Properties

Label 1470.2.d.h.1469.18
Level $1470$
Weight $2$
Character 1470.1469
Analytic conductor $11.738$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1470,2,Mod(1469,1470)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1470, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1470.1469"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7380090971\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1469.18
Character \(\chi\) \(=\) 1470.1469
Dual form 1470.2.d.h.1469.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(1.17052 + 1.27667i) q^{3} +1.00000 q^{4} +(1.07909 + 1.95846i) q^{5} +(1.17052 + 1.27667i) q^{6} +1.00000 q^{8} +(-0.259782 + 2.98873i) q^{9} +(1.07909 + 1.95846i) q^{10} +6.01614i q^{11} +(1.17052 + 1.27667i) q^{12} +0.864346 q^{13} +(-1.23722 + 3.67005i) q^{15} +1.00000 q^{16} -2.84561i q^{17} +(-0.259782 + 2.98873i) q^{18} -7.12434i q^{19} +(1.07909 + 1.95846i) q^{20} +6.01614i q^{22} -2.10323 q^{23} +(1.17052 + 1.27667i) q^{24} +(-2.67114 + 4.22670i) q^{25} +0.864346 q^{26} +(-4.11971 + 3.16670i) q^{27} -9.40499i q^{29} +(-1.23722 + 3.67005i) q^{30} -2.68399i q^{31} +1.00000 q^{32} +(-7.68063 + 7.04199i) q^{33} -2.84561i q^{34} +(-0.259782 + 2.98873i) q^{36} +6.81763i q^{37} -7.12434i q^{38} +(1.01173 + 1.10349i) q^{39} +(1.07909 + 1.95846i) q^{40} -5.32333 q^{41} -2.68989i q^{43} +6.01614i q^{44} +(-6.13364 + 2.71633i) q^{45} -2.10323 q^{46} +3.12679i q^{47} +(1.17052 + 1.27667i) q^{48} +(-2.67114 + 4.22670i) q^{50} +(3.63291 - 3.33083i) q^{51} +0.864346 q^{52} +11.9744 q^{53} +(-4.11971 + 3.16670i) q^{54} +(-11.7824 + 6.49194i) q^{55} +(9.09545 - 8.33916i) q^{57} -9.40499i q^{58} +7.09456 q^{59} +(-1.23722 + 3.67005i) q^{60} -9.33672i q^{61} -2.68399i q^{62} +1.00000 q^{64} +(0.932706 + 1.69279i) q^{65} +(-7.68063 + 7.04199i) q^{66} +6.56038i q^{67} -2.84561i q^{68} +(-2.46187 - 2.68514i) q^{69} +4.46562i q^{71} +(-0.259782 + 2.98873i) q^{72} +12.7989 q^{73} +6.81763i q^{74} +(-8.52272 + 1.53726i) q^{75} -7.12434i q^{76} +(1.01173 + 1.10349i) q^{78} +3.35798 q^{79} +(1.07909 + 1.95846i) q^{80} +(-8.86503 - 1.55284i) q^{81} -5.32333 q^{82} +1.28020i q^{83} +(5.57301 - 3.07066i) q^{85} -2.68989i q^{86} +(12.0071 - 11.0087i) q^{87} +6.01614i q^{88} +3.08600 q^{89} +(-6.13364 + 2.71633i) q^{90} -2.10323 q^{92} +(3.42657 - 3.14165i) q^{93} +3.12679i q^{94} +(13.9527 - 7.68780i) q^{95} +(1.17052 + 1.27667i) q^{96} +1.90549 q^{97} +(-17.9806 - 1.56288i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{2} + 24 q^{4} + 24 q^{8} + 8 q^{9} - 16 q^{15} + 24 q^{16} + 8 q^{18} + 16 q^{23} + 8 q^{25} - 16 q^{30} + 24 q^{32} + 8 q^{36} + 16 q^{39} + 16 q^{46} + 8 q^{50} + 16 q^{51} - 16 q^{53} - 16 q^{57}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times\).

