Properties

Label 1470.2.i.f.961.1
Level $1470$
Weight $2$
Character 1470.961
Analytic conductor $11.738$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1470,2,Mod(361,1470)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1470, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1470.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,1,-1,-1,-2,0,2,-1,-1,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7380090971\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 961.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1470.961
Dual form 1470.2.i.f.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.500000 + 0.866025i) q^{5} -1.00000 q^{6} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-0.500000 - 0.866025i) q^{10} +(-2.00000 - 3.46410i) q^{11} +(0.500000 - 0.866025i) q^{12} -2.00000 q^{13} -1.00000 q^{15} +(-0.500000 + 0.866025i) q^{16} +(-1.00000 - 1.73205i) q^{17} +(-0.500000 - 0.866025i) q^{18} +(2.00000 - 3.46410i) q^{19} +1.00000 q^{20} +4.00000 q^{22} +(4.00000 - 6.92820i) q^{23} +(0.500000 + 0.866025i) q^{24} +(-0.500000 - 0.866025i) q^{25} +(1.00000 - 1.73205i) q^{26} -1.00000 q^{27} +6.00000 q^{29} +(0.500000 - 0.866025i) q^{30} +(4.00000 + 6.92820i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(2.00000 - 3.46410i) q^{33} +2.00000 q^{34} +1.00000 q^{36} +(1.00000 - 1.73205i) q^{37} +(2.00000 + 3.46410i) q^{38} +(-1.00000 - 1.73205i) q^{39} +(-0.500000 + 0.866025i) q^{40} +2.00000 q^{41} -12.0000 q^{43} +(-2.00000 + 3.46410i) q^{44} +(-0.500000 - 0.866025i) q^{45} +(4.00000 + 6.92820i) q^{46} +(4.00000 - 6.92820i) q^{47} -1.00000 q^{48} +1.00000 q^{50} +(1.00000 - 1.73205i) q^{51} +(1.00000 + 1.73205i) q^{52} +(-3.00000 - 5.19615i) q^{53} +(0.500000 - 0.866025i) q^{54} +4.00000 q^{55} +4.00000 q^{57} +(-3.00000 + 5.19615i) q^{58} +(-2.00000 - 3.46410i) q^{59} +(0.500000 + 0.866025i) q^{60} +(1.00000 - 1.73205i) q^{61} -8.00000 q^{62} +1.00000 q^{64} +(1.00000 - 1.73205i) q^{65} +(2.00000 + 3.46410i) q^{66} +(-6.00000 - 10.3923i) q^{67} +(-1.00000 + 1.73205i) q^{68} +8.00000 q^{69} +8.00000 q^{71} +(-0.500000 + 0.866025i) q^{72} +(7.00000 + 12.1244i) q^{73} +(1.00000 + 1.73205i) q^{74} +(0.500000 - 0.866025i) q^{75} -4.00000 q^{76} +2.00000 q^{78} +(-0.500000 - 0.866025i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-1.00000 + 1.73205i) q^{82} +12.0000 q^{83} +2.00000 q^{85} +(6.00000 - 10.3923i) q^{86} +(3.00000 + 5.19615i) q^{87} +(-2.00000 - 3.46410i) q^{88} +(-1.00000 + 1.73205i) q^{89} +1.00000 q^{90} -8.00000 q^{92} +(-4.00000 + 6.92820i) q^{93} +(4.00000 + 6.92820i) q^{94} +(2.00000 + 3.46410i) q^{95} +(0.500000 - 0.866025i) q^{96} +10.0000 q^{97} +4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + q^{3} - q^{4} - q^{5} - 2 q^{6} + 2 q^{8} - q^{9} - q^{10} - 4 q^{11} + q^{12} - 4 q^{13} - 2 q^{15} - q^{16} - 2 q^{17} - q^{18} + 4 q^{19} + 2 q^{20} + 8 q^{22} + 8 q^{23} + q^{24}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times\).

\(n\) \(491\) \(1081\) \(1177\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) −1.00000 −0.408248
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −0.500000 0.866025i −0.158114 0.273861i
\(11\) −2.00000 3.46410i −0.603023 1.04447i −0.992361 0.123371i \(-0.960630\pi\)
0.389338 0.921095i \(-0.372704\pi\)
\(12\) 0.500000 0.866025i 0.144338 0.250000i
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.00000 1.73205i −0.242536 0.420084i 0.718900 0.695113i \(-0.244646\pi\)
−0.961436 + 0.275029i \(0.911312\pi\)
\(18\) −0.500000 0.866025i −0.117851 0.204124i
\(19\) 2.00000 3.46410i 0.458831 0.794719i −0.540068 0.841621i \(-0.681602\pi\)
0.998899 + 0.0469020i \(0.0149348\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 4.00000 0.852803
\(23\) 4.00000 6.92820i 0.834058 1.44463i −0.0607377 0.998154i \(-0.519345\pi\)
0.894795 0.446476i \(-0.147321\pi\)
\(24\) 0.500000 + 0.866025i 0.102062 + 0.176777i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 1.00000 1.73205i 0.196116 0.339683i
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0.500000 0.866025i 0.0912871 0.158114i
\(31\) 4.00000 + 6.92820i 0.718421 + 1.24434i 0.961625 + 0.274367i \(0.0884683\pi\)
−0.243204 + 0.969975i \(0.578198\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 2.00000 3.46410i 0.348155 0.603023i
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 1.00000 1.73205i 0.164399 0.284747i −0.772043 0.635571i \(-0.780765\pi\)
0.936442 + 0.350823i \(0.114098\pi\)
\(38\) 2.00000 + 3.46410i 0.324443 + 0.561951i
\(39\) −1.00000 1.73205i −0.160128 0.277350i
\(40\) −0.500000 + 0.866025i −0.0790569 + 0.136931i
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) −12.0000 −1.82998 −0.914991 0.403473i \(-0.867803\pi\)
−0.914991 + 0.403473i \(0.867803\pi\)
\(44\) −2.00000 + 3.46410i −0.301511 + 0.522233i
\(45\) −0.500000 0.866025i −0.0745356 0.129099i
\(46\) 4.00000 + 6.92820i 0.589768 + 1.02151i
\(47\) 4.00000 6.92820i 0.583460 1.01058i −0.411606 0.911362i \(-0.635032\pi\)
0.995066 0.0992202i \(-0.0316348\pi\)
\(48\) −1.00000 −0.144338
\(49\) 0 0
\(50\) 1.00000 0.141421
\(51\) 1.00000 1.73205i 0.140028 0.242536i
\(52\) 1.00000 + 1.73205i 0.138675 + 0.240192i
\(53\) −3.00000 5.19615i −0.412082 0.713746i 0.583036 0.812447i \(-0.301865\pi\)
−0.995117 + 0.0987002i \(0.968532\pi\)
\(54\) 0.500000 0.866025i 0.0680414 0.117851i
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) 4.00000 0.529813
\(58\) −3.00000 + 5.19615i −0.393919 + 0.682288i
\(59\) −2.00000 3.46410i −0.260378 0.450988i 0.705965 0.708247i \(-0.250514\pi\)
−0.966342 + 0.257260i \(0.917180\pi\)
\(60\) 0.500000 + 0.866025i 0.0645497 + 0.111803i
\(61\) 1.00000 1.73205i 0.128037 0.221766i −0.794879 0.606768i \(-0.792466\pi\)
0.922916 + 0.385002i \(0.125799\pi\)
\(62\) −8.00000 −1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 1.00000 1.73205i 0.124035 0.214834i
\(66\) 2.00000 + 3.46410i 0.246183 + 0.426401i
\(67\) −6.00000 10.3923i −0.733017 1.26962i −0.955588 0.294706i \(-0.904778\pi\)
0.222571 0.974916i \(-0.428555\pi\)
\(68\) −1.00000 + 1.73205i −0.121268 + 0.210042i
\(69\) 8.00000 0.963087
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) −0.500000 + 0.866025i −0.0589256 + 0.102062i
