −11.7250 −0.627627 −0.313814 0.949485i \(-0.601607\pi\)
−0.313814 + 0.949485i \(0.601607\pi\)
\(350\) 0 0
\(351\) −2.51408 −0.134191
\(352\) 3.22048 3.22048i 0.171652 0.171652i
\(353\) 8.07703 8.07703i 0.429897 0.429897i −0.458696 0.888593i \(-0.651683\pi\)
0.888593 + 0.458696i \(0.151683\pi\)
\(354\) 0.443022i 0.0235463i
\(355\) 10.8549 + 10.2738i 0.576120 + 0.545278i
\(356\) 6.04851i 0.320570i
\(357\) 0 0
\(358\) −8.99958 8.99958i −0.475643 0.475643i
\(359\) 2.41155i 0.127277i −0.997973 0.0636383i \(-0.979730\pi\)
0.997973 0.0636383i \(-0.0202704\pi\)
\(360\) 2.23522 0.0614757i 0.117807 0.00324005i
\(361\) −4.71828 −0.248331
\(362\) 6.43432 + 6.43432i 0.338180 + 0.338180i
\(363\) 6.88934 6.88934i 0.361596 0.361596i
\(364\) 0 0
\(365\) −9.72095 + 0.267357i −0.508818 + 0.0139941i
\(366\) −8.19194 −0.428199
\(367\) 3.68321 + 3.68321i 0.192262 + 0.192262i 0.796673 0.604411i \(-0.206591\pi\)
−0.604411 + 0.796673i \(0.706591\pi\)
\(368\) −5.69431 5.69431i −0.296836 0.296836i
\(369\) −11.3796 −0.592400
\(370\) 17.5777 18.5719i 0.913819 0.965506i
\(371\) 0 0
\(372\) 2.75329 2.75329i 0.142751 0.142751i
\(373\) −0.103701 0.103701i −0.00536945 0.00536945i 0.704417 0.709786i \(-0.251209\pi\)
−0.709786 + 0.704417i \(0.751209\pi\)
\(374\) 18.7843 0.971315
\(375\) −0.921206 11.1423i −0.0475709 0.575387i
\(376\) 5.05038i 0.260453i
\(377\) −2.76547 2.76547i −0.142429 0.142429i
\(378\) 0 0
\(379\) 18.5438i 0.952530i 0.879302 + 0.476265i \(0.158010\pi\)
−0.879302 + 0.476265i \(0.841990\pi\)
\(380\) 5.80877 6.13733i 0.297984 0.314838i
\(381\) 18.2683i 0.935913i
\(382\) 12.8737 12.8737i 0.658676 0.658676i
\(383\) −2.72208 + 2.72208i −0.139092 + 0.139092i −0.773224 0.634132i \(-0.781357\pi\)
0.634132 + 0.773224i \(0.281357\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) −10.0713 −0.512614
\(387\) 0.367260 0.367260i 0.0186689 0.0186689i
\(388\) 0.462652 0.462652i 0.0234876 0.0234876i
\(389\) 17.8217i 0.903596i −0.892120 0.451798i \(-0.850783\pi\)
0.892120 0.451798i \(-0.149217\pi\)
\(390\) 0.154555 + 5.61952i 0.00782617 + 0.284555i
\(391\) 33.2136i 1.67969i
\(392\) 0 0
\(393\) −0.264263 0.264263i −0.0133303 0.0133303i
\(394\) 22.9723i 1.15733i
\(395\) 7.24644 7.65631i 0.364608 0.385231i
\(396\) 4.55445 0.228870
\(397\) −18.1348 18.1348i −0.910157 0.910157i 0.0861268 0.996284i \(-0.472551\pi\)
−0.996284 + 0.0861268i \(0.972551\pi\)
\(398\) 17.9583 17.9583i 0.900168 0.900168i
\(399\) 0 0
\(400\) −0.274824 4.99244i −0.0137412 0.249622i
\(401\) −5.26119 −0.262731 −0.131366 0.991334i \(-0.541936\pi\)
−0.131366 + 0.991334i \(0.541936\pi\)
\(402\) −6.58705 6.58705i −0.328532 0.328532i
\(403\) 6.92198 + 6.92198i 0.344808 + 0.344808i
\(404\) −5.60204 −0.278712
\(405\) 1.62401 + 1.53707i 0.0806978 + 0.0763777i
\(406\) 0 0
\(407\) 36.8288 36.8288i 1.82554 1.82554i
\(408\) 2.91639 + 2.91639i 0.144383 + 0.144383i
\(409\) 8.37545 0.414140 0.207070 0.978326i \(-0.433607\pi\)
0.207070 + 0.978326i \(0.433607\pi\)
\(410\) 0.699571 + 25.4360i 0.0345494 + 1.25620i
\(411\) 2.65859i 0.131139i
\(412\) 3.93011 + 3.93011i 0.193623 + 0.193623i
\(413\) 0 0
\(414\) 8.05297i 0.395782i
\(415\) 10.1698 0.279701i 0.499214 0.0137300i
\(416\) 2.51408i 0.123263i
\(417\) 3.23904 3.23904i 0.158617 0.158617i
\(418\) 12.1706 12.1706i 0.595282 0.595282i
\(419\) −9.53078 −0.465609 −0.232805 0.972524i \(-0.574790\pi\)
−0.232805 + 0.972524i \(0.574790\pi\)
\(420\) 0 0
\(421\) 16.8461 0.821027 0.410514 0.911854i \(-0.365349\pi\)
0.410514 + 0.911854i \(0.365349\pi\)
\(422\) −9.62954 + 9.62954i −0.468759 + 0.468759i
\(423\) −3.57116 + 3.57116i −0.173636 + 0.173636i
\(424\) 8.43473i 0.409627i
\(425\) 13.7584 15.3614i 0.667381 0.745137i
\(426\) 6.68403i 0.323842i
\(427\) 0 0
\(428\) −5.29649 5.29649i −0.256015 0.256015i
\(429\) 11.4502i 0.552822i
\(430\) −0.843485 0.798330i −0.0406764 0.0384989i
\(431\) 21.5581 1.03842 0.519209 0.854647i \(-0.326226\pi\)
0.519209 + 0.854647i \(0.326226\pi\)
\(432\) 0.707107 + 0.707107i 0.0340207 + 0.0340207i
