L(s) = 1 | + (0.707 + 0.707i)2-s + (0.707 + 0.707i)3-s + 1.00i·4-s + (−1.62 + 1.53i)5-s + 1.00i·6-s + (−0.707 + 0.707i)8-s + 1.00i·9-s + (−2.23 − 0.0614i)10-s − 4.55·11-s + (−0.707 + 0.707i)12-s + (1.77 + 1.77i)13-s + (−2.23 − 0.0614i)15-s − 1.00·16-s + (−2.91 + 2.91i)17-s + (−0.707 + 0.707i)18-s − 3.77·19-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + (0.408 + 0.408i)3-s + 0.500i·4-s + (−0.726 + 0.687i)5-s + 0.408i·6-s + (−0.250 + 0.250i)8-s + 0.333i·9-s + (−0.706 − 0.0194i)10-s − 1.37·11-s + (−0.204 + 0.204i)12-s + (0.493 + 0.493i)13-s + (−0.577 − 0.0158i)15-s − 0.250·16-s + (−0.707 + 0.707i)17-s + (−0.166 + 0.166i)18-s − 0.866·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.826 + 0.562i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.826 + 0.562i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9700160125\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9700160125\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 + (1.62 - 1.53i)T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + 4.55T + 11T^{2} \) |
| 13 | \( 1 + (-1.77 - 1.77i)T + 13iT^{2} \) |
| 17 | \( 1 + (2.91 - 2.91i)T - 17iT^{2} \) |
| 19 | \( 1 + 3.77T + 19T^{2} \) |
| 23 | \( 1 + (-5.69 + 5.69i)T - 23iT^{2} \) |
| 29 | \( 1 - 1.55iT - 29T^{2} \) |
| 31 | \( 1 + 3.89iT - 31T^{2} \) |
| 37 | \( 1 + (8.08 + 8.08i)T + 37iT^{2} \) |
| 41 | \( 1 - 11.3iT - 41T^{2} \) |
| 43 | \( 1 + (-0.367 + 0.367i)T - 43iT^{2} \) |
| 47 | \( 1 + (3.57 - 3.57i)T - 47iT^{2} \) |
| 53 | \( 1 + (5.96 - 5.96i)T - 53iT^{2} \) |
| 59 | \( 1 - 0.443T + 59T^{2} \) |
| 61 | \( 1 - 8.19iT - 61T^{2} \) |
| 67 | \( 1 + (-6.58 - 6.58i)T + 67iT^{2} \) |
| 71 | \( 1 + 6.68T + 71T^{2} \) |
| 73 | \( 1 + (-3.07 - 3.07i)T + 73iT^{2} \) |
| 79 | \( 1 + 4.71iT - 79T^{2} \) |
| 83 | \( 1 + (3.21 + 3.21i)T + 83iT^{2} \) |
| 89 | \( 1 + 6.04T + 89T^{2} \) |
| 97 | \( 1 + (-0.462 + 0.462i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.11035080227904554409566175954, −8.819629665628673912546209964578, −8.376458632385931383137759588518, −7.54055766789211082095907314912, −6.76768866390780287959296057035, −5.96577793663940073036717961907, −4.75675194469301171279934448460, −4.17885196366454391978230180366, −3.15603152647157329988218529417, −2.34061217552324518380286265370,
0.29051817866507506020827177765, 1.72727716012210244322093017028, 2.94104321042806164403200564864, 3.68210668056718004149907394951, 4.91355203726189632335829051091, 5.32372639893242453029672765880, 6.66778343757704455054193718732, 7.46805605981371426337253554907, 8.343860301460712679707655860467, 8.859494767284484527588431724514