\(73\) 7.00000 + 12.1244i 0.819288 + 1.41905i 0.906208 + 0.422833i \(0.138964\pi\)
−0.0869195 + 0.996215i \(0.527702\pi\)
\(74\) 1.00000 + 1.73205i 0.116248 + 0.201347i
\(75\) 0.500000 0.866025i 0.0577350 0.100000i
\(76\) −4.00000 −0.458831
\(77\) 0 0
\(78\) 2.00000 0.226455
\(79\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(80\) −0.500000 0.866025i −0.0559017 0.0968246i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −1.00000 + 1.73205i −0.110432 + 0.191273i
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) 6.00000 10.3923i 0.646997 1.12063i
\(87\) 3.00000 + 5.19615i 0.321634 + 0.557086i
\(88\) −2.00000 3.46410i −0.213201 0.369274i
\(89\) −1.00000 + 1.73205i −0.106000 + 0.183597i −0.914146 0.405385i \(-0.867138\pi\)
0.808146 + 0.588982i \(0.200471\pi\)
\(90\) 1.00000 0.105409
\(91\) 0 0
\(92\) −8.00000 −0.834058
\(93\) −4.00000 + 6.92820i −0.414781 + 0.718421i
\(94\) 4.00000 + 6.92820i 0.412568 + 0.714590i
\(95\) 2.00000 + 3.46410i 0.205196 + 0.355409i
\(96\) 0.500000 0.866025i 0.0510310 0.0883883i
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) 4.00000 0.402015
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) −3.00000 5.19615i −0.298511 0.517036i 0.677284 0.735721i \(-0.263157\pi\)
−0.975796 + 0.218685i \(0.929823\pi\)
\(102\) 1.00000 + 1.73205i 0.0990148 + 0.171499i
\(103\) −4.00000 + 6.92820i −0.394132 + 0.682656i −0.992990 0.118199i \(-0.962288\pi\)
0.598858 + 0.800855i \(0.295621\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) 10.0000 17.3205i 0.966736 1.67444i 0.261861 0.965106i \(-0.415664\pi\)
0.704875 0.709331i \(-0.251003\pi\)
\(108\) 0.500000 + 0.866025i 0.0481125 + 0.0833333i
\(109\) 1.00000 + 1.73205i 0.0957826 + 0.165900i 0.909935 0.414751i \(-0.136131\pi\)
−0.814152 + 0.580651i \(0.802798\pi\)
\(110\) −2.00000 + 3.46410i −0.190693 + 0.330289i
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) −2.00000 + 3.46410i −0.187317 + 0.324443i
\(115\) 4.00000 + 6.92820i 0.373002 + 0.646058i
\(116\) −3.00000 5.19615i −0.278543 0.482451i
\(117\) 1.00000 1.73205i 0.0924500 0.160128i
\(118\) 4.00000 0.368230
\(119\) 0 0
\(120\) −1.00000 −0.0912871
\(121\) −2.50000 + 4.33013i −0.227273 + 0.393648i
\(122\) 1.00000 + 1.73205i 0.0905357 + 0.156813i
\(123\) 1.00000 + 1.73205i 0.0901670 + 0.156174i
\(124\) 4.00000 6.92820i 0.359211 0.622171i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −6.00000 10.3923i −0.528271 0.914991i
\(130\) 1.00000 + 1.73205i 0.0877058 + 0.151911i
\(131\) −6.00000 + 10.3923i −0.524222 + 0.907980i 0.475380 + 0.879781i \(0.342311\pi\)
−0.999602 + 0.0281993i \(0.991023\pi\)
\(132\) −4.00000 −0.348155
\(133\) 0 0
\(134\) 12.0000 1.03664
\(135\) 0.500000 0.866025i 0.0430331 0.0745356i
\(136\) −1.00000 1.73205i −0.0857493 0.148522i
\(137\) −5.00000 8.66025i −0.427179 0.739895i 0.569442 0.822031i \(-0.307159\pi\)
−0.996621 + 0.0821359i \(0.973826\pi\)
\(138\) −4.00000 + 6.92820i −0.340503 + 0.589768i
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 0 0
\(141\) 8.00000 0.673722
\(142\) −4.00000 + 6.92820i −0.335673 + 0.581402i
\(143\) 4.00000 + 6.92820i 0.334497 + 0.579365i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) −3.00000 + 5.19615i −0.249136 + 0.431517i
\(146\) −14.0000 −1.15865
\(147\) 0 0
\(148\) −2.00000 −0.164399
\(149\) 9.00000 15.5885i 0.737309 1.27706i −0.216394 0.976306i \(-0.569430\pi\)
0.953703 0.300750i \(-0.0972370\pi\)
\(150\) 0.500000 + 0.866025i 0.0408248 + 0.0707107i
\(151\) −4.00000 6.92820i −0.325515 0.563809i 0.656101 0.754673i \(-0.272204\pi\)
−0.981617 + 0.190864i \(0.938871\pi\)
\(152\) 2.00000 3.46410i 0.162221 0.280976i
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) −8.00000 −0.642575
\(156\) −1.00000 + 1.73205i −0.0800641 + 0.138675i
\(157\) −7.00000 12.1244i −0.558661 0.967629i −0.997609 0.0691164i \(-0.977982\pi\)
0.438948 0.898513i \(-0.355351\pi\)
\(158\) 0 0
\(159\) 3.00000 5.19615i 0.237915 0.412082i
\(160\) 1.00000 0.0790569
\(161\) 0 0
\(162\) 1.00000 0.0785674
\(163\) −6.00000 + 10.3923i −0.469956 + 0.813988i −0.999410 0.0343508i \(-0.989064\pi\)
0.529454 + 0.848339i \(0.322397\pi\)
\(164\) −1.00000 1.73205i −0.0780869 0.135250i
\(165\) 2.00000 + 3.46410i 0.155700 + 0.269680i
\(166\) −6.00000 + 10.3923i −0.465690 + 0.806599i
\(167\) −16.0000 −1.23812 −0.619059 0.785345i \(-0.712486\pi\)
−0.619059 + 0.785345i \(0.712486\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) −1.00000 + 1.73205i −0.0766965 + 0.132842i
\(171\) 2.00000 + 3.46410i 0.152944 + 0.264906i
\(172\) 6.00000 + 10.3923i 0.457496 + 0.792406i
\(173\) −7.00000 + 12.1244i −0.532200 + 0.921798i 0.467093 + 0.884208i \(0.345301\pi\)
−0.999293 + 0.0375896i \(0.988032\pi\)
\(174\) −6.00000 −0.454859
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) 2.00000 3.46410i 0.150329 0.260378i
\(178\) −1.00000 1.73205i −0.0749532 0.129823i
\(179\) 10.0000 + 17.3205i 0.747435 + 1.29460i 0.949048 + 0.315130i \(0.102048\pi\)
−0.201613 + 0.979465i \(0.564618\pi\)
\(180\) −0.500000 + 0.866025i −0.0372678 + 0.0645497i
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 4.00000 6.92820i 0.294884 0.510754i
\(185\) 1.00000 + 1.73205i 0.0735215 + 0.127343i
\(186\) −4.00000 6.92820i −0.293294 0.508001i
\(187\) −4.00000 + 6.92820i −0.292509 + 0.506640i
\(188\) −8.00000 −0.583460
\(189\) 0 0
\(190\) −4.00000 −0.290191
\(191\) 8.00000 13.8564i 0.578860 1.00261i −0.416751 0.909021i \(-0.636831\pi\)
0.995610 0.0935936i \(-0.0298354\pi\)
\(192\) 0.500000 + 0.866025i 0.0360844 + 0.0625000i
\(193\) 7.00000 + 12.1244i 0.503871 + 0.872730i 0.999990 + 0.00447566i \(0.00142465\pi\)
−0.496119 + 0.868255i \(0.665242\pi\)
\(194\) −5.00000 + 8.66025i −0.358979 + 0.621770i
\(195\) 2.00000 0.143223
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) −2.00000 + 3.46410i −0.142134 + 0.246183i
\(199\) 8.00000 + 13.8564i 0.567105 + 0.982255i 0.996850 + 0.0793045i \(0.0252700\pi\)
−0.429745 + 0.902950i \(0.641397\pi\)
\(200\) −0.500000 0.866025i −0.0353553 0.0612372i
\(201\) 6.00000 10.3923i 0.423207 0.733017i
\(202\) 6.00000 0.422159
\(203\) 0 0
\(204\) −2.00000 −0.140028
\(205\) −1.00000 + 1.73205i −0.0698430 + 0.120972i
\(206\) −4.00000 6.92820i −0.278693 0.482711i
\(207\) 4.00000 + 6.92820i 0.278019 + 0.481543i
\(208\) 1.00000 1.73205i 0.0693375 0.120096i