\(n\) \(491\) \(1081\) \(1177\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.17052 + 1.27667i 0.675798 + 0.737087i
\(4\) 1.00000 0.500000
\(5\) 1.07909 + 1.95846i 0.482583 + 0.875850i
\(6\) 1.17052 + 1.27667i 0.477861 + 0.521199i
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) −0.259782 + 2.98873i −0.0865939 + 0.996244i
\(10\) 1.07909 + 1.95846i 0.341238 + 0.619320i
\(11\) 6.01614i 1.81393i 0.421202 + 0.906967i \(0.361608\pi\)
−0.421202 + 0.906967i \(0.638392\pi\)
\(12\) 1.17052 + 1.27667i 0.337899 + 0.368543i
\(13\) 0.864346 0.239726 0.119863 0.992790i \(-0.461754\pi\)
0.119863 + 0.992790i \(0.461754\pi\)
\(14\) 0 0
\(15\) −1.23722 + 3.67005i −0.319449 + 0.947603i
\(16\) 1.00000 0.250000
\(17\) 2.84561i 0.690161i −0.938573 0.345080i \(-0.887852\pi\)
0.938573 0.345080i \(-0.112148\pi\)
\(18\) −0.259782 + 2.98873i −0.0612311 + 0.704451i
\(19\) 7.12434i 1.63444i −0.576328 0.817218i \(-0.695515\pi\)
0.576328 0.817218i \(-0.304485\pi\)
\(20\) 1.07909 + 1.95846i 0.241291 + 0.437925i
\(21\) 0 0
\(22\) 6.01614i 1.28264i
\(23\) −2.10323 −0.438554 −0.219277 0.975663i \(-0.570370\pi\)
−0.219277 + 0.975663i \(0.570370\pi\)
\(24\) 1.17052 + 1.27667i 0.238931 + 0.260600i
\(25\) −2.67114 + 4.22670i −0.534227 + 0.845341i
\(26\) 0.864346 0.169512
\(27\) −4.11971 + 3.16670i −0.792838 + 0.609432i
\(28\) 0 0
\(29\) 9.40499i 1.74646i −0.487306 0.873231i \(-0.662020\pi\)
0.487306 0.873231i \(-0.337980\pi\)
\(30\) −1.23722 + 3.67005i −0.225885 + 0.670057i
\(31\) 2.68399i 0.482058i −0.970518 0.241029i \(-0.922515\pi\)
0.970518 0.241029i \(-0.0774849\pi\)
\(32\) 1.00000 0.176777
\(33\) −7.68063 + 7.04199i −1.33703 + 1.22585i
\(34\) 2.84561i 0.488017i
\(35\) 0 0
\(36\) −0.259782 + 2.98873i −0.0432970 + 0.498122i
\(37\) 6.81763i 1.12081i 0.828218 + 0.560406i \(0.189355\pi\)
−0.828218 + 0.560406i \(0.810645\pi\)
\(38\) 7.12434i 1.15572i
\(39\) 1.01173 + 1.10349i 0.162007 + 0.176699i
\(40\) 1.07909 + 1.95846i 0.170619 + 0.309660i
\(41\) −5.32333 −0.831364 −0.415682 0.909510i \(-0.636457\pi\)
−0.415682 + 0.909510i \(0.636457\pi\)
\(42\) 0 0
\(43\) 2.68989i 0.410204i −0.978741 0.205102i \(-0.934247\pi\)
0.978741 0.205102i \(-0.0657526\pi\)
\(44\) 6.01614i 0.906967i
\(45\) −6.13364 + 2.71633i −0.914349 + 0.404927i
\(46\) −2.10323 −0.310105
\(47\) 3.12679i 0.456089i 0.973651 + 0.228045i \(0.0732332\pi\)
−0.973651 + 0.228045i \(0.926767\pi\)
\(48\) 1.17052 + 1.27667i 0.168950 + 0.184272i
\(49\) 0 0
\(50\) −2.67114 + 4.22670i −0.377756 + 0.597746i
\(51\) 3.63291 3.33083i 0.508708 0.466409i
\(52\) 0.864346 0.119863
\(53\) 11.9744 1.64482 0.822408 0.568898i \(-0.192630\pi\)
0.822408 + 0.568898i \(0.192630\pi\)
\(54\) −4.11971 + 3.16670i −0.560621 + 0.430934i
\(55\) −11.7824 + 6.49194i −1.58873 + 0.875373i