\(433\) −25.8823 + 25.8823i −1.24382 + 1.24382i −0.285422 + 0.958402i \(0.592134\pi\)
−0.958402 + 0.285422i \(0.907866\pi\)
\(434\) 0 0
\(435\) 0.0956333 + 3.47717i 0.00458526 + 0.166718i
\(436\) 1.46687 0.0702501
\(437\) −21.5195 21.5195i −1.02942 1.02942i
\(438\) −3.07520 3.07520i −0.146939 0.146939i
\(439\) 21.1797 1.01085 0.505426 0.862870i \(-0.331335\pi\)
0.505426 + 0.862870i \(0.331335\pi\)
\(440\) −0.279988 10.1802i −0.0133479 0.485322i
\(441\) 0 0
\(442\) −7.33202 + 7.33202i −0.348749 + 0.348749i
\(443\) −2.93476 2.93476i −0.139435 0.139435i 0.633944 0.773379i \(-0.281435\pi\)
−0.773379 + 0.633944i \(0.781435\pi\)
\(444\) 11.4358 0.542719
\(445\) 9.82285 + 9.29699i 0.465648 + 0.440720i
\(446\) 22.4029i 1.06081i
\(447\) −12.1934 12.1934i −0.576728 0.576728i
\(448\) 0 0
\(449\) 29.3795i 1.38651i 0.720694 + 0.693253i \(0.243823\pi\)
−0.720694 + 0.693253i \(0.756177\pi\)
\(450\) 3.33586 3.72452i 0.157254 0.175576i
\(451\) 51.8280i 2.44048i
\(452\) 7.08834 7.08834i 0.333407 0.333407i
\(453\) −3.93696 + 3.93696i −0.184974 + 0.184974i
\(454\) −10.9527 −0.514035
\(455\) 0 0
\(456\) 3.77912 0.176973
\(457\) −0.333296 + 0.333296i −0.0155909 + 0.0155909i −0.714859 0.699268i \(-0.753509\pi\)
0.699268 + 0.714859i \(0.253509\pi\)
\(458\) 20.4667 20.4667i 0.956347 0.956347i
\(459\) 4.12440i 0.192510i
\(460\) −18.0002 + 0.495062i −0.839263 + 0.0230824i
\(461\) 26.3199i 1.22584i −0.790145 0.612920i \(-0.789995\pi\)
0.790145 0.612920i \(-0.210005\pi\)
\(462\) 0 0
\(463\) −1.02619 1.02619i −0.0476909 0.0476909i 0.682859 0.730550i \(-0.260736\pi\)
−0.730550 + 0.682859i \(0.760736\pi\)
\(464\) 1.55563i 0.0722182i
\(465\) −0.239370 8.70337i −0.0111005 0.403609i
\(466\) 1.41209 0.0654138
\(467\) 21.9300 + 21.9300i 1.01480 + 1.01480i 0.999889 + 0.0149091i \(0.00474590\pi\)
0.0149091 + 0.999889i \(0.495254\pi\)
\(468\) −1.77772 + 1.77772i −0.0821751 + 0.0821751i
\(469\) 0 0
\(470\) 8.20187 + 7.76279i 0.378324 + 0.358071i
\(471\) −4.13090 −0.190342
\(472\) −0.313264 0.313264i −0.0144191 0.0144191i
\(473\) −1.67267 1.67267i −0.0769092 0.0769092i
\(474\) 4.71445 0.216542
\(475\) −1.03859 18.8670i −0.0476538 0.865678i
\(476\) 0 0
\(477\) −5.96425 + 5.96425i −0.273084 + 0.273084i
\(478\) −3.08603 3.08603i −0.141152 0.141152i
\(479\) 33.3520 1.52389 0.761945 0.647642i \(-0.224245\pi\)
0.761945 + 0.647642i \(0.224245\pi\)
\(480\) 1.53707 1.62401i 0.0701574 0.0741256i
\(481\) 28.7505i 1.31091i
\(482\) −2.17075 2.17075i −0.0988752 0.0988752i
\(483\) 0 0
\(484\) 9.74299i 0.442863i
\(485\) −0.0402229 1.46248i −0.00182643 0.0664078i
\(486\) 1.00000i 0.0453609i
\(487\) −2.33606 + 2.33606i −0.105857 + 0.105857i −0.758052 0.652195i \(-0.773848\pi\)
0.652195 + 0.758052i \(0.273848\pi\)
\(488\) −5.79257 + 5.79257i −0.262217 + 0.262217i
\(489\) −21.7389 −0.983067
\(490\) 0 0
\(491\) 3.61649 0.163210 0.0816051 0.996665i \(-0.473995\pi\)
0.0816051 + 0.996665i \(0.473995\pi\)
\(492\) −8.04662 + 8.04662i −0.362770 + 0.362770i
\(493\) −4.53681 + 4.53681i −0.204328 + 0.204328i
\(494\) 9.50098i 0.427469i
\(495\) 7.00051 7.39647i 0.314650 0.332447i
\(496\) 3.89374i 0.174834i
\(497\) 0 0
\(498\) 3.21718 + 3.21718i 0.144165 + 0.144165i
\(499\) 0.647791i 0.0289991i −0.999895 0.0144996i \(-0.995384\pi\)
0.999895 0.0144996i \(-0.00461551\pi\)
\(500\) −8.53020 7.22742i −0.381482 0.323220i
\(501\) −24.7415 −1.10537
\(502\) −0.886395 0.886395i −0.0395617 0.0395617i
\(503\) 12.9189 12.9189i 0.576027 0.576027i −0.357779 0.933806i \(-0.616466\pi\)
0.933806 + 0.357779i \(0.116466\pi\)
\(504\) 0 0
\(505\) −8.61073 + 9.09777i −0.383172 + 0.404845i
\(506\) −36.6768 −1.63048
\(507\) 4.72307 + 4.72307i 0.209759 + 0.209759i
\(508\) −12.9176 12.9176i −0.573127 0.573127i
\(509\) −20.3107 −0.900256 −0.450128 0.892964i \(-0.648622\pi\)
−0.450128 + 0.892964i \(0.648622\pi\)
\(510\) 9.21894 0.253550i 0.408222 0.0112274i
\(511\) 0 0
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 2.67224 + 2.67224i 0.117982 + 0.117982i