\(209\) −16.0000 −1.10674
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) −3.00000 + 5.19615i −0.206041 + 0.356873i
\(213\) 4.00000 + 6.92820i 0.274075 + 0.474713i
\(214\) 10.0000 + 17.3205i 0.683586 + 1.18401i
\(215\) 6.00000 10.3923i 0.409197 0.708749i
\(216\) −1.00000 −0.0680414
\(217\) 0 0
\(218\) −2.00000 −0.135457
\(219\) −7.00000 + 12.1244i −0.473016 + 0.819288i
\(220\) −2.00000 3.46410i −0.134840 0.233550i
\(221\) 2.00000 + 3.46410i 0.134535 + 0.233021i
\(222\) −1.00000 + 1.73205i −0.0671156 + 0.116248i
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 7.00000 12.1244i 0.465633 0.806500i
\(227\) −6.00000 10.3923i −0.398234 0.689761i 0.595274 0.803523i \(-0.297043\pi\)
−0.993508 + 0.113761i \(0.963710\pi\)
\(228\) −2.00000 3.46410i −0.132453 0.229416i
\(229\) 13.0000 22.5167i 0.859064 1.48794i −0.0137585 0.999905i \(-0.504380\pi\)
0.872823 0.488037i \(-0.162287\pi\)
\(230\) −8.00000 −0.527504
\(231\) 0 0
\(232\) 6.00000 0.393919
\(233\) −5.00000 + 8.66025i −0.327561 + 0.567352i −0.982027 0.188739i \(-0.939560\pi\)
0.654466 + 0.756091i \(0.272893\pi\)
\(234\) 1.00000 + 1.73205i 0.0653720 + 0.113228i
\(235\) 4.00000 + 6.92820i 0.260931 + 0.451946i
\(236\) −2.00000 + 3.46410i −0.130189 + 0.225494i
\(237\) 0 0
\(238\) 0 0
\(239\) −16.0000 −1.03495 −0.517477 0.855697i \(-0.673129\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) 0.500000 0.866025i 0.0322749 0.0559017i
\(241\) −9.00000 15.5885i −0.579741 1.00414i −0.995509 0.0946700i \(-0.969820\pi\)
0.415768 0.909471i \(-0.363513\pi\)
\(242\) −2.50000 4.33013i −0.160706 0.278351i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) −2.00000 −0.128037
\(245\) 0 0
\(246\) −2.00000 −0.127515
\(247\) −4.00000 + 6.92820i −0.254514 + 0.440831i
\(248\) 4.00000 + 6.92820i 0.254000 + 0.439941i
\(249\) 6.00000 + 10.3923i 0.380235 + 0.658586i
\(250\) −0.500000 + 0.866025i −0.0316228 + 0.0547723i
\(251\) 4.00000 0.252478 0.126239 0.992000i \(-0.459709\pi\)
0.126239 + 0.992000i \(0.459709\pi\)
\(252\) 0 0
\(253\) −32.0000 −2.01182
\(254\) 0 0
\(255\) 1.00000 + 1.73205i 0.0626224 + 0.108465i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −1.00000 + 1.73205i −0.0623783 + 0.108042i −0.895528 0.445005i \(-0.853202\pi\)
0.833150 + 0.553047i \(0.186535\pi\)
\(258\) 12.0000 0.747087
\(259\) 0 0
\(260\) −2.00000 −0.124035
\(261\) −3.00000 + 5.19615i −0.185695 + 0.321634i
\(262\) −6.00000 10.3923i −0.370681 0.642039i
\(263\) −12.0000 20.7846i −0.739952 1.28163i −0.952517 0.304487i \(-0.901515\pi\)
0.212565 0.977147i \(-0.431818\pi\)
\(264\) 2.00000 3.46410i 0.123091 0.213201i
\(265\) 6.00000 0.368577
\(266\) 0 0
\(267\) −2.00000 −0.122398
\(268\) −6.00000 + 10.3923i −0.366508 + 0.634811i
\(269\) −15.0000 25.9808i −0.914566 1.58408i −0.807535 0.589819i \(-0.799199\pi\)
−0.107031 0.994256i \(-0.534134\pi\)
\(270\) 0.500000 + 0.866025i 0.0304290 + 0.0527046i
\(271\) 12.0000 20.7846i 0.728948 1.26258i −0.228380 0.973572i \(-0.573343\pi\)
0.957328 0.289003i \(-0.0933238\pi\)
\(272\) 2.00000 0.121268
\(273\) 0 0
\(274\) 10.0000 0.604122
\(275\) −2.00000 + 3.46410i −0.120605 + 0.208893i
\(276\) −4.00000 6.92820i −0.240772 0.417029i
\(277\) −7.00000 12.1244i −0.420589 0.728482i 0.575408 0.817867i \(-0.304843\pi\)
−0.995997 + 0.0893846i \(0.971510\pi\)
\(278\) −10.0000 + 17.3205i −0.599760 + 1.03882i
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) −4.00000 + 6.92820i −0.238197 + 0.412568i
\(283\) −10.0000 17.3205i −0.594438 1.02960i −0.993626 0.112728i \(-0.964041\pi\)
0.399188 0.916869i \(-0.369292\pi\)
\(284\) −4.00000 6.92820i −0.237356 0.411113i
\(285\) −2.00000 + 3.46410i −0.118470 + 0.205196i
\(286\) −8.00000 −0.473050
\(287\) 0 0
\(288\) 1.00000 0.0589256
\(289\) 6.50000 11.2583i 0.382353 0.662255i
\(290\) −3.00000 5.19615i −0.176166 0.305129i
\(291\) 5.00000 + 8.66025i 0.293105 + 0.507673i
\(292\) 7.00000 12.1244i 0.409644 0.709524i
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) 4.00000 0.232889
\(296\) 1.00000 1.73205i 0.0581238 0.100673i
\(297\) 2.00000 + 3.46410i 0.116052 + 0.201008i
\(298\) 9.00000 + 15.5885i 0.521356 + 0.903015i
\(299\) −8.00000 + 13.8564i −0.462652 + 0.801337i
\(300\) −1.00000 −0.0577350
\(301\) 0 0
\(302\) 8.00000 0.460348
\(303\) 3.00000 5.19615i 0.172345 0.298511i
\(304\) 2.00000 + 3.46410i 0.114708 + 0.198680i
\(305\) 1.00000 + 1.73205i 0.0572598 + 0.0991769i
\(306\) −1.00000 + 1.73205i −0.0571662 + 0.0990148i
\(307\) −4.00000 −0.228292 −0.114146 0.993464i \(-0.536413\pi\)
−0.114146 + 0.993464i \(0.536413\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 4.00000 6.92820i 0.227185 0.393496i
\(311\) −4.00000 6.92820i −0.226819 0.392862i 0.730044 0.683400i \(-0.239499\pi\)
−0.956864 + 0.290537i \(0.906166\pi\)
\(312\) −1.00000 1.73205i −0.0566139 0.0980581i
\(313\) −17.0000 + 29.4449i −0.960897 + 1.66432i −0.240640 + 0.970614i \(0.577357\pi\)
−0.720257 + 0.693708i \(0.755976\pi\)
\(314\) 14.0000 0.790066
\(315\) 0 0
\(316\) 0 0
\(317\) −7.00000 + 12.1244i −0.393159 + 0.680972i −0.992864 0.119249i \(-0.961951\pi\)
0.599705 + 0.800221i \(0.295285\pi\)
\(318\) 3.00000 + 5.19615i 0.168232 + 0.291386i
\(319\) −12.0000 20.7846i −0.671871 1.16371i
\(320\) −0.500000 + 0.866025i −0.0279508 + 0.0484123i
\(321\) 20.0000 1.11629
\(322\) 0 0
\(323\) −8.00000 −0.445132
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) 1.00000 + 1.73205i 0.0554700 + 0.0960769i
\(326\) −6.00000 10.3923i −0.332309 0.575577i
\(327\) −1.00000 + 1.73205i −0.0553001 + 0.0957826i
\(328\) 2.00000 0.110432
\(329\) 0 0
\(330\) −4.00000 −0.220193
\(331\) −14.0000 + 24.2487i −0.769510 + 1.33283i 0.168320 + 0.985732i \(0.446166\pi\)
−0.937829 + 0.347097i \(0.887167\pi\)
\(332\) −6.00000 10.3923i −0.329293 0.570352i
\(333\) 1.00000 + 1.73205i 0.0547997 + 0.0949158i
\(334\) 8.00000 13.8564i 0.437741 0.758189i
\(335\) 12.0000 0.655630
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 4.50000 7.79423i 0.244768 0.423950i
\(339\) −7.00000 12.1244i −0.380188 0.658505i
\(340\) −1.00000 1.73205i −0.0542326 0.0939336i
\(341\) 16.0000 27.7128i 0.866449 1.50073i
\(342\) −4.00000 −0.216295
\(343\) 0 0
\(344\) −12.0000 −0.646997
\(345\) −4.00000 + 6.92820i −0.215353 + 0.373002i
\(346\) −7.00000 12.1244i −0.376322 0.651809i