\(56\) 0 0
\(57\) 9.09545 8.33916i 1.20472 1.10455i
\(58\) 9.40499i 1.23494i
\(59\) 7.09456 0.923633 0.461817 0.886975i \(-0.347198\pi\)
0.461817 + 0.886975i \(0.347198\pi\)
\(60\) −1.23722 + 3.67005i −0.159725 + 0.473802i
\(61\) 9.33672i 1.19544i −0.801703 0.597722i \(-0.796073\pi\)
0.801703 0.597722i \(-0.203927\pi\)
\(62\) 2.68399i 0.340866i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.932706 + 1.69279i 0.115688 + 0.209965i
\(66\) −7.68063 + 7.04199i −0.945420 + 0.866809i
\(67\) 6.56038i 0.801478i 0.916192 + 0.400739i \(0.131247\pi\)
−0.916192 + 0.400739i \(0.868753\pi\)
\(68\) 2.84561i 0.345080i
\(69\) −2.46187 2.68514i −0.296374 0.323252i
\(70\) 0 0
\(71\) 4.46562i 0.529971i 0.964252 + 0.264986i \(0.0853672\pi\)
−0.964252 + 0.264986i \(0.914633\pi\)
\(72\) −0.259782 + 2.98873i −0.0306156 + 0.352225i
\(73\) 12.7989 1.49800 0.749000 0.662570i \(-0.230534\pi\)
0.749000 + 0.662570i \(0.230534\pi\)
\(74\) 6.81763i 0.792533i
\(75\) −8.52272 + 1.53726i −0.984119 + 0.177508i
\(76\) 7.12434i 0.817218i
\(77\) 0 0
\(78\) 1.01173 + 1.10349i 0.114556 + 0.124945i
\(79\) 3.35798 0.377803 0.188901 0.981996i \(-0.439507\pi\)
0.188901 + 0.981996i \(0.439507\pi\)
\(80\) 1.07909 + 1.95846i 0.120646 + 0.218963i
\(81\) −8.86503 1.55284i −0.985003 0.172537i
\(82\) −5.32333 −0.587863
\(83\) 1.28020i 0.140521i 0.997529 + 0.0702603i \(0.0223830\pi\)
−0.997529 + 0.0702603i \(0.977617\pi\)
\(84\) 0 0
\(85\) 5.57301 3.07066i 0.604478 0.333060i
\(86\) 2.68989i 0.290058i
\(87\) 12.0071 11.0087i 1.28729 1.18026i
\(88\) 6.01614i 0.641322i
\(89\) 3.08600 0.327116 0.163558 0.986534i \(-0.447703\pi\)
0.163558 + 0.986534i \(0.447703\pi\)
\(90\) −6.13364 + 2.71633i −0.646542 + 0.286327i
\(91\) 0 0
\(92\) −2.10323 −0.219277
\(93\) 3.42657 3.14165i 0.355319 0.325774i
\(94\) 3.12679i 0.322504i
\(95\) 13.9527 7.68780i 1.43152 0.788751i
\(96\) 1.17052 + 1.27667i 0.119465 + 0.130300i
\(97\) 1.90549 0.193474 0.0967368 0.995310i \(-0.469159\pi\)
0.0967368 + 0.995310i \(0.469159\pi\)
\(98\) 0 0
\(99\) −17.9806 1.56288i −1.80712 0.157076i
\(100\) −2.67114 + 4.22670i −0.267114 + 0.422670i
\(101\) 7.02133 0.698648 0.349324 0.937002i \(-0.386411\pi\)
0.349324 + 0.937002i \(0.386411\pi\)
\(102\) 3.63291 3.33083i 0.359711 0.329801i
\(103\) −9.51562 −0.937602 −0.468801 0.883304i \(-0.655314\pi\)
−0.468801 + 0.883304i \(0.655314\pi\)
\(104\) 0.864346 0.0847561
\(105\) 0 0
\(106\) 11.9744 1.16306
\(107\) 9.23877 0.893146 0.446573 0.894747i \(-0.352644\pi\)
0.446573 + 0.894747i \(0.352644\pi\)
\(108\) −4.11971 + 3.16670i −0.396419 + 0.304716i
\(109\) 4.93955 0.473123 0.236562 0.971616i \(-0.423979\pi\)
0.236562 + 0.971616i \(0.423979\pi\)
\(110\) −11.7824 + 6.49194i −1.12340 + 0.618982i