\(514\) −7.05834 −0.311330
\(515\) 12.4234 0.341683i 0.547441 0.0150563i
\(516\) 0.519384i 0.0228646i
\(517\) 16.2646 + 16.2646i 0.715318 + 0.715318i
\(518\) 0 0
\(519\) 16.5661i 0.727172i
\(520\) 4.08289 + 3.86431i 0.179046 + 0.169461i
\(521\) 1.24563i 0.0545720i 0.999628 + 0.0272860i \(0.00868648\pi\)
−0.999628 + 0.0272860i \(0.991314\pi\)
\(522\) −1.09999 + 1.09999i −0.0481455 + 0.0481455i
\(523\) 14.3494 14.3494i 0.627454 0.627454i −0.319972 0.947427i \(-0.603674\pi\)
0.947427 + 0.319972i \(0.103674\pi\)
\(524\) −0.373725 −0.0163262
\(525\) 0 0
\(526\) −5.68790 −0.248004
\(527\) 11.3557 11.3557i 0.494660 0.494660i
\(528\) 3.22048 3.22048i 0.140153 0.140153i
\(529\) 41.8503i 1.81958i
\(530\) 13.6981 + 12.9648i 0.595007 + 0.563154i
\(531\) 0.443022i 0.0192255i
\(532\) 0 0
\(533\) −20.2298 20.2298i −0.876250 0.876250i
\(534\) 6.04851i 0.261745i
\(535\) −16.7426 + 0.460475i −0.723847 + 0.0199081i
\(536\) −9.31550 −0.402368
\(537\) −8.99958 8.99958i −0.388361 0.388361i
\(538\) −5.45025 + 5.45025i −0.234977 + 0.234977i
\(539\) 0 0
\(540\) 2.23522 0.0614757i 0.0961887 0.00264549i
\(541\) −34.0135 −1.46236 −0.731178 0.682187i \(-0.761029\pi\)
−0.731178 + 0.682187i \(0.761029\pi\)
\(542\) 12.6475 + 12.6475i 0.543258 + 0.543258i
\(543\) 6.43432 + 6.43432i 0.276123 + 0.276123i
\(544\) 4.12440 0.176832
\(545\) 2.25468 2.38221i 0.0965798 0.102043i
\(546\) 0 0
\(547\) 27.8171 27.8171i 1.18937 1.18937i 0.212132 0.977241i \(-0.431959\pi\)
0.977241 0.212132i \(-0.0680407\pi\)
\(548\) 1.87991 + 1.87991i 0.0803056 + 0.0803056i
\(549\) −8.19194 −0.349623
\(550\) −16.9631 15.1930i −0.723310 0.647832i
\(551\) 5.87890i 0.250449i
\(552\) −5.69431 5.69431i −0.242366 0.242366i
\(553\) 0 0
\(554\) 14.7464i 0.626512i
\(555\) 17.5777 18.5719i 0.746130 0.788332i
\(556\) 4.58070i 0.194265i
\(557\) 0.999336 0.999336i 0.0423432 0.0423432i −0.685618 0.727961i \(-0.740468\pi\)
0.727961 + 0.685618i \(0.240468\pi\)
\(558\) 2.75329 2.75329i 0.116556 0.116556i
\(559\) 1.30577 0.0552282
\(560\) 0 0
\(561\) 18.7843 0.793076
\(562\) 0.415356 0.415356i 0.0175207 0.0175207i
\(563\) −27.0515 + 27.0515i −1.14008 + 1.14008i −0.151648 + 0.988435i \(0.548458\pi\)
−0.988435 + 0.151648i \(0.951542\pi\)
\(564\) 5.05038i 0.212659i
\(565\) −0.616258 22.4068i −0.0259262 0.942662i
\(566\) 18.6151i 0.782453i
\(567\) 0 0
\(568\) 4.72632 + 4.72632i 0.198312 + 0.198312i
\(569\) 36.0059i 1.50945i 0.656044 + 0.754723i \(0.272229\pi\)
−0.656044 + 0.754723i \(0.727771\pi\)
\(570\) 5.80877 6.13733i 0.243303 0.257064i
\(571\) −34.3980 −1.43951 −0.719756 0.694228i \(-0.755746\pi\)
−0.719756 + 0.694228i \(0.755746\pi\)
\(572\) 8.09653 + 8.09653i 0.338533 + 0.338533i
\(573\) 12.8737 12.8737i 0.537806 0.537806i
\(574\) 0 0
\(575\) −26.8636 + 29.9934i −1.12029 + 1.25081i
\(576\) 1.00000 0.0416667
\(577\) −31.6173 31.6173i −1.31624 1.31624i −0.916725 0.399518i \(-0.869178\pi\)
−0.399518 0.916725i \(-0.630822\pi\)
\(578\) 0.00752068 + 0.00752068i 0.000312819 + 0.000312819i
\(579\) −10.0713 −0.418548
\(580\) 2.52636 + 2.39111i 0.104901 + 0.0992854i
\(581\) 0 0
\(582\) 0.462652 0.462652i 0.0191775 0.0191775i
\(583\) 27.1639 + 27.1639i 1.12501 + 1.12501i
\(584\) −4.34898 −0.179962
\(585\) 0.154555 + 5.61952i 0.00639004 + 0.232339i
\(586\) 29.2369i 1.20777i
\(587\) 19.7182 + 19.7182i 0.813859 + 0.813859i 0.985210 0.171351i \(-0.0548132\pi\)
−0.171351 + 0.985210i \(0.554813\pi\)
\(588\) 0 0
\(589\) 14.7149i 0.606316i
\(590\) −0.990253 + 0.0272351i −0.0407681 + 0.00112125i
\(591\) 22.9723i 0.944956i
\(592\) 8.08634 8.08634i 0.332346 0.332346i
\(593\) −7.04763 + 7.04763i −0.289411 + 0.289411i −0.836847 0.547436i \(-0.815604\pi\)
0.547436 + 0.836847i \(0.315604\pi\)
\(594\) 4.55445 0.186871
\(595\) 0 0
\(596\) −17.2441 −0.706344
\(597\) 17.9583 17.9583i 0.734984 0.734984i
\(598\) 14.3159 14.3159i 0.585422 0.585422i
\(599\) 16.4610i 0.672577i 0.941759 + 0.336288i \(0.109172\pi\)
−0.941759 + 0.336288i \(0.890828\pi\)