\(347\) −6.00000 10.3923i −0.322097 0.557888i 0.658824 0.752297i \(-0.271054\pi\)
−0.980921 + 0.194409i \(0.937721\pi\)
\(348\) 3.00000 5.19615i 0.160817 0.278543i
\(349\) −34.0000 −1.81998 −0.909989 0.414632i \(-0.863910\pi\)
−0.909989 + 0.414632i \(0.863910\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) −2.00000 + 3.46410i −0.106600 + 0.184637i
\(353\) −9.00000 15.5885i −0.479022 0.829690i 0.520689 0.853746i \(-0.325675\pi\)
−0.999711 + 0.0240566i \(0.992342\pi\)
\(354\) 2.00000 + 3.46410i 0.106299 + 0.184115i
\(355\) −4.00000 + 6.92820i −0.212298 + 0.367711i
\(356\) 2.00000 0.106000
\(357\) 0 0
\(358\) −20.0000 −1.05703
\(359\) 4.00000 6.92820i 0.211112 0.365657i −0.740951 0.671559i \(-0.765625\pi\)
0.952063 + 0.305903i \(0.0989582\pi\)
\(360\) −0.500000 0.866025i −0.0263523 0.0456435i
\(361\) 1.50000 + 2.59808i 0.0789474 + 0.136741i
\(362\) 5.00000 8.66025i 0.262794 0.455173i
\(363\) −5.00000 −0.262432
\(364\) 0 0
\(365\) −14.0000 −0.732793
\(366\) −1.00000 + 1.73205i −0.0522708 + 0.0905357i
\(367\) 16.0000 + 27.7128i 0.835193 + 1.44660i 0.893873 + 0.448320i \(0.147978\pi\)
−0.0586798 + 0.998277i \(0.518689\pi\)
\(368\) 4.00000 + 6.92820i 0.208514 + 0.361158i
\(369\) −1.00000 + 1.73205i −0.0520579 + 0.0901670i
\(370\) −2.00000 −0.103975
\(371\) 0 0
\(372\) 8.00000 0.414781
\(373\) −7.00000 + 12.1244i −0.362446 + 0.627775i −0.988363 0.152115i \(-0.951392\pi\)
0.625917 + 0.779890i \(0.284725\pi\)
\(374\) −4.00000 6.92820i −0.206835 0.358249i
\(375\) 0.500000 + 0.866025i 0.0258199 + 0.0447214i
\(376\) 4.00000 6.92820i 0.206284 0.357295i
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 2.00000 3.46410i 0.102598 0.177705i
\(381\) 0 0
\(382\) 8.00000 + 13.8564i 0.409316 + 0.708955i
\(383\) −12.0000 + 20.7846i −0.613171 + 1.06204i 0.377531 + 0.925997i \(0.376773\pi\)
−0.990702 + 0.136047i \(0.956560\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) −14.0000 −0.712581
\(387\) 6.00000 10.3923i 0.304997 0.528271i
\(388\) −5.00000 8.66025i −0.253837 0.439658i
\(389\) 9.00000 + 15.5885i 0.456318 + 0.790366i 0.998763 0.0497253i \(-0.0158346\pi\)
−0.542445 + 0.840091i \(0.682501\pi\)
\(390\) −1.00000 + 1.73205i −0.0506370 + 0.0877058i
\(391\) −16.0000 −0.809155
\(392\) 0 0
\(393\) −12.0000 −0.605320
\(394\) −3.00000 + 5.19615i −0.151138 + 0.261778i
\(395\) 0 0
\(396\) −2.00000 3.46410i −0.100504 0.174078i
\(397\) 1.00000 1.73205i 0.0501886 0.0869291i −0.839840 0.542834i \(-0.817351\pi\)
0.890028 + 0.455905i \(0.150684\pi\)
\(398\) −16.0000 −0.802008
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −9.00000 + 15.5885i −0.449439 + 0.778450i −0.998350 0.0574304i \(-0.981709\pi\)
0.548911 + 0.835881i \(0.315043\pi\)
\(402\) 6.00000 + 10.3923i 0.299253 + 0.518321i
\(403\) −8.00000 13.8564i −0.398508 0.690237i
\(404\) −3.00000 + 5.19615i −0.149256 + 0.258518i
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) −8.00000 −0.396545
\(408\) 1.00000 1.73205i 0.0495074 0.0857493i
\(409\) −5.00000 8.66025i −0.247234 0.428222i 0.715523 0.698589i \(-0.246188\pi\)
−0.962757 + 0.270367i \(0.912855\pi\)
\(410\) −1.00000 1.73205i −0.0493865 0.0855399i
\(411\) 5.00000 8.66025i 0.246632 0.427179i
\(412\) 8.00000 0.394132
\(413\) 0 0
\(414\) −8.00000 −0.393179
\(415\) −6.00000 + 10.3923i −0.294528 + 0.510138i
\(416\) 1.00000 + 1.73205i 0.0490290 + 0.0849208i
\(417\) 10.0000 + 17.3205i 0.489702 + 0.848189i
\(418\) 8.00000 13.8564i 0.391293 0.677739i
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) −26.0000 −1.26716 −0.633581 0.773676i \(-0.718416\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(422\) −10.0000 + 17.3205i −0.486792 + 0.843149i
\(423\) 4.00000 + 6.92820i 0.194487 + 0.336861i
\(424\) −3.00000 5.19615i −0.145693 0.252347i
\(425\) −1.00000 + 1.73205i −0.0485071 + 0.0840168i
\(426\) −8.00000 −0.387601
\(427\) 0 0
\(428\) −20.0000 −0.966736
\(429\) −4.00000 + 6.92820i −0.193122 + 0.334497i
\(430\) 6.00000 + 10.3923i 0.289346 + 0.501161i
\(431\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(432\) 0.500000 0.866025i 0.0240563 0.0416667i
\(433\) −6.00000 −0.288342 −0.144171 0.989553i \(-0.546051\pi\)
−0.144171 + 0.989553i \(0.546051\pi\)
\(434\) 0 0
\(435\) −6.00000 −0.287678
\(436\) 1.00000 1.73205i 0.0478913 0.0829502i
\(437\) −16.0000 27.7128i −0.765384 1.32568i
\(438\) −7.00000 12.1244i −0.334473 0.579324i
\(439\) −16.0000 + 27.7128i −0.763638 + 1.32266i 0.177325 + 0.984152i \(0.443256\pi\)
−0.940963 + 0.338508i \(0.890078\pi\)
\(440\) 4.00000 0.190693
\(441\) 0 0
\(442\) −4.00000 −0.190261
\(443\) 2.00000 3.46410i 0.0950229 0.164584i −0.814595 0.580030i \(-0.803041\pi\)
0.909618 + 0.415445i \(0.136374\pi\)
\(444\) −1.00000 1.73205i −0.0474579 0.0821995i
\(445\) −1.00000 1.73205i −0.0474045 0.0821071i
\(446\) 0 0
\(447\) 18.0000 0.851371
\(448\) 0 0
\(449\) −14.0000 −0.660701 −0.330350 0.943858i \(-0.607167\pi\)
−0.330350 + 0.943858i \(0.607167\pi\)
\(450\) −0.500000 + 0.866025i −0.0235702 + 0.0408248i
\(451\) −4.00000 6.92820i −0.188353 0.326236i
\(452\) 7.00000 + 12.1244i 0.329252 + 0.570282i
\(453\) 4.00000 6.92820i 0.187936 0.325515i
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 4.00000 0.187317
\(457\) 19.0000 32.9090i 0.888783 1.53942i 0.0474665 0.998873i \(-0.484885\pi\)
0.841316 0.540544i \(-0.181781\pi\)
\(458\) 13.0000 + 22.5167i 0.607450 + 1.05213i
\(459\) 1.00000 + 1.73205i 0.0466760 + 0.0808452i
\(460\) 4.00000 6.92820i 0.186501 0.323029i
\(461\) −34.0000 −1.58354 −0.791769 0.610821i \(-0.790840\pi\)
−0.791769 + 0.610821i \(0.790840\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) −3.00000 + 5.19615i −0.139272 + 0.241225i
\(465\) −4.00000 6.92820i −0.185496 0.321288i
\(466\) −5.00000 8.66025i −0.231621 0.401179i
\(467\) 10.0000 17.3205i 0.462745 0.801498i −0.536352 0.843995i \(-0.680198\pi\)
0.999097 + 0.0424970i \(0.0135313\pi\)
\(468\) −2.00000 −0.0924500
\(469\) 0 0
\(470\) −8.00000 −0.369012
\(471\) 7.00000 12.1244i 0.322543 0.558661i
\(472\) −2.00000 3.46410i −0.0920575 0.159448i
\(473\) 24.0000 + 41.5692i 1.10352 + 1.91135i
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 8.00000 13.8564i 0.365911 0.633777i
\(479\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(480\) 0.500000 + 0.866025i 0.0228218 + 0.0395285i