\(111\) −8.70388 + 7.98015i −0.826135 + 0.757442i
\(112\) 0 0
\(113\) −11.3769 −1.07025 −0.535126 0.844772i \(-0.679736\pi\)
−0.535126 + 0.844772i \(0.679736\pi\)
\(114\) 9.09545 8.33916i 0.851867 0.781034i
\(115\) −2.26957 4.11910i −0.211639 0.384108i
\(116\) 9.40499i 0.873231i
\(117\) −0.224541 + 2.58330i −0.0207589 + 0.238826i
\(118\) 7.09456 0.653107
\(119\) 0 0
\(120\) −1.23722 + 3.67005i −0.112942 + 0.335028i
\(121\) −25.1939 −2.29035
\(122\) 9.33672i 0.845307i
\(123\) −6.23105 6.79615i −0.561835 0.612788i
\(124\) 2.68399i 0.241029i
\(125\) −11.1602 0.670330i −0.998201 0.0599562i
\(126\) 0 0
\(127\) 20.8126i 1.84682i 0.383813 + 0.923411i \(0.374611\pi\)
−0.383813 + 0.923411i \(0.625389\pi\)
\(128\) 1.00000 0.0883883
\(129\) 3.43410 3.14856i 0.302356 0.277215i
\(130\) 0.932706 + 1.69279i 0.0818037 + 0.148467i
\(131\) −7.45191 −0.651076 −0.325538 0.945529i \(-0.605545\pi\)
−0.325538 + 0.945529i \(0.605545\pi\)
\(132\) −7.68063 + 7.04199i −0.668513 + 0.612926i
\(133\) 0 0
\(134\) 6.56038i 0.566731i
\(135\) −10.6474 4.65113i −0.916382 0.400306i
\(136\) 2.84561i 0.244009i
\(137\) −4.00937 −0.342544 −0.171272 0.985224i \(-0.554788\pi\)
−0.171272 + 0.985224i \(0.554788\pi\)
\(138\) −2.46187 2.68514i −0.209568 0.228574i
\(139\) 15.6807i 1.33002i −0.746833 0.665012i \(-0.768427\pi\)
0.746833 0.665012i \(-0.231573\pi\)
\(140\) 0 0
\(141\) −3.99189 + 3.65996i −0.336178 + 0.308224i
\(142\) 4.46562i 0.374746i
\(143\) 5.20002i 0.434848i
\(144\) −0.259782 + 2.98873i −0.0216485 + 0.249061i
\(145\) 18.4193 10.1488i 1.52964 0.842813i
\(146\) 12.7989 1.05925
\(147\) 0 0
\(148\) 6.81763i 0.560406i
\(149\) 8.37964i 0.686487i −0.939246 0.343243i \(-0.888474\pi\)
0.939246 0.343243i \(-0.111526\pi\)
\(150\) −8.52272 + 1.53726i −0.695878 + 0.125517i
\(151\) 8.07977 0.657522 0.328761 0.944413i \(-0.393369\pi\)
0.328761 + 0.944413i \(0.393369\pi\)
\(152\) 7.12434i 0.577861i
\(153\) 8.50475 + 0.739237i 0.687568 + 0.0597637i
\(154\) 0 0
\(155\) 5.25648 2.89626i 0.422211 0.232633i
\(156\) 1.01173 + 1.10349i 0.0810033 + 0.0883496i
\(157\) 4.46327 0.356207 0.178104 0.984012i \(-0.443004\pi\)
0.178104 + 0.984012i \(0.443004\pi\)
\(158\) 3.35798 0.267147
\(159\) 14.0163 + 15.2874i 1.11156 + 1.21237i
\(160\) 1.07909 + 1.95846i 0.0853094 + 0.154830i
\(161\) 0 0
\(162\) −8.86503 1.55284i −0.696502 0.122002i
\(163\) 21.7075i 1.70026i −0.526572 0.850131i \(-0.676523\pi\)
0.526572 0.850131i \(-0.323477\pi\)
\(164\) −5.32333 −0.415682
\(165\) −22.0795 7.44329i −1.71889 0.579459i
\(166\) 1.28020i 0.0993631i
\(167\) 15.0916i 1.16783i −0.811816 0.583913i \(-0.801521\pi\)
0.811816 0.583913i \(-0.198479\pi\)
\(168\) 0 0
\(169\) −12.2529 −0.942531
\(170\) 5.57301 3.07066i 0.427430 0.235509i
