Properties

Label 1470.2.i
Level $1470$
Weight $2$
Character orbit 1470.i
Rep. character $\chi_{1470}(361,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $56$
Newform subspaces $24$
Sturm bound $672$
Trace bound $11$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 24 \)
Sturm bound: \(672\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(11\), \(13\), \(17\), \(19\), \(31\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1470, [\chi])\).

Total New Old
Modular forms 736 56 680
Cusp forms 608 56 552
Eisenstein series 128 0 128

Trace form

\( 56q - 28q^{4} - 28q^{9} + O(q^{10}) \) \( 56q - 28q^{4} - 28q^{9} + 4q^{10} - 4q^{11} - 16q^{13} - 28q^{16} - 8q^{17} - 4q^{19} + 16q^{22} - 28q^{25} - 4q^{26} + 32q^{29} - 8q^{31} + 8q^{33} + 16q^{34} + 56q^{36} - 48q^{37} - 8q^{38} - 40q^{39} + 4q^{40} - 24q^{41} + 48q^{43} - 4q^{44} + 12q^{46} - 16q^{47} + 8q^{51} + 8q^{52} - 24q^{53} + 16q^{55} + 80q^{57} + 8q^{58} + 32q^{59} + 8q^{61} - 32q^{62} + 56q^{64} - 4q^{65} - 40q^{67} - 8q^{68} + 32q^{69} + 32q^{71} - 8q^{73} - 4q^{74} + 8q^{76} - 32q^{78} - 56q^{79} - 28q^{81} + 16q^{82} - 16q^{83} + 16q^{85} - 8q^{88} + 8q^{89} - 8q^{90} - 56q^{93} - 12q^{94} + 64q^{97} + 8q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1470, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
1470.2.i.a \(2\) \(11.738\) \(\Q(\sqrt{-3}) \) None \(-1\) \(-1\) \(-1\) \(0\) \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
1470.2.i.b \(2\) \(11.738\) \(\Q(\sqrt{-3}) \) None \(-1\) \(-1\) \(1\) \(0\) \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
1470.2.i.c \(2\) \(11.738\) \(\Q(\sqrt{-3}) \) None \(-1\) \(-1\) \(1\) \(0\) \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
1470.2.i.d \(2\) \(11.738\) \(\Q(\sqrt{-3}) \) None \(-1\) \(-1\) \(1\) \(0\) \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
1470.2.i.e \(2\) \(11.738\) \(\Q(\sqrt{-3}) \) None \(-1\) \(-1\) \(1\) \(0\) \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
1470.2.i.f \(2\) \(11.738\) \(\Q(\sqrt{-3}) \) None \(-1\) \(1\) \(-1\) \(0\) \(q-\zeta_{6}q^{2}+(1-\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
1470.2.i.g \(2\) \(11.738\) \(\Q(\sqrt{-3}) \) None \(-1\) \(1\) \(-1\) \(0\) \(q-\zeta_{6}q^{2}+(1-\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
1470.2.i.h \(2\) \(11.738\) \(\Q(\sqrt{-3}) \) None \(-1\) \(1\) \(-1\) \(0\) \(q-\zeta_{6}q^{2}+(1-\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
1470.2.i.i \(2\) \(11.738\) \(\Q(\sqrt{-3}) \) None \(-1\) \(1\) \(1\) \(0\) \(q-\zeta_{6}q^{2}+(1-\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
1470.2.i.j \(2\) \(11.738\) \(\Q(\sqrt{-3}) \) None \(-1\) \(1\) \(1\) \(0\) \(q-\zeta_{6}q^{2}+(1-\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
1470.2.i.k \(2\) \(11.738\) \(\Q(\sqrt{-3}) \) None \(1\) \(-1\) \(-1\) \(0\) \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
1470.2.i.l \(2\) \(11.738\) \(\Q(\sqrt{-3}) \) None \(1\) \(-1\) \(-1\) \(0\) \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
1470.2.i.m \(2\) \(11.738\) \(\Q(\sqrt{-3}) \) None \(1\) \(-1\) \(-1\) \(0\) \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
1470.2.i.n \(2\) \(11.738\) \(\Q(\sqrt{-3}) \) None \(1\) \(-1\) \(-1\) \(0\) \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
1470.2.i.o \(2\) \(11.738\) \(\Q(\sqrt{-3}) \) None \(1\) \(-1\) \(1\) \(0\) \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
1470.2.i.p \(2\) \(11.738\) \(\Q(\sqrt{-3}) \) None \(1\) \(1\) \(-1\) \(0\) \(q+\zeta_{6}q^{2}+(1-\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
1470.2.i.q \(2\) \(11.738\) \(\Q(\sqrt{-3}) \) None \(1\) \(1\) \(-1\) \(0\) \(q+\zeta_{6}q^{2}+(1-\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
1470.2.i.r \(2\) \(11.738\) \(\Q(\sqrt{-3}) \) None \(1\) \(1\) \(1\) \(0\) \(q+\zeta_{6}q^{2}+(1-\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
1470.2.i.s \(2\) \(11.738\) \(\Q(\sqrt{-3}) \) None \(1\) \(1\) \(1\) \(0\) \(q+\zeta_{6}q^{2}+(1-\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
1470.2.i.t \(2\) \(11.738\) \(\Q(\sqrt{-3}) \) None \(1\) \(1\) \(1\) \(0\) \(q+\zeta_{6}q^{2}+(1-\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
1470.2.i.u \(4\) \(11.738\) \(\Q(\sqrt{2}, \sqrt{-3})\) None \(-2\) \(-2\) \(-2\) \(0\) \(q+(-1-\beta _{2})q^{2}+\beta _{2}q^{3}+\beta _{2}q^{4}+(-1+\cdots)q^{5}+\cdots\)
1470.2.i.v \(4\) \(11.738\) \(\Q(\sqrt{2}, \sqrt{-3})\) None \(-2\) \(2\) \(2\) \(0\) \(q+(-1-\beta _{2})q^{2}-\beta _{2}q^{3}+\beta _{2}q^{4}+(1+\cdots)q^{5}+\cdots\)
1470.2.i.w \(4\) \(11.738\) \(\Q(\sqrt{2}, \sqrt{-3})\) None \(2\) \(-2\) \(2\) \(0\) \(q-\beta _{2}q^{2}+(-1-\beta _{2})q^{3}+(-1-\beta _{2}+\cdots)q^{4}+\cdots\)
1470.2.i.x \(4\) \(11.738\) \(\Q(\sqrt{2}, \sqrt{-3})\) None \(2\) \(2\) \(-2\) \(0\) \(q-\beta _{2}q^{2}+(1+\beta _{2})q^{3}+(-1-\beta _{2})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1470, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1470, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(294, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(490, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(735, [\chi])\)\(^{\oplus 2}\)