\(481\) −2.00000 + 3.46410i −0.0911922 + 0.157949i
\(482\) 18.0000 0.819878
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) −5.00000 + 8.66025i −0.227038 + 0.393242i
\(486\) 0.500000 + 0.866025i 0.0226805 + 0.0392837i
\(487\) 12.0000 + 20.7846i 0.543772 + 0.941841i 0.998683 + 0.0513038i \(0.0163377\pi\)
−0.454911 + 0.890537i \(0.650329\pi\)
\(488\) 1.00000 1.73205i 0.0452679 0.0784063i
\(489\) −12.0000 −0.542659
\(490\) 0 0
\(491\) 36.0000 1.62466 0.812329 0.583200i \(-0.198200\pi\)
0.812329 + 0.583200i \(0.198200\pi\)
\(492\) 1.00000 1.73205i 0.0450835 0.0780869i
\(493\) −6.00000 10.3923i −0.270226 0.468046i
\(494\) −4.00000 6.92820i −0.179969 0.311715i
\(495\) −2.00000 + 3.46410i −0.0898933 + 0.155700i
\(496\) −8.00000 −0.359211
\(497\) 0 0
\(498\) −12.0000 −0.537733
\(499\) −2.00000 + 3.46410i −0.0895323 + 0.155074i −0.907314 0.420455i \(-0.861871\pi\)
0.817781 + 0.575529i \(0.195204\pi\)
\(500\) −0.500000 0.866025i −0.0223607 0.0387298i
\(501\) −8.00000 13.8564i −0.357414 0.619059i
\(502\) −2.00000 + 3.46410i −0.0892644 + 0.154610i
\(503\) 16.0000 0.713405 0.356702 0.934218i \(-0.383901\pi\)
0.356702 + 0.934218i \(0.383901\pi\)
\(504\) 0 0
\(505\) 6.00000 0.266996
\(506\) 16.0000 27.7128i 0.711287 1.23198i
\(507\) −4.50000 7.79423i −0.199852 0.346154i
\(508\) 0 0
\(509\) −7.00000 + 12.1244i −0.310270 + 0.537403i −0.978421 0.206623i \(-0.933753\pi\)
0.668151 + 0.744026i \(0.267086\pi\)
\(510\) −2.00000 −0.0885615
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) −2.00000 + 3.46410i −0.0883022 + 0.152944i
\(514\) −1.00000 1.73205i −0.0441081 0.0763975i
\(515\) −4.00000 6.92820i −0.176261 0.305293i
\(516\) −6.00000 + 10.3923i −0.264135 + 0.457496i
\(517\) −32.0000 −1.40736
\(518\) 0 0
\(519\) −14.0000 −0.614532
\(520\) 1.00000 1.73205i 0.0438529 0.0759555i
\(521\) 15.0000 + 25.9808i 0.657162 + 1.13824i 0.981347 + 0.192244i \(0.0615766\pi\)
−0.324185 + 0.945994i \(0.605090\pi\)
\(522\) −3.00000 5.19615i −0.131306 0.227429i
\(523\) 14.0000 24.2487i 0.612177 1.06032i −0.378695 0.925521i \(-0.623627\pi\)
0.990873 0.134801i \(-0.0430394\pi\)
\(524\) 12.0000 0.524222
\(525\) 0 0
\(526\) 24.0000 1.04645
\(527\) 8.00000 13.8564i 0.348485 0.603595i
\(528\) 2.00000 + 3.46410i 0.0870388 + 0.150756i
\(529\) −20.5000 35.5070i −0.891304 1.54378i
\(530\) −3.00000 + 5.19615i −0.130312 + 0.225706i
\(531\) 4.00000 0.173585
\(532\) 0 0
\(533\) −4.00000 −0.173259
\(534\) 1.00000 1.73205i 0.0432742 0.0749532i
\(535\) 10.0000 + 17.3205i 0.432338 + 0.748831i
\(536\) −6.00000 10.3923i −0.259161 0.448879i
\(537\) −10.0000 + 17.3205i −0.431532 + 0.747435i
\(538\) 30.0000 1.29339
\(539\) 0 0
\(540\) −1.00000 −0.0430331
\(541\) −7.00000 + 12.1244i −0.300954 + 0.521267i −0.976352 0.216186i \(-0.930638\pi\)
0.675399 + 0.737453i \(0.263972\pi\)
\(542\) 12.0000 + 20.7846i 0.515444 + 0.892775i
\(543\) −5.00000 8.66025i −0.214571 0.371647i
\(544\) −1.00000 + 1.73205i −0.0428746 + 0.0742611i
\(545\) −2.00000 −0.0856706
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) −5.00000 + 8.66025i −0.213589 + 0.369948i
\(549\) 1.00000 + 1.73205i 0.0426790 + 0.0739221i
\(550\) −2.00000 3.46410i −0.0852803 0.147710i
\(551\) 12.0000 20.7846i 0.511217 0.885454i
\(552\) 8.00000 0.340503
\(553\) 0 0
\(554\) 14.0000 0.594803
\(555\) −1.00000 + 1.73205i −0.0424476 + 0.0735215i
\(556\) −10.0000 17.3205i −0.424094 0.734553i
\(557\) 1.00000 + 1.73205i 0.0423714 + 0.0733893i 0.886433 0.462856i \(-0.153175\pi\)
−0.844062 + 0.536246i \(0.819842\pi\)
\(558\) 4.00000 6.92820i 0.169334 0.293294i
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) −8.00000 −0.337760
\(562\) −5.00000 + 8.66025i −0.210912 + 0.365311i
\(563\) 18.0000 + 31.1769i 0.758610 + 1.31395i 0.943560 + 0.331202i \(0.107454\pi\)
−0.184950 + 0.982748i \(0.559212\pi\)
\(564\) −4.00000 6.92820i −0.168430 0.291730i
\(565\) 7.00000 12.1244i 0.294492 0.510075i
\(566\) 20.0000 0.840663
\(567\) 0 0
\(568\) 8.00000 0.335673
\(569\) 3.00000 5.19615i 0.125767 0.217834i −0.796266 0.604947i \(-0.793194\pi\)
0.922032 + 0.387113i \(0.126528\pi\)
\(570\) −2.00000 3.46410i −0.0837708 0.145095i
\(571\) 10.0000 + 17.3205i 0.418487 + 0.724841i 0.995788 0.0916910i \(-0.0292272\pi\)
−0.577301 + 0.816532i \(0.695894\pi\)
\(572\) 4.00000 6.92820i 0.167248 0.289683i
\(573\) 16.0000 0.668410
\(574\) 0 0
\(575\) −8.00000 −0.333623
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) −13.0000 22.5167i −0.541197 0.937381i −0.998836 0.0482425i \(-0.984638\pi\)
0.457639 0.889138i \(-0.348695\pi\)
\(578\) 6.50000 + 11.2583i 0.270364 + 0.468285i
\(579\) −7.00000 + 12.1244i −0.290910 + 0.503871i
\(580\) 6.00000 0.249136
\(581\) 0 0
\(582\) −10.0000 −0.414513
\(583\) −12.0000 + 20.7846i −0.496989 + 0.860811i
\(584\) 7.00000 + 12.1244i 0.289662 + 0.501709i
\(585\) 1.00000 + 1.73205i 0.0413449 + 0.0716115i
\(586\) −3.00000 + 5.19615i −0.123929 + 0.214651i
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) 32.0000 1.31854
\(590\) −2.00000 + 3.46410i −0.0823387 + 0.142615i
\(591\) 3.00000 + 5.19615i 0.123404 + 0.213741i
\(592\) 1.00000 + 1.73205i 0.0410997 + 0.0711868i
\(593\) −9.00000 + 15.5885i −0.369586 + 0.640141i −0.989501 0.144528i \(-0.953834\pi\)
0.619915 + 0.784669i \(0.287167\pi\)
\(594\) −4.00000 −0.164122
\(595\) 0 0
\(596\) −18.0000 −0.737309
\(597\) −8.00000 + 13.8564i −0.327418 + 0.567105i
\(598\) −8.00000 13.8564i −0.327144 0.566631i
\(599\) −4.00000 6.92820i −0.163436 0.283079i 0.772663 0.634816i \(-0.218924\pi\)
−0.936099 + 0.351738i \(0.885591\pi\)
\(600\) 0.500000 0.866025i 0.0204124 0.0353553i
\(601\) −22.0000 −0.897399 −0.448699 0.893683i \(-0.648113\pi\)
−0.448699 + 0.893683i \(0.648113\pi\)
\(602\) 0 0
\(603\) 12.0000 0.488678
\(604\) −4.00000 + 6.92820i −0.162758 + 0.281905i
\(605\) −2.50000 4.33013i −0.101639 0.176045i
\(606\) 3.00000 + 5.19615i 0.121867 + 0.211079i
\(607\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(608\) −4.00000 −0.162221
\(609\) 0 0
\(610\) −2.00000 −0.0809776
\(611\) −8.00000 + 13.8564i −0.323645 + 0.560570i
\(612\) −1.00000 1.73205i −0.0404226 0.0700140i
\(613\) 17.0000 + 29.4449i 0.686624 + 1.18927i 0.972924 + 0.231127i \(0.0742412\pi\)
−0.286300 + 0.958140i \(0.592425\pi\)
\(614\) 2.00000 3.46410i 0.0807134 0.139800i