\(600\) −0.274824 4.99244i −0.0112196 0.203816i
\(601\) 34.0216i 1.38777i 0.720086 + 0.693885i \(0.244102\pi\)
−0.720086 + 0.693885i \(0.755898\pi\)
\(602\) 0 0
\(603\) −6.58705 6.58705i −0.268246 0.268246i
\(604\) 5.56770i 0.226546i
\(605\) −15.8227 14.9757i −0.643285 0.608848i
\(606\) −5.60204 −0.227567
\(607\) −25.4539 25.4539i −1.03314 1.03314i −0.999432 0.0337108i \(-0.989267\pi\)
−0.0337108 0.999432i \(-0.510733\pi\)
\(608\) 2.67224 2.67224i 0.108374 0.108374i
\(609\) 0 0
\(610\) 0.503605 + 18.3108i 0.0203904 + 0.741383i
\(611\) −12.6970 −0.513667
\(612\) 2.91639 + 2.91639i 0.117888 + 0.117888i
\(613\) −23.2805 23.2805i −0.940290 0.940290i 0.0580254 0.998315i \(-0.481520\pi\)
−0.998315 + 0.0580254i \(0.981520\pi\)
\(614\) −2.31173 −0.0932937
\(615\) 0.699571 + 25.4360i 0.0282094 + 1.02568i
\(616\) 0 0
\(617\) −10.3705 + 10.3705i −0.417499 + 0.417499i −0.884341 0.466842i \(-0.845392\pi\)
0.466842 + 0.884341i \(0.345392\pi\)
\(618\) 3.93011 + 3.93011i 0.158092 + 0.158092i
\(619\) 5.17657 0.208064 0.104032 0.994574i \(-0.466826\pi\)
0.104032 + 0.994574i \(0.466826\pi\)
\(620\) −6.32347 5.98495i −0.253957 0.240362i
\(621\) 8.05297i 0.323155i
\(622\) 9.81743 + 9.81743i 0.393643 + 0.393643i
\(623\) 0 0
\(624\) 2.51408i 0.100644i
\(625\) −24.8489 + 2.74408i −0.993958 + 0.109763i
\(626\) 13.4904i 0.539185i
\(627\) 12.1706 12.1706i 0.486046 0.486046i
\(628\) −2.92099 + 2.92099i −0.116560 + 0.116560i
\(629\) 47.1658 1.88062
\(630\) 0 0
\(631\) 14.5385 0.578769 0.289384 0.957213i \(-0.406549\pi\)
0.289384 + 0.957213i \(0.406549\pi\)
\(632\) 3.33362 3.33362i 0.132604 0.132604i
\(633\) −9.62954 + 9.62954i −0.382740 + 0.382740i
\(634\) 13.7171i 0.544774i
\(635\) −40.8337 + 1.12306i −1.62044 + 0.0445671i
\(636\) 8.43473i 0.334459i
\(637\) 0 0
\(638\) 5.00987 + 5.00987i 0.198343 + 0.198343i
\(639\) 6.68403i 0.264416i
\(640\) −0.0614757 2.23522i −0.00243004 0.0883549i
\(641\) 41.7486 1.64897 0.824484 0.565885i \(-0.191465\pi\)
0.824484 + 0.565885i \(0.191465\pi\)
\(642\) −5.29649 5.29649i −0.209036 0.209036i
\(643\) −15.5128 + 15.5128i −0.611766 + 0.611766i −0.943406 0.331640i \(-0.892398\pi\)
0.331640 + 0.943406i \(0.392398\pi\)
\(644\) 0 0
\(645\) −0.843485 0.798330i −0.0332122 0.0314342i
\(646\) 15.5866 0.613245
\(647\) −10.1126 10.1126i −0.397569 0.397569i 0.479806 0.877375i \(-0.340707\pi\)
−0.877375 + 0.479806i \(0.840707\pi\)
\(648\) 0.707107 + 0.707107i 0.0277778 + 0.0277778i
\(649\) −2.01772 −0.0792024
\(650\) 12.5514 0.690928i 0.492305 0.0271004i
\(651\) 0 0
\(652\) −15.3717 + 15.3717i −0.602003 + 0.602003i
\(653\) 10.7942 + 10.7942i 0.422408 + 0.422408i 0.886032 0.463624i \(-0.153451\pi\)
−0.463624 + 0.886032i \(0.653451\pi\)
\(654\) 1.46687 0.0573590
\(655\) −0.574442 + 0.606933i −0.0224453 + 0.0237148i
\(656\) 11.3796i 0.444300i
\(657\) −3.07520 3.07520i −0.119975 0.119975i
\(658\) 0 0
\(659\) 18.9116i 0.736690i 0.929689 + 0.368345i \(0.120076\pi\)
−0.929689 + 0.368345i \(0.879924\pi\)
\(660\) −0.279988 10.1802i −0.0108985 0.396264i
\(661\) 22.6108i 0.879457i 0.898131 + 0.439728i \(0.144925\pi\)
−0.898131 + 0.439728i \(0.855075\pi\)
\(662\) 23.5033 23.5033i 0.913483 0.913483i
\(663\) −7.33202 + 7.33202i −0.284752 + 0.284752i
\(664\) 4.54978 0.176566
\(665\) 0 0
\(666\) 11.4358 0.443129
\(667\) 8.85822 8.85822i 0.342992 0.342992i
\(668\) −17.4949 + 17.4949i −0.676898 + 0.676898i
\(669\) 22.4029i 0.866146i
\(670\) −14.3186 + 15.1285i −0.553175 + 0.584464i
\(671\) 37.3097i 1.44033i
\(672\) 0 0
\(673\) −24.2623 24.2623i −0.935243 0.935243i 0.0627838 0.998027i \(-0.480002\pi\)
−0.998027 + 0.0627838i \(0.980002\pi\)
\(674\) 24.0882i 0.927842i
\(675\) 3.33586 3.72452i 0.128397 0.143357i
\(676\) 6.67942 0.256901
\(677\) −6.29469 6.29469i −0.241925 0.241925i 0.575721 0.817646i \(-0.304721\pi\)
−0.817646 + 0.575721i \(0.804721\pi\)
\(678\) 7.08834 7.08834i 0.272226 0.272226i
\(679\) 0 0
\(680\) 6.33949 6.69806i 0.243108 0.256859i
\(681\) −10.9527 −0.419707
\(682\) −12.5397 12.5397i −0.480170 0.480170i
