Properties

Label 1470.2.i.b
Level $1470$
Weight $2$
Character orbit 1470.i
Analytic conductor $11.738$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1470,2,Mod(361,1470)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1470, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1470.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,-1,-1,1,2,0,2,-1,1,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7380090971\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{6} q^{2} + (\zeta_{6} - 1) q^{3} + (\zeta_{6} - 1) q^{4} + \zeta_{6} q^{5} + q^{6} + q^{8} - \zeta_{6} q^{9} + ( - \zeta_{6} + 1) q^{10} + (4 \zeta_{6} - 4) q^{11} - \zeta_{6} q^{12} + 2 q^{13} + \cdots + 4 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{3} - q^{4} + q^{5} + 2 q^{6} + 2 q^{8} - q^{9} + q^{10} - 4 q^{11} - q^{12} + 4 q^{13} - 2 q^{15} - q^{16} + 2 q^{17} - q^{18} - 4 q^{19} - 2 q^{20} + 8 q^{22} + 8 q^{23} - q^{24}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times\).

\(n\) \(491\) \(1081\) \(1177\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 0.866025i −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 0 1.00000 −0.500000 0.866025i 0.500000 0.866025i
961.1 −0.500000 + 0.866025i −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 1.00000 0 1.00000 −0.500000 + 0.866025i 0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1470.2.i.b 2
7.b odd 2 1 1470.2.i.f 2
7.c even 3 1 1470.2.a.q 1
7.c even 3 1 inner 1470.2.i.b 2
7.d odd 6 1 210.2.a.c 1
7.d odd 6 1 1470.2.i.f 2
21.g even 6 1 630.2.a.b 1
21.h odd 6 1 4410.2.a.l 1
28.f even 6 1 1680.2.a.q 1
35.i odd 6 1 1050.2.a.h 1
35.j even 6 1 7350.2.a.p 1
35.k even 12 2 1050.2.g.d 2
56.j odd 6 1 6720.2.a.bp 1
56.m even 6 1 6720.2.a.k 1
84.j odd 6 1 5040.2.a.i 1
105.p even 6 1 3150.2.a.w 1
105.w odd 12 2 3150.2.g.e 2
140.s even 6 1 8400.2.a.p 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.a.c 1 7.d odd 6 1
630.2.a.b 1 21.g even 6 1
1050.2.a.h 1 35.i odd 6 1
1050.2.g.d 2 35.k even 12 2
1470.2.a.q 1 7.c even 3 1
1470.2.i.b 2 1.a even 1 1 trivial
1470.2.i.b 2 7.c even 3 1 inner
1470.2.i.f 2 7.b odd 2 1
1470.2.i.f 2 7.d odd 6 1
1680.2.a.q 1 28.f even 6 1
3150.2.a.w 1 105.p even 6 1
3150.2.g.e 2 105.w odd 12 2
4410.2.a.l 1 21.h odd 6 1
5040.2.a.i 1 84.j odd 6 1
6720.2.a.k 1 56.m even 6 1
6720.2.a.bp 1 56.j odd 6 1
7350.2.a.p 1 35.j even 6 1
8400.2.a.p 1 140.s even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1470, [\chi])\):

\( T_{11}^{2} + 4T_{11} + 16 \) Copy content Toggle raw display
\( T_{13} - 2 \) Copy content Toggle raw display
\( T_{17}^{2} - 2T_{17} + 4 \) Copy content Toggle raw display
\( T_{19}^{2} + 4T_{19} + 16 \) Copy content Toggle raw display
\( T_{31}^{2} + 8T_{31} + 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$13$ \( (T - 2)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$19$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$23$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$37$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$41$ \( (T + 2)^{2} \) Copy content Toggle raw display
$43$ \( (T + 12)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$53$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$59$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$61$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$67$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$71$ \( (T - 8)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 14T + 196 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( (T + 12)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$97$ \( (T + 10)^{2} \) Copy content Toggle raw display
show more
show less