\(615\) −2.00000 −0.0806478
\(616\) 0 0
\(617\) 10.0000 0.402585 0.201292 0.979531i \(-0.435486\pi\)
0.201292 + 0.979531i \(0.435486\pi\)
\(618\) 4.00000 6.92820i 0.160904 0.278693i
\(619\) 22.0000 + 38.1051i 0.884255 + 1.53157i 0.846566 + 0.532284i \(0.178666\pi\)
0.0376891 + 0.999290i \(0.488000\pi\)
\(620\) 4.00000 + 6.92820i 0.160644 + 0.278243i
\(621\) −4.00000 + 6.92820i −0.160514 + 0.278019i
\(622\) 8.00000 0.320771
\(623\) 0 0
\(624\) 2.00000 0.0800641
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −17.0000 29.4449i −0.679457 1.17685i
\(627\) −8.00000 13.8564i −0.319489 0.553372i
\(628\) −7.00000 + 12.1244i −0.279330 + 0.483814i
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) 24.0000 0.955425 0.477712 0.878516i \(-0.341466\pi\)
0.477712 + 0.878516i \(0.341466\pi\)
\(632\) 0 0
\(633\) 10.0000 + 17.3205i 0.397464 + 0.688428i
\(634\) −7.00000 12.1244i −0.278006 0.481520i
\(635\) 0 0
\(636\) −6.00000 −0.237915
\(637\) 0 0
\(638\) 24.0000 0.950169
\(639\) −4.00000 + 6.92820i −0.158238 + 0.274075i
\(640\) −0.500000 0.866025i −0.0197642 0.0342327i
\(641\) 15.0000 + 25.9808i 0.592464 + 1.02618i 0.993899 + 0.110291i \(0.0351782\pi\)
−0.401435 + 0.915888i \(0.631488\pi\)
\(642\) −10.0000 + 17.3205i −0.394669 + 0.683586i
\(643\) −20.0000 −0.788723 −0.394362 0.918955i \(-0.629034\pi\)
−0.394362 + 0.918955i \(0.629034\pi\)
\(644\) 0 0
\(645\) 12.0000 0.472500
\(646\) 4.00000 6.92820i 0.157378 0.272587i
\(647\) 16.0000 + 27.7128i 0.629025 + 1.08950i 0.987748 + 0.156059i \(0.0498790\pi\)
−0.358723 + 0.933444i \(0.616788\pi\)
\(648\) −0.500000 0.866025i −0.0196419 0.0340207i
\(649\) −8.00000 + 13.8564i −0.314027 + 0.543912i
\(650\) −2.00000 −0.0784465
\(651\) 0 0
\(652\) 12.0000 0.469956
\(653\) 17.0000 29.4449i 0.665261 1.15227i −0.313953 0.949439i \(-0.601653\pi\)
0.979214 0.202828i \(-0.0650132\pi\)
\(654\) −1.00000 1.73205i −0.0391031 0.0677285i
\(655\) −6.00000 10.3923i −0.234439 0.406061i
\(656\) −1.00000 + 1.73205i −0.0390434 + 0.0676252i
\(657\) −14.0000 −0.546192
\(658\) 0 0
\(659\) 28.0000 1.09073 0.545363 0.838200i \(-0.316392\pi\)
0.545363 + 0.838200i \(0.316392\pi\)
\(660\) 2.00000 3.46410i 0.0778499 0.134840i
\(661\) 5.00000 + 8.66025i 0.194477 + 0.336845i 0.946729 0.322031i \(-0.104366\pi\)
−0.752252 + 0.658876i \(0.771032\pi\)
\(662\) −14.0000 24.2487i −0.544125 0.942453i
\(663\) −2.00000 + 3.46410i −0.0776736 + 0.134535i
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) −2.00000 −0.0774984
\(667\) 24.0000 41.5692i 0.929284 1.60957i
\(668\) 8.00000 + 13.8564i 0.309529 + 0.536120i
\(669\) 0 0
\(670\) −6.00000 + 10.3923i −0.231800 + 0.401490i
\(671\) −8.00000 −0.308837
\(672\) 0 0
\(673\) 2.00000 0.0770943 0.0385472 0.999257i \(-0.487727\pi\)
0.0385472 + 0.999257i \(0.487727\pi\)
\(674\) −1.00000 + 1.73205i −0.0385186 + 0.0667161i
\(675\) 0.500000 + 0.866025i 0.0192450 + 0.0333333i
\(676\) 4.50000 + 7.79423i 0.173077 + 0.299778i
\(677\) −3.00000 + 5.19615i −0.115299 + 0.199704i −0.917899 0.396813i \(-0.870116\pi\)
0.802600 + 0.596518i \(0.203449\pi\)
\(678\) 14.0000 0.537667
\(679\) 0 0
\(680\) 2.00000 0.0766965
\(681\) 6.00000 10.3923i 0.229920 0.398234i
\(682\) 16.0000 + 27.7128i 0.612672 + 1.06118i
\(683\) 2.00000 + 3.46410i 0.0765279 + 0.132550i 0.901750 0.432259i \(-0.142283\pi\)
−0.825222 + 0.564809i \(0.808950\pi\)
\(684\) 2.00000 3.46410i 0.0764719 0.132453i
\(685\) 10.0000 0.382080
\(686\) 0 0
\(687\) 26.0000 0.991962
\(688\) 6.00000 10.3923i 0.228748 0.396203i
\(689\) 6.00000 + 10.3923i 0.228582 + 0.395915i
\(690\) −4.00000 6.92820i −0.152277 0.263752i
\(691\) 10.0000 17.3205i 0.380418 0.658903i −0.610704 0.791859i \(-0.709113\pi\)
0.991122 + 0.132956i \(0.0424468\pi\)
\(692\) 14.0000 0.532200
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) −10.0000 + 17.3205i −0.379322 + 0.657004i
\(696\) 3.00000 + 5.19615i 0.113715 + 0.196960i
\(697\) −2.00000 3.46410i −0.0757554 0.131212i
\(698\) 17.0000 29.4449i 0.643459 1.11450i
\(699\) −10.0000 −0.378235
\(700\) 0 0
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) −1.00000 + 1.73205i −0.0377426 + 0.0653720i
\(703\) −4.00000 6.92820i −0.150863 0.261302i
\(704\) −2.00000 3.46410i −0.0753778 0.130558i
\(705\) −4.00000 + 6.92820i −0.150649 + 0.260931i
\(706\) 18.0000 0.677439
\(707\) 0 0
\(708\) −4.00000 −0.150329
\(709\) 13.0000 22.5167i 0.488225 0.845631i −0.511683 0.859174i \(-0.670978\pi\)
0.999908 + 0.0135434i \(0.00431112\pi\)
\(710\) −4.00000 6.92820i −0.150117 0.260011i
\(711\) 0 0
\(712\) −1.00000 + 1.73205i −0.0374766 + 0.0649113i
\(713\) 64.0000 2.39682
\(714\) 0 0
\(715\) −8.00000 −0.299183
\(716\) 10.0000 17.3205i 0.373718 0.647298i
\(717\) −8.00000 13.8564i −0.298765 0.517477i
\(718\) 4.00000 + 6.92820i 0.149279 + 0.258558i
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) 1.00000 0.0372678
\(721\) 0 0
\(722\) −3.00000 −0.111648
\(723\) 9.00000 15.5885i 0.334714 0.579741i
\(724\) 5.00000 + 8.66025i 0.185824 + 0.321856i
\(725\) −3.00000 5.19615i −0.111417 0.192980i
\(726\) 2.50000 4.33013i 0.0927837 0.160706i
\(727\) −24.0000 −0.890111 −0.445055 0.895503i \(-0.646816\pi\)
−0.445055 + 0.895503i \(0.646816\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 7.00000 12.1244i 0.259082 0.448743i
\(731\) 12.0000 + 20.7846i 0.443836 + 0.768747i
\(732\) −1.00000 1.73205i −0.0369611 0.0640184i
\(733\) −15.0000 + 25.9808i −0.554038 + 0.959621i 0.443940 + 0.896056i \(0.353580\pi\)
−0.997978 + 0.0635649i \(0.979753\pi\)
\(734\) −32.0000 −1.18114
\(735\) 0 0
\(736\) −8.00000 −0.294884
\(737\) −24.0000 + 41.5692i −0.884051 + 1.53122i
\(738\) −1.00000 1.73205i −0.0368105 0.0637577i
\(739\) −18.0000 31.1769i −0.662141 1.14686i −0.980052 0.198741i \(-0.936315\pi\)
0.317911 0.948120i \(-0.397019\pi\)
\(740\) 1.00000 1.73205i 0.0367607 0.0636715i
\(741\) −8.00000 −0.293887
\(742\) 0 0
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) −4.00000 + 6.92820i −0.146647 + 0.254000i
\(745\) 9.00000 + 15.5885i 0.329734 + 0.571117i
\(746\) −7.00000 12.1244i −0.256288 0.443904i
\(747\) −6.00000 + 10.3923i −0.219529 + 0.380235i
\(748\) 8.00000 0.292509
\(749\) 0 0
\(750\) −1.00000 −0.0365148
\(751\) 16.0000 27.7128i 0.583848 1.01125i −0.411170 0.911559i \(-0.634880\pi\)