\(683\) 33.8718 + 33.8718i 1.29607 + 1.29607i 0.930969 + 0.365099i \(0.118965\pi\)
0.365099 + 0.930969i \(0.381035\pi\)
\(684\) 3.77912 0.144498
\(685\) 5.94254 0.163439i 0.227053 0.00624467i
\(686\) 0 0
\(687\) 20.4667 20.4667i 0.780854 0.780854i
\(688\) −0.367260 0.367260i −0.0140016 0.0140016i
\(689\) −21.2055 −0.807867
\(690\) −18.0002 + 0.495062i −0.685255 + 0.0188467i
\(691\) 25.8478i 0.983296i 0.870794 + 0.491648i \(0.163605\pi\)
−0.870794 + 0.491648i \(0.836395\pi\)
\(692\) 11.7140 + 11.7140i 0.445300 + 0.445300i
\(693\) 0 0
\(694\) 2.05709i 0.0780861i
\(695\) −7.43910 7.04086i −0.282181 0.267075i
\(696\) 1.55563i 0.0589659i
\(697\) −33.1874 + 33.1874i −1.25706 + 1.25706i
\(698\) −8.29086 + 8.29086i −0.313814 + 0.313814i
\(699\) 1.41209 0.0534102
\(700\) 0 0
\(701\) 3.95788 0.149487 0.0747435 0.997203i \(-0.476186\pi\)
0.0747435 + 0.997203i \(0.476186\pi\)
\(702\) −1.77772 + 1.77772i −0.0670957 + 0.0670957i
\(703\) 30.5592 30.5592i 1.15256 1.15256i
\(704\) 4.55445i 0.171652i
\(705\) 8.20187 + 7.76279i 0.308900 + 0.292364i
\(706\) 11.4227i 0.429897i
\(707\) 0 0
\(708\) −0.313264 0.313264i −0.0117732 0.0117732i
\(709\) 29.0598i 1.09136i 0.837993 + 0.545682i \(0.183729\pi\)
−0.837993 + 0.545682i \(0.816271\pi\)
\(710\) 14.9403 0.410905i 0.560699 0.0154210i
\(711\) 4.71445 0.176806
\(712\) 4.27694 + 4.27694i 0.160285 + 0.160285i
\(713\) −22.1722 + 22.1722i −0.830354 + 0.830354i
\(714\) 0 0
\(715\) 25.5938 0.703911i 0.957154 0.0263248i
\(716\) −12.7273 −0.475643
\(717\) −3.08603 3.08603i −0.115250 0.115250i
\(718\) −1.70522 1.70522i −0.0636383 0.0636383i
\(719\) 20.2638 0.755713 0.377857 0.925864i \(-0.376661\pi\)
0.377857 + 0.925864i \(0.376661\pi\)
\(720\) 1.53707 1.62401i 0.0572833 0.0605233i
\(721\) 0 0
\(722\) −3.33633 + 3.33633i −0.124165 + 0.124165i
\(723\) −2.17075 2.17075i −0.0807312 0.0807312i
\(724\) 9.09951 0.338180
\(725\) 7.76638 0.427523i 0.288436 0.0158778i
\(726\) 9.74299i 0.361596i
\(727\) −2.80940 2.80940i −0.104195 0.104195i 0.653088 0.757282i \(-0.273473\pi\)
−0.757282 + 0.653088i \(0.773473\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) −6.68470 + 7.06280i −0.247412 + 0.261406i
\(731\) 2.14214i 0.0792300i
\(732\) −5.79257 + 5.79257i −0.214100 + 0.214100i
\(733\) −1.23291 + 1.23291i −0.0455384 + 0.0455384i −0.729509 0.683971i \(-0.760252\pi\)
0.683971 + 0.729509i \(0.260252\pi\)
\(734\) 5.20884 0.192262
\(735\) 0 0
\(736\) −8.05297 −0.296836
\(737\) −30.0004 + 30.0004i −1.10508 + 1.10508i
\(738\) −8.04662 + 8.04662i −0.296200 + 0.296200i
\(739\) 23.4049i 0.860962i −0.902600 0.430481i \(-0.858344\pi\)
0.902600 0.430481i \(-0.141656\pi\)
\(740\) −0.703024 25.5616i −0.0258437 0.939662i
\(741\) 9.50098i 0.349027i
\(742\) 0 0
\(743\) 1.84057 + 1.84057i 0.0675240 + 0.0675240i 0.740062 0.672538i \(-0.234796\pi\)
−0.672538 + 0.740062i \(0.734796\pi\)
\(744\) 3.89374i 0.142751i
\(745\) −26.5053 + 28.0045i −0.971081 + 1.02601i
\(746\) −0.146656 −0.00536945
\(747\) 3.21718 + 3.21718i 0.117710 + 0.117710i
\(748\) 13.2825 13.2825i 0.485658 0.485658i
\(749\) 0 0
\(750\) −8.53020 7.22742i −0.311479 0.263908i
\(751\) 42.3724 1.54619 0.773096 0.634289i \(-0.218707\pi\)
0.773096 + 0.634289i \(0.218707\pi\)
\(752\) 3.57116 + 3.57116i 0.130227 + 0.130227i
\(753\) −0.886395 0.886395i −0.0323020 0.0323020i
\(754\) −3.91096 −0.142429
\(755\) 9.04201 + 8.55795i 0.329072 + 0.311456i
\(756\) 0 0
\(757\) 10.2470 10.2470i 0.372434 0.372434i −0.495929 0.868363i \(-0.665172\pi\)
0.868363 + 0.495929i \(0.165172\pi\)
\(758\) 13.1124 + 13.1124i 0.476265 + 0.476265i
\(759\) −36.6768 −1.33128
\(760\) −0.232324 8.44717i −0.00842727 0.306411i
\(761\) 15.4825i 0.561239i −0.959819 0.280620i \(-0.909460\pi\)
0.959819 0.280620i \(-0.0905400\pi\)
\(762\) −12.9176 12.9176i −0.467956 0.467956i
\(763\) 0 0
\(764\) 18.2062i 0.658676i
\(765\) 9.21894 0.253550i 0.333312 0.00916712i
\(766\) 3.84961i 0.139092i
\(767\) 0.787569 0.787569i 0.0284375 0.0284375i
