L(s) = 1 | + (0.707 − 0.707i)2-s + (0.707 − 0.707i)3-s − 1.00i·4-s + (−1.62 − 1.53i)5-s − 1.00i·6-s + (−0.707 − 0.707i)8-s − 1.00i·9-s + (−2.23 + 0.0614i)10-s − 4.55·11-s + (−0.707 − 0.707i)12-s + (1.77 − 1.77i)13-s + (−2.23 + 0.0614i)15-s − 1.00·16-s + (−2.91 − 2.91i)17-s + (−0.707 − 0.707i)18-s − 3.77·19-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s + (0.408 − 0.408i)3-s − 0.500i·4-s + (−0.726 − 0.687i)5-s − 0.408i·6-s + (−0.250 − 0.250i)8-s − 0.333i·9-s + (−0.706 + 0.0194i)10-s − 1.37·11-s + (−0.204 − 0.204i)12-s + (0.493 − 0.493i)13-s + (−0.577 + 0.0158i)15-s − 0.250·16-s + (−0.707 − 0.707i)17-s + (−0.166 − 0.166i)18-s − 0.866·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.826 - 0.562i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.826 - 0.562i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9700160125\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9700160125\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 + (1.62 + 1.53i)T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + 4.55T + 11T^{2} \) |
| 13 | \( 1 + (-1.77 + 1.77i)T - 13iT^{2} \) |
| 17 | \( 1 + (2.91 + 2.91i)T + 17iT^{2} \) |
| 19 | \( 1 + 3.77T + 19T^{2} \) |
| 23 | \( 1 + (-5.69 - 5.69i)T + 23iT^{2} \) |
| 29 | \( 1 + 1.55iT - 29T^{2} \) |
| 31 | \( 1 - 3.89iT - 31T^{2} \) |
| 37 | \( 1 + (8.08 - 8.08i)T - 37iT^{2} \) |
| 41 | \( 1 + 11.3iT - 41T^{2} \) |
| 43 | \( 1 + (-0.367 - 0.367i)T + 43iT^{2} \) |
| 47 | \( 1 + (3.57 + 3.57i)T + 47iT^{2} \) |
| 53 | \( 1 + (5.96 + 5.96i)T + 53iT^{2} \) |
| 59 | \( 1 - 0.443T + 59T^{2} \) |
| 61 | \( 1 + 8.19iT - 61T^{2} \) |
| 67 | \( 1 + (-6.58 + 6.58i)T - 67iT^{2} \) |
| 71 | \( 1 + 6.68T + 71T^{2} \) |
| 73 | \( 1 + (-3.07 + 3.07i)T - 73iT^{2} \) |
| 79 | \( 1 - 4.71iT - 79T^{2} \) |
| 83 | \( 1 + (3.21 - 3.21i)T - 83iT^{2} \) |
| 89 | \( 1 + 6.04T + 89T^{2} \) |
| 97 | \( 1 + (-0.462 - 0.462i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.859494767284484527588431724514, −8.343860301460712679707655860467, −7.46805605981371426337253554907, −6.66778343757704455054193718732, −5.32372639893242453029672765880, −4.91355203726189632335829051091, −3.68210668056718004149907394951, −2.94104321042806164403200564864, −1.72727716012210244322093017028, −0.29051817866507506020827177765,
2.34061217552324518380286265370, 3.15603152647157329988218529417, 4.17885196366454391978230180366, 4.75675194469301171279934448460, 5.96577793663940073036717961907, 6.76768866390780287959296057035, 7.54055766789211082095907314912, 8.376458632385931383137759588518, 8.819629665628673912546209964578, 10.11035080227904554409566175954