0.995018 0.0996961i \(-0.0317870\pi\)
\(752\) 4.00000 + 6.92820i 0.145865 + 0.252646i
\(753\) 2.00000 + 3.46410i 0.0728841 + 0.126239i
\(754\) 6.00000 10.3923i 0.218507 0.378465i
\(755\) 8.00000 0.291150
\(756\) 0 0
\(757\) −34.0000 −1.23575 −0.617876 0.786276i \(-0.712006\pi\)
−0.617876 + 0.786276i \(0.712006\pi\)
\(758\) −14.0000 + 24.2487i −0.508503 + 0.880753i
\(759\) −16.0000 27.7128i −0.580763 1.00591i
\(760\) 2.00000 + 3.46410i 0.0725476 + 0.125656i
\(761\) −1.00000 + 1.73205i −0.0362500 + 0.0627868i −0.883581 0.468278i \(-0.844875\pi\)
0.847331 + 0.531065i \(0.178208\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −16.0000 −0.578860
\(765\) −1.00000 + 1.73205i −0.0361551 + 0.0626224i
\(766\) −12.0000 20.7846i −0.433578 0.750978i
\(767\) 4.00000 + 6.92820i 0.144432 + 0.250163i
\(768\) 0.500000 0.866025i 0.0180422 0.0312500i
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) −2.00000 −0.0720282
\(772\) 7.00000 12.1244i 0.251936 0.436365i
\(773\) 13.0000 + 22.5167i 0.467578 + 0.809868i 0.999314 0.0370420i \(-0.0117935\pi\)
−0.531736 + 0.846910i \(0.678460\pi\)
\(774\) 6.00000 + 10.3923i 0.215666 + 0.373544i
\(775\) 4.00000 6.92820i 0.143684 0.248868i
\(776\) 10.0000 0.358979
\(777\) 0 0
\(778\) −18.0000 −0.645331
\(779\) 4.00000 6.92820i 0.143315 0.248229i
\(780\) −1.00000 1.73205i −0.0358057 0.0620174i
\(781\) −16.0000 27.7128i −0.572525 0.991642i
\(782\) 8.00000 13.8564i 0.286079 0.495504i
\(783\) −6.00000 −0.214423
\(784\) 0 0
\(785\) 14.0000 0.499681
\(786\) 6.00000 10.3923i 0.214013 0.370681i
\(787\) 2.00000 + 3.46410i 0.0712923 + 0.123482i 0.899468 0.436987i \(-0.143954\pi\)
−0.828176 + 0.560469i \(0.810621\pi\)
\(788\) −3.00000 5.19615i −0.106871 0.185105i
\(789\) 12.0000 20.7846i 0.427211 0.739952i
\(790\) 0 0
\(791\) 0 0
\(792\) 4.00000 0.142134
\(793\) −2.00000 + 3.46410i −0.0710221 + 0.123014i
\(794\) 1.00000 + 1.73205i 0.0354887 + 0.0614682i
\(795\) 3.00000 + 5.19615i 0.106399 + 0.184289i
\(796\) 8.00000 13.8564i 0.283552 0.491127i
\(797\) 30.0000 1.06265 0.531327 0.847167i \(-0.321693\pi\)
0.531327 + 0.847167i \(0.321693\pi\)
\(798\) 0 0
\(799\) −16.0000 −0.566039
\(800\) −0.500000 + 0.866025i −0.0176777 + 0.0306186i
\(801\) −1.00000 1.73205i −0.0353333 0.0611990i
\(802\) −9.00000 15.5885i −0.317801 0.550448i
\(803\) 28.0000 48.4974i 0.988099 1.71144i
\(804\) −12.0000 −0.423207
\(805\) 0 0
\(806\) 16.0000 0.563576
\(807\) 15.0000 25.9808i 0.528025 0.914566i
\(808\) −3.00000 5.19615i −0.105540 0.182800i
\(809\) 19.0000 + 32.9090i 0.668004 + 1.15702i 0.978461 + 0.206430i \(0.0661846\pi\)
−0.310457 + 0.950587i \(0.600482\pi\)
\(810\) −0.500000 + 0.866025i −0.0175682 + 0.0304290i
\(811\) 36.0000 1.26413 0.632065 0.774915i \(-0.282207\pi\)
0.632065 + 0.774915i \(0.282207\pi\)
\(812\) 0 0
\(813\) 24.0000 0.841717
\(814\) 4.00000 6.92820i 0.140200 0.242833i
\(815\) −6.00000 10.3923i −0.210171 0.364027i
\(816\) 1.00000 + 1.73205i 0.0350070 + 0.0606339i
\(817\) −24.0000 + 41.5692i −0.839654 + 1.45432i
\(818\) 10.0000 0.349642
\(819\) 0 0
\(820\) 2.00000 0.0698430
\(821\) −23.0000 + 39.8372i −0.802706 + 1.39033i 0.115124 + 0.993351i \(0.463274\pi\)
−0.917829 + 0.396976i \(0.870060\pi\)
\(822\) 5.00000 + 8.66025i 0.174395 + 0.302061i
\(823\) 4.00000 + 6.92820i 0.139431 + 0.241502i 0.927281 0.374365i \(-0.122139\pi\)
−0.787850 + 0.615867i \(0.788806\pi\)
\(824\) −4.00000 + 6.92820i −0.139347 + 0.241355i
\(825\) −4.00000 −0.139262
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 4.00000 6.92820i 0.139010 0.240772i
\(829\) 17.0000 + 29.4449i 0.590434 + 1.02266i 0.994174 + 0.107788i \(0.0343769\pi\)
−0.403739 + 0.914874i \(0.632290\pi\)
\(830\) −6.00000 10.3923i −0.208263 0.360722i
\(831\) 7.00000 12.1244i 0.242827 0.420589i
\(832\) −2.00000 −0.0693375
\(833\) 0 0
\(834\) −20.0000 −0.692543
\(835\) 8.00000 13.8564i 0.276851 0.479521i
\(836\) 8.00000 + 13.8564i 0.276686 + 0.479234i
\(837\) −4.00000 6.92820i −0.138260 0.239474i
\(838\) −6.00000 + 10.3923i −0.207267 + 0.358996i
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 13.0000 22.5167i 0.448010 0.775975i
\(843\) 5.00000 + 8.66025i 0.172209 + 0.298275i
\(844\) −10.0000 17.3205i −0.344214 0.596196i
\(845\) 4.50000 7.79423i 0.154805 0.268130i
\(846\) −8.00000 −0.275046
\(847\) 0 0
\(848\) 6.00000 0.206041
\(849\) 10.0000 17.3205i 0.343199 0.594438i
\(850\) −1.00000 1.73205i −0.0342997 0.0594089i
\(851\) −8.00000 13.8564i −0.274236 0.474991i
\(852\) 4.00000 6.92820i 0.137038 0.237356i
\(853\) −26.0000 −0.890223 −0.445112 0.895475i \(-0.646836\pi\)
−0.445112 + 0.895475i \(0.646836\pi\)
\(854\) 0 0
\(855\) −4.00000 −0.136797
\(856\) 10.0000 17.3205i 0.341793 0.592003i
\(857\) 11.0000 + 19.0526i 0.375753 + 0.650823i 0.990439 0.137948i \(-0.0440508\pi\)
−0.614687 + 0.788771i \(0.710717\pi\)
\(858\) −4.00000 6.92820i −0.136558 0.236525i
\(859\) 14.0000 24.2487i 0.477674 0.827355i −0.521999 0.852946i \(-0.674813\pi\)
0.999672 + 0.0255910i \(0.00814674\pi\)
\(860\) −12.0000 −0.409197
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(864\) 0.500000 + 0.866025i 0.0170103 + 0.0294628i
\(865\) −7.00000 12.1244i −0.238007 0.412240i
\(866\) 3.00000 5.19615i 0.101944 0.176572i
\(867\) 13.0000 0.441503
\(868\) 0 0
\(869\) 0 0
\(870\) 3.00000 5.19615i 0.101710 0.176166i
\(871\) 12.0000 + 20.7846i 0.406604 + 0.704260i
\(872\) 1.00000 + 1.73205i 0.0338643 + 0.0586546i
\(873\) −5.00000 + 8.66025i −0.169224 + 0.293105i
\(874\) 32.0000 1.08242
\(875\) 0 0
\(876\) 14.0000 0.473016
\(877\) 5.00000 8.66025i 0.168838 0.292436i −0.769174 0.639040i \(-0.779332\pi\)
0.938012 + 0.346604i \(0.112665\pi\)
\(878\) −16.0000 27.7128i −0.539974 0.935262i
\(879\) 3.00000 + 5.19615i 0.101187 + 0.175262i
\(880\) −2.00000 + 3.46410i −0.0674200 + 0.116775i
\(881\) 42.0000 1.41502 0.707508 0.706705i \(-0.249819\pi\)
0.707508 + 0.706705i \(0.249819\pi\)
\(882\) 0 0
\(883\) 28.0000 0.942275 0.471138 0.882060i \(-0.343844\pi\)
0.471138 + 0.882060i \(0.343844\pi\)
\(884\) 2.00000 3.46410i 0.0672673 0.116510i
\(885\) 2.00000 + 3.46410i 0.0672293 + 0.116445i
\(886\) 2.00000 + 3.46410i 0.0671913 + 0.116379i
\(887\) −8.00000 + 13.8564i −0.268614 + 0.465253i −0.968504 0.248998i \(-0.919899\pi\)
0.699890 + 0.714250i \(0.253232\pi\)