\(768\) 0.707107 0.707107i 0.0255155 0.0255155i
\(769\) 15.9644 0.575691 0.287846 0.957677i \(-0.407061\pi\)
0.287846 + 0.957677i \(0.407061\pi\)
\(770\) 0 0
\(771\) −7.05834 −0.254200
\(772\) −7.12147 + 7.12147i −0.256307 + 0.256307i
\(773\) −16.3831 + 16.3831i −0.589258 + 0.589258i −0.937430 0.348172i \(-0.886802\pi\)
0.348172 + 0.937430i \(0.386802\pi\)
\(774\) 0.519384i 0.0186689i
\(775\) −19.4393 + 1.07009i −0.698279 + 0.0384388i
\(776\) 0.654289i 0.0234876i
\(777\) 0 0
\(778\) −12.6018 12.6018i −0.451798 0.451798i
\(779\) 43.0050i 1.54081i
\(780\) 4.08289 + 3.86431i 0.146191 + 0.138365i
\(781\) 30.4420 1.08930
\(782\) −23.4856 23.4856i −0.839843 0.839843i
\(783\) −1.09999 + 1.09999i −0.0393106 + 0.0393106i
\(784\) 0 0
\(785\) 0.253950 + 9.23348i 0.00906386 + 0.329557i
\(786\) −0.373725 −0.0133303
\(787\) −1.48872 1.48872i −0.0530672 0.0530672i 0.680075 0.733142i \(-0.261947\pi\)
−0.733142 + 0.680075i \(0.761947\pi\)
\(788\) −16.2439 16.2439i −0.578665 0.578665i
\(789\) −5.68790 −0.202495
\(790\) −0.289824 10.5378i −0.0103115 0.374920i
\(791\) 0 0
\(792\) 3.22048 3.22048i 0.114435 0.114435i
\(793\) −14.5630 14.5630i −0.517146 0.517146i
\(794\) −25.6464 −0.910157
\(795\) 13.6981 + 12.9648i 0.485821 + 0.459813i
\(796\) 25.3969i 0.900168i
\(797\) −23.6759 23.6759i −0.838642 0.838642i 0.150038 0.988680i \(-0.452060\pi\)
−0.988680 + 0.150038i \(0.952060\pi\)
\(798\) 0 0
\(799\) 20.8298i 0.736904i
\(800\) −3.72452 3.33586i −0.131682 0.117940i
\(801\) 6.04851i 0.213714i
\(802\) −3.72022 + 3.72022i −0.131366 + 0.131366i
\(803\) −14.0058 + 14.0058i −0.494255 + 0.494255i
\(804\) −9.31550 −0.328532
\(805\) 0 0
\(806\) 9.78915 0.344808
\(807\) −5.45025 + 5.45025i −0.191858 + 0.191858i
\(808\) −3.96124 + 3.96124i −0.139356 + 0.139356i
\(809\) 1.33300i 0.0468658i 0.999725 + 0.0234329i \(0.00745960\pi\)
−0.999725 + 0.0234329i \(0.992540\pi\)
\(810\) 2.23522 0.0614757i 0.0785377 0.00216004i
\(811\) 41.6705i 1.46325i −0.681708 0.731624i \(-0.738763\pi\)
0.681708 0.731624i \(-0.261237\pi\)
\(812\) 0 0
\(813\) 12.6475 + 12.6475i 0.443568 + 0.443568i
\(814\) 52.0838i 1.82554i
\(815\) 1.33641 + 48.5913i 0.0468125 + 1.70208i
\(816\) 4.12440 0.144383
\(817\) −1.38792 1.38792i −0.0485571 0.0485571i
\(818\) 5.92234 5.92234i 0.207070 0.207070i
\(819\) 0 0
\(820\) 18.4807 + 17.4913i 0.645373 + 0.610823i
\(821\) −32.1667 −1.12262 −0.561312 0.827604i \(-0.689703\pi\)
−0.561312 + 0.827604i \(0.689703\pi\)
\(822\) 1.87991 + 1.87991i 0.0655693 + 0.0655693i
\(823\) 10.4634 + 10.4634i 0.364732 + 0.364732i 0.865552 0.500820i \(-0.166968\pi\)
−0.500820 + 0.865552i \(0.666968\pi\)
\(824\) 5.55802 0.193623
\(825\) −16.9631 15.1930i −0.590580 0.528952i
\(826\) 0 0
\(827\) −34.2632 + 34.2632i −1.19145 + 1.19145i −0.214788 + 0.976661i \(0.568906\pi\)
−0.976661 + 0.214788i \(0.931094\pi\)
\(828\) −5.69431 5.69431i −0.197891 0.197891i
\(829\) −50.4913 −1.75363 −0.876817 0.480824i \(-0.840338\pi\)
−0.876817 + 0.480824i \(0.840338\pi\)
\(830\) 6.99333 7.38889i 0.242742 0.256472i
\(831\) 14.7464i 0.511545i
\(832\) 1.77772 + 1.77772i 0.0616313 + 0.0616313i
\(833\) 0 0
\(834\) 4.58070i 0.158617i
\(835\) 1.52100 + 55.3028i 0.0526365 + 1.91383i
\(836\) 17.2118i 0.595282i
\(837\) 2.75329 2.75329i 0.0951676 0.0951676i
\(838\) −6.73928 + 6.73928i −0.232805 + 0.232805i
\(839\) −22.4313 −0.774414 −0.387207 0.921993i \(-0.626560\pi\)
−0.387207 + 0.921993i \(0.626560\pi\)
\(840\) 0 0
\(841\) 26.5800 0.916553
\(842\) 11.9120 11.9120i 0.410514 0.410514i
\(843\) 0.415356 0.415356i 0.0143056 0.0143056i
\(844\) 13.6182i 0.468759i
\(845\) 10.2668 10.8475i 0.353187 0.373164i
\(846\) 5.05038i 0.173636i
\(847\) 0 0
\(848\) 5.96425 + 5.96425i 0.204813 + 0.204813i
\(849\) 18.6151i 0.638870i
\(850\) −1.13348 20.5908i −0.0388781 0.706259i
\(851\) −92.0922 −3.15688
\(852\) 4.72632 + 4.72632i 0.161921 + 0.161921i
\(853\) 24.4497 24.4497i 0.837140 0.837140i −0.151341 0.988482i \(-0.548359\pi\)
0.988482 + 0.151341i \(0.0483592\pi\)
\(854\) 0 0
\(855\) 5.80877 6.13733i 0.198656 0.209892i
\(856\) −7.49036 −0.256015
\(857\) 10.2631 + 10.2631i 0.350580 + 0.350580i 0.860325 0.509745i \(-0.170260\pi\)
−0.509745 + 0.860325i \(0.670260\pi\)
\(858\) 8.09653 + 8.09653i 0.276411 + 0.276411i
\(859\) −17.3100 −0.590611 −0.295306 0.955403i \(-0.595421\pi\)
−0.295306 + 0.955403i \(0.595421\pi\)
\(860\) −1.16094 + 0.0319295i −0.0395877 + 0.00108879i
\(861\) 0 0
\(862\) 15.2439 15.2439i 0.519209 0.519209i
\(863\) −6.62117 6.62117i −0.225387 0.225387i 0.585375 0.810763i \(-0.300947\pi\)
−0.810763 + 0.585375i \(0.800947\pi\)
\(864\) 1.00000 0.0340207
\(865\) 37.0290 1.01841i 1.25902 0.0346271i
\(866\) 36.6031i 1.24382i
\(867\) 0.00752068 + 0.00752068i 0.000255416 + 0.000255416i
\(868\) 0 0
\(869\) 21.4717i 0.728378i
\(870\) 2.52636 + 2.39111i 0.0856515 + 0.0810662i
\(871\) 23.4199i 0.793552i
\(872\) 1.03723 1.03723i 0.0351251 0.0351251i
\(873\) 0.462652 0.462652i 0.0156584 0.0156584i
\(874\) −30.4331 −1.02942
\(875\) 0 0
\(876\) −4.34898 −0.146939
\(877\) −26.4634 + 26.4634i −0.893604 + 0.893604i −0.994860 0.101256i \(-0.967714\pi\)
0.101256 + 0.994860i \(0.467714\pi\)
\(878\) 14.9763 14.9763i 0.505426 0.505426i
\(879\) 29.2369i 0.986137i
\(880\) −7.39647 7.00051i −0.249335 0.235987i
\(881\) 49.1425i 1.65565i 0.560984 + 0.827827i \(0.310423\pi\)
−0.560984 + 0.827827i \(0.689577\pi\)
\(882\) 0 0
\(883\) 22.9167 + 22.9167i 0.771207 + 0.771207i 0.978318 0.207110i \(-0.0664060\pi\)
−0.207110 + 0.978318i \(0.566406\pi\)
\(884\) 10.3690i 0.348749i
\(885\) −0.990253 + 0.0272351i −0.0332870 + 0.000915497i
\(886\) −4.15037 −0.139435
\(887\) 18.5496 + 18.5496i 0.622833 + 0.622833i 0.946255 0.323422i \(-0.104833\pi\)
−0.323422 + 0.946255i \(0.604833\pi\)
\(888\) 8.08634 8.08634i 0.271360 0.271360i
\(889\) 0 0
\(890\) 13.5198 0.371836i 0.453184 0.0124640i
\(891\) 4.55445 0.152580
\(892\) −15.8412 15.8412i −0.530404 0.530404i
\(893\) 13.4958 + 13.4958i 0.451620 + 0.451620i
\(894\) −17.2441 −0.576728
\(895\) −19.5628 + 20.6693i −0.653913 + 0.690899i
\(896\) 0 0
\(897\) 14.3159 14.3159i 0.477995 0.477995i
\(898\) 20.7745 + 20.7745i 0.693253 + 0.693253i
\(899\) 6.05721 0.202019
\(900\) −0.274824 4.99244i −0.00916079 0.166415i
\(901\) 34.7882i 1.15896i
\(902\) 36.6479 + 36.6479i 1.22024 + 1.22024i
\(903\) 0 0
\(904\) 10.0244i 0.333407i
\(905\) 13.9866 14.7777i 0.464930 0.491227i
\(906\) 5.56770i 0.184974i
\(907\) 0.894517 0.894517i 0.0297019 0.0297019i −0.692100 0.721802i \(-0.743314\pi\)
0.721802 + 0.692100i \(0.243314\pi\)
\(908\) −7.74471 + 7.74471i −0.257017 + 0.257017i
\(909\) −5.60204 −0.185808
\(910\) 0 0
\(911\) −49.7996 −1.64993 −0.824967 0.565182i \(-0.808806\pi\)
−0.824967 + 0.565182i \(0.808806\pi\)
\(912\) 2.67224 2.67224i 0.0884867 0.0884867i
\(913\) 14.6525 14.6525i 0.484926 0.484926i
\(914\) 0.471352i 0.0155909i
\(915\) 0.503605 + 18.3108i 0.0166487 + 0.605336i
\(916\) 28.9443i 0.956347i
\(917\) 0 0
\(918\) 2.91639 + 2.91639i 0.0962551 + 0.0962551i
\(919\) 50.3704i 1.66157i −0.556595 0.830784i \(-0.687893\pi\)
0.556595 0.830784i \(-0.312107\pi\)
\(920\) −12.3780 + 13.0781i −0.408090 + 0.431173i
\(921\) −2.31173 −0.0761740
\(922\) −18.6110 18.6110i −0.612920 0.612920i
\(923\) −11.8823 + 11.8823i −0.391112 + 0.391112i
\(924\) 0 0
\(925\) −42.5929 38.1482i −1.40045 1.25431i
\(926\) −1.45125 −0.0476909
\(927\) 3.93011 + 3.93011i 0.129082 + 0.129082i
\(928\) 1.09999 + 1.09999i 0.0361091 + 0.0361091i
\(929\) −22.8229 −0.748796 −0.374398 0.927268i \(-0.622151\pi\)
−0.374398 + 0.927268i \(0.622151\pi\)
\(930\) −6.32347 5.98495i −0.207355 0.196254i
\(931\) 0 0
\(932\) 0.998499 0.998499i 0.0327069 0.0327069i
\(933\) 9.81743 + 9.81743i 0.321408 + 0.321408i
\(934\) 31.0137 1.01480
\(935\) −1.15478 41.9872i −0.0377654 1.37313i
\(936\) 2.51408i 0.0821751i
\(937\) −24.9461 24.9461i −0.814954 0.814954i 0.170418 0.985372i \(-0.445488\pi\)
−0.985372 + 0.170418i \(0.945488\pi\)
\(938\) 0 0
\(939\) 13.4904i 0.440242i