\(888\) 2.00000 0.0671156
\(889\) 0 0
\(890\) 2.00000 0.0670402
\(891\) −2.00000 + 3.46410i −0.0670025 + 0.116052i
\(892\) 0 0
\(893\) −16.0000 27.7128i −0.535420 0.927374i
\(894\) −9.00000 + 15.5885i −0.301005 + 0.521356i
\(895\) −20.0000 −0.668526
\(896\) 0 0
\(897\) −16.0000 −0.534224
\(898\) 7.00000 12.1244i 0.233593 0.404595i
\(899\) 24.0000 + 41.5692i 0.800445 + 1.38641i
\(900\) −0.500000 0.866025i −0.0166667 0.0288675i
\(901\) −6.00000 + 10.3923i −0.199889 + 0.346218i
\(902\) 8.00000 0.266371
\(903\) 0 0
\(904\) −14.0000 −0.465633
\(905\) 5.00000 8.66025i 0.166206 0.287877i
\(906\) 4.00000 + 6.92820i 0.132891 + 0.230174i
\(907\) 6.00000 + 10.3923i 0.199227 + 0.345071i 0.948278 0.317441i \(-0.102824\pi\)
−0.749051 + 0.662512i \(0.769490\pi\)
\(908\) −6.00000 + 10.3923i −0.199117 + 0.344881i
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) −2.00000 + 3.46410i −0.0662266 + 0.114708i
\(913\) −24.0000 41.5692i −0.794284 1.37574i
\(914\) 19.0000 + 32.9090i 0.628464 + 1.08853i
\(915\) −1.00000 + 1.73205i −0.0330590 + 0.0572598i
\(916\) −26.0000 −0.859064
\(917\) 0 0
\(918\) −2.00000 −0.0660098
\(919\) 4.00000 6.92820i 0.131948 0.228540i −0.792480 0.609898i \(-0.791210\pi\)
0.924427 + 0.381358i \(0.124544\pi\)
\(920\) 4.00000 + 6.92820i 0.131876 + 0.228416i
\(921\) −2.00000 3.46410i −0.0659022 0.114146i
\(922\) 17.0000 29.4449i 0.559865 0.969715i
\(923\) −16.0000 −0.526646
\(924\) 0 0
\(925\) −2.00000 −0.0657596
\(926\) 8.00000 13.8564i 0.262896 0.455350i
\(927\) −4.00000 6.92820i −0.131377 0.227552i
\(928\) −3.00000 5.19615i −0.0984798 0.170572i
\(929\) −5.00000 + 8.66025i −0.164045 + 0.284134i −0.936316 0.351160i \(-0.885787\pi\)
0.772271 + 0.635293i \(0.219121\pi\)
\(930\) 8.00000 0.262330
\(931\) 0 0
\(932\) 10.0000 0.327561
\(933\) 4.00000 6.92820i 0.130954 0.226819i
\(934\) 10.0000 + 17.3205i 0.327210 + 0.566744i
\(935\) −4.00000 6.92820i −0.130814 0.226576i
\(936\) 1.00000 1.73205i 0.0326860 0.0566139i
\(937\) 18.0000 0.588034 0.294017 0.955800i \(-0.405008\pi\)
0.294017 + 0.955800i \(0.405008\pi\)
\(938\) 0 0
\(939\) −34.0000 −1.10955
\(940\) 4.00000 6.92820i 0.130466 0.225973i
\(941\) 9.00000 + 15.5885i 0.293392 + 0.508169i 0.974609 0.223912i \(-0.0718827\pi\)
−0.681218 + 0.732081i \(0.738549\pi\)
\(942\) 7.00000 + 12.1244i 0.228072 + 0.395033i
\(943\) 8.00000 13.8564i 0.260516 0.451227i
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) −48.0000 −1.56061
\(947\) 6.00000 10.3923i 0.194974 0.337705i −0.751918 0.659256i \(-0.770871\pi\)
0.946892 + 0.321552i \(0.104204\pi\)
\(948\) 0 0
\(949\) −14.0000 24.2487i −0.454459 0.787146i
\(950\) 2.00000 3.46410i 0.0648886 0.112390i
\(951\) −14.0000 −0.453981
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) −3.00000 + 5.19615i −0.0971286 + 0.168232i
\(955\) 8.00000 + 13.8564i 0.258874 + 0.448383i
\(956\) 8.00000 + 13.8564i 0.258738 + 0.448148i
\(957\) 12.0000 20.7846i 0.387905 0.671871i
\(958\) 0 0
\(959\) 0 0
\(960\) −1.00000 −0.0322749
\(961\) −16.5000 + 28.5788i −0.532258 + 0.921898i
\(962\) −2.00000 3.46410i −0.0644826 0.111687i
\(963\) 10.0000 + 17.3205i 0.322245 + 0.558146i
\(964\) −9.00000 + 15.5885i −0.289870 + 0.502070i
\(965\) −14.0000 −0.450676
\(966\) 0 0
\(967\) −8.00000 −0.257263 −0.128631 0.991692i \(-0.541058\pi\)
−0.128631 + 0.991692i \(0.541058\pi\)
\(968\) −2.50000 + 4.33013i −0.0803530 + 0.139176i
\(969\) −4.00000 6.92820i −0.128499 0.222566i
\(970\) −5.00000 8.66025i −0.160540 0.278064i
\(971\) −18.0000 + 31.1769i −0.577647 + 1.00051i 0.418101 + 0.908401i \(0.362696\pi\)
−0.995748 + 0.0921142i \(0.970638\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 0 0
\(974\) −24.0000 −0.769010
\(975\) −1.00000 + 1.73205i −0.0320256 + 0.0554700i
\(976\) 1.00000 + 1.73205i 0.0320092 + 0.0554416i
\(977\) −9.00000 15.5885i −0.287936 0.498719i 0.685381 0.728184i \(-0.259636\pi\)
−0.973317 + 0.229465i \(0.926302\pi\)
\(978\) 6.00000 10.3923i 0.191859 0.332309i
\(979\) 8.00000 0.255681
\(980\) 0 0
\(981\) −2.00000 −0.0638551
\(982\) −18.0000 + 31.1769i −0.574403 + 0.994895i
\(983\) −16.0000 27.7128i −0.510321 0.883901i −0.999928 0.0119587i \(-0.996193\pi\)
0.489608 0.871943i \(-0.337140\pi\)
\(984\) 1.00000 + 1.73205i 0.0318788 + 0.0552158i
\(985\) −3.00000 + 5.19615i −0.0955879 + 0.165563i
\(986\) 12.0000 0.382158
\(987\) 0 0
\(988\) 8.00000 0.254514
\(989\) −48.0000 + 83.1384i −1.52631 + 2.64365i
\(990\) −2.00000 3.46410i −0.0635642 0.110096i
\(991\) 16.0000 + 27.7128i 0.508257 + 0.880327i 0.999954 + 0.00956046i \(0.00304324\pi\)
−0.491698 + 0.870766i \(0.663623\pi\)
\(992\) 4.00000 6.92820i 0.127000 0.219971i
\(993\) −28.0000 −0.888553
\(994\) 0 0
\(995\) −16.0000 −0.507234
\(996\) 6.00000 10.3923i 0.190117 0.329293i
\(997\) −19.0000 32.9090i −0.601736 1.04224i −0.992558 0.121771i \(-0.961143\pi\)
0.390822 0.920466i \(-0.372191\pi\)
\(998\) −2.00000 3.46410i −0.0633089 0.109654i
\(999\) −1.00000 + 1.73205i −0.0316386 + 0.0547997i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1470.2.i.f.961.1 2
7.2 even 3 210.2.a.c.1.1 1
7.3 odd 6 1470.2.i.b.361.1 2
7.4 even 3 inner 1470.2.i.f.361.1 2
7.5 odd 6 1470.2.a.q.1.1 1
7.6 odd 2 1470.2.i.b.961.1 2
21.2 odd 6 630.2.a.b.1.1 1
21.5 even 6 4410.2.a.l.1.1 1
28.23 odd 6 1680.2.a.q.1.1 1
35.2 odd 12 1050.2.g.d.799.2 2
35.9 even 6 1050.2.a.h.1.1 1
35.19 odd 6 7350.2.a.p.1.1 1
35.23 odd 12 1050.2.g.d.799.1 2
56.37 even 6 6720.2.a.bp.1.1 1
56.51 odd 6 6720.2.a.k.1.1 1
84.23 even 6 5040.2.a.i.1.1 1
105.2 even 12 3150.2.g.e.2899.1 2
105.23 even 12 3150.2.g.e.2899.2 2
105.44 odd 6 3150.2.a.w.1.1 1
140.79 odd 6 8400.2.a.p.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.a.c.1.1 1 7.2 even 3
630.2.a.b.1.1 1 21.2 odd 6
1050.2.a.h.1.1 1 35.9 even 6
1050.2.g.d.799.1 2 35.23 odd 12
1050.2.g.d.799.2 2 35.2 odd 12
1470.2.a.q.1.1 1 7.5 odd 6
1470.2.i.b.361.1 2 7.3 odd 6
1470.2.i.b.961.1 2 7.6 odd 2
1470.2.i.f.361.1 2 7.4 even 3 inner
1470.2.i.f.961.1 2 1.1 even 1 trivial
1680.2.a.q.1.1 1 28.23 odd 6
3150.2.a.w.1.1 1 105.44 odd 6
3150.2.g.e.2899.1 2 105.2 even 12
3150.2.g.e.2899.2 2 105.23 even 12
4410.2.a.l.1.1 1 21.5 even 6
5040.2.a.i.1.1 1 84.23 even 6
6720.2.a.k.1.1 1 56.51 odd 6
6720.2.a.bp.1.1 1 56.37 even 6
7350.2.a.p.1.1 1 35.19 odd 6
8400.2.a.p.1.1 1 140.79 odd 6