\(940\) 11.2887 0.310475i 0.368197 0.0101266i
\(941\) 18.6379i 0.607579i −0.952739 0.303789i \(-0.901748\pi\)
0.952739 0.303789i \(-0.0982519\pi\)
\(942\) −2.92099 + 2.92099i −0.0951709 + 0.0951709i
\(943\) 64.7992 64.7992i 2.11015 2.11015i
\(944\) −0.443022 −0.0144191
\(945\) 0 0
\(946\) −2.36551 −0.0769092
\(947\) 1.79497 1.79497i 0.0583288 0.0583288i −0.677341 0.735669i \(-0.736868\pi\)
0.735669 + 0.677341i \(0.236868\pi\)
\(948\) 3.33362 3.33362i 0.108271 0.108271i
\(949\) 10.9337i 0.354922i
\(950\) −14.0754 12.6066i −0.456666 0.409012i
\(951\) 13.7171i 0.444806i
\(952\) 0 0
\(953\) 31.1031 + 31.1031i 1.00753 + 1.00753i 0.999971 + 0.00755624i \(0.00240525\pi\)
0.00755624 + 0.999971i \(0.497595\pi\)
\(954\) 8.43473i 0.273084i
\(955\) −29.5670 27.9842i −0.956766 0.905546i
\(956\) −4.36430 −0.141152
\(957\) 5.00987 + 5.00987i 0.161946 + 0.161946i
\(958\) 23.5834 23.5834i 0.761945 0.761945i
\(959\) 0 0
\(960\) −0.0614757 2.23522i −0.00198412 0.0721415i
\(961\) 15.8388 0.510929
\(962\) 20.3297 + 20.3297i 0.655455 + 0.655455i
\(963\) −5.29649 5.29649i −0.170677 0.170677i
\(964\) −3.06991 −0.0988752
\(965\) 0.619139 + 22.5115i 0.0199308 + 0.724672i
\(966\) 0 0
\(967\) −14.7707 + 14.7707i −0.474993 + 0.474993i −0.903526 0.428533i \(-0.859031\pi\)
0.428533 + 0.903526i \(0.359031\pi\)
\(968\) −6.88934 6.88934i −0.221432 0.221432i
\(969\) 15.5866 0.500713
\(970\) −1.06257 1.00569i −0.0341171 0.0322907i
\(971\) 10.8449i 0.348029i −0.984743 0.174014i \(-0.944326\pi\)
0.984743 0.174014i \(-0.0556739\pi\)
\(972\) 0.707107 + 0.707107i 0.0226805 + 0.0226805i
\(973\) 0 0
\(974\) 3.30368i 0.105857i
\(975\) 12.5514 0.690928i 0.401966 0.0221274i
\(976\) 8.19194i 0.262217i
\(977\) 12.1198 12.1198i 0.387747 0.387747i −0.486136 0.873883i \(-0.661594\pi\)
0.873883 + 0.486136i \(0.161594\pi\)
\(978\) −15.3717 + 15.3717i −0.491533 + 0.491533i
\(979\) 27.5476 0.880426
\(980\) 0 0
\(981\) 1.46687 0.0468334
\(982\) 2.55725 2.55725i 0.0816051 0.0816051i
\(983\) 1.18835 1.18835i 0.0379024 0.0379024i −0.687902 0.725804i \(-0.741468\pi\)
0.725804 + 0.687902i \(0.241468\pi\)
\(984\) 11.3796i 0.362770i
\(985\) −51.3483 + 1.41224i −1.63609 + 0.0449977i
\(986\) 6.41602i 0.204328i
\(987\) 0 0
\(988\) 6.71821 + 6.71821i 0.213735 + 0.213735i
\(989\) 4.18258i 0.132998i
\(990\) −0.279988 10.1802i −0.00889860 0.323548i
\(991\) −16.8078 −0.533918 −0.266959 0.963708i \(-0.586019\pi\)
−0.266959 + 0.963708i \(0.586019\pi\)
\(992\) −2.75329 2.75329i −0.0874170 0.0874170i
\(993\) 23.5033 23.5033i 0.745855 0.745855i
\(994\) 0 0
\(995\) −41.2448 39.0368i −1.30755 1.23755i
\(996\) 4.54978 0.144165
\(997\) 12.3483 + 12.3483i 0.391074 + 0.391074i 0.875070 0.483996i \(-0.160815\pi\)
−0.483996 + 0.875070i \(0.660815\pi\)
\(998\) −0.458058 0.458058i −0.0144996 0.0144996i
\(999\) 11.4358 0.361813
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1470.2.m.e.1273.5 16
5.2 odd 4 1470.2.m.d.97.8 16
7.4 even 3 210.2.u.b.103.4 yes 16
7.5 odd 6 210.2.u.a.73.2 16
7.6 odd 2 1470.2.m.d.1273.8 16
21.5 even 6 630.2.bv.a.73.3 16
21.11 odd 6 630.2.bv.b.523.1 16
35.4 even 6 1050.2.bc.g.943.1 16
35.12 even 12 210.2.u.b.157.4 yes 16
35.18 odd 12 1050.2.bc.h.607.4 16
35.19 odd 6 1050.2.bc.h.493.4 16
35.27 even 4 inner 1470.2.m.e.97.5 16
35.32 odd 12 210.2.u.a.187.2 yes 16
35.33 even 12 1050.2.bc.g.157.1 16
105.32 even 12 630.2.bv.a.397.3 16
105.47 odd 12 630.2.bv.b.577.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.u.a.73.2 16 7.5 odd 6
210.2.u.a.187.2 yes 16 35.32 odd 12
210.2.u.b.103.4 yes 16 7.4 even 3
210.2.u.b.157.4 yes 16 35.12 even 12
630.2.bv.a.73.3 16 21.5 even 6
630.2.bv.a.397.3 16 105.32 even 12
630.2.bv.b.523.1 16 21.11 odd 6
630.2.bv.b.577.1 16 105.47 odd 12
1050.2.bc.g.157.1 16 35.33 even 12
1050.2.bc.g.943.1 16 35.4 even 6
1050.2.bc.h.493.4 16 35.19 odd 6
1050.2.bc.h.607.4 16 35.18 odd 12
1470.2.m.d.97.8 16 5.2 odd 4
1470.2.m.d.1273.8 16 7.6 odd 2
1470.2.m.e.97.5 16 35.27 even 4 inner
1470.2.m.e.1273.5 16 1.1 even 1 trivial