\(171\) 21.2928 + 1.85077i 1.62830 + 0.141532i
\(172\) 2.68989i 0.205102i
\(173\) 13.9077i 1.05738i 0.848814 + 0.528692i \(0.177317\pi\)
−0.848814 + 0.528692i \(0.822683\pi\)
\(174\) 12.0071 11.0087i 0.910255 0.834567i
\(175\) 0 0
\(176\) 6.01614i 0.453483i
\(177\) 8.30430 + 9.05742i 0.624189 + 0.680798i
\(178\) 3.08600 0.231306
\(179\) 19.7081i 1.47305i 0.676408 + 0.736527i \(0.263536\pi\)
−0.676408 + 0.736527i \(0.736464\pi\)
\(180\) −6.13364 + 2.71633i −0.457175 + 0.202463i
\(181\) 6.02435i 0.447787i 0.974614 + 0.223893i \(0.0718767\pi\)
−0.974614 + 0.223893i \(0.928123\pi\)
\(182\) 0 0
\(183\) 11.9199 10.9288i 0.881146 0.807879i
\(184\) −2.10323 −0.155052
\(185\) −13.3521 + 7.35683i −0.981663 + 0.540885i
\(186\) 3.42657 3.14165i 0.251248 0.230357i
\(187\) 17.1196 1.25191
\(188\) 3.12679i 0.228045i
\(189\) 0 0
\(190\) 13.9527 7.68780i 1.01224 0.557731i
\(191\) 1.81768i 0.131523i −0.997835 0.0657614i \(-0.979052\pi\)
0.997835 0.0657614i \(-0.0209476\pi\)
\(192\) 1.17052 + 1.27667i 0.0844748 + 0.0921359i
\(193\) 0.613146i 0.0441352i −0.999756 0.0220676i \(-0.992975\pi\)
0.999756 0.0220676i \(-0.00702491\pi\)
\(194\) 1.90549 0.136807
\(195\) −1.06939 + 3.17220i −0.0765804 + 0.227166i
\(196\) 0 0
\(197\) 12.5151 0.891663 0.445832 0.895117i \(-0.352908\pi\)
0.445832 + 0.895117i \(0.352908\pi\)
\(198\) −17.9806 1.56288i −1.27783 0.111069i
\(199\) 10.7743i 0.763768i −0.924210 0.381884i \(-0.875275\pi\)
0.924210 0.381884i \(-0.124725\pi\)
\(200\) −2.67114 + 4.22670i −0.188878 + 0.298873i
\(201\) −8.37545 + 7.67903i −0.590759 + 0.541637i
\(202\) 7.02133 0.494019
\(203\) 0 0
\(204\) 3.63291 3.33083i 0.254354 0.233205i
\(205\) −5.74434 10.4255i −0.401202 0.728151i
\(206\) −9.51562 −0.662984
\(207\) 0.546381 6.28599i 0.0379761 0.436907i
\(208\) 0.864346 0.0599316
\(209\) 42.8610 2.96476
\(210\) 0 0
\(211\) 4.66797 0.321356 0.160678 0.987007i \(-0.448632\pi\)
0.160678 + 0.987007i \(0.448632\pi\)
\(212\) 11.9744 0.822408
\(213\) −5.70113 + 5.22708i −0.390635 + 0.358154i
\(214\) 9.23877 0.631550
\(215\) 5.26804 2.90263i 0.359277 0.197957i
\(216\) −4.11971 + 3.16670i −0.280311 + 0.215467i
\(217\) 0 0
\(218\) 4.93955 0.334549
\(219\) 14.9813 + 16.3400i 1.01235 + 1.10416i
\(220\) −11.7824 + 6.49194i −0.794367 + 0.437687i
\(221\) 2.45959i 0.165450i
\(222\) −8.70388 + 7.98015i −0.584166 + 0.535593i
\(223\) −0.973096 −0.0651633 −0.0325817 0.999469i \(-0.510373\pi\)
−0.0325817 + 0.999469i \(0.510373\pi\)
\(224\) 0 0
\(225\) −11.9386 9.08133i −0.795905 0.605422i
\(226\) −11.3769 −0.756783
\(227\) 23.8398i 1.58231i 0.611618 + 0.791153i \(0.290519\pi\)
−0.611618 + 0.791153i \(0.709481\pi\)
\(228\) 9.09545 8.33916i 0.602361 0.552275i
\(229\) 19.7831i 1.30730i −0.756797 0.653650i \(-0.773237\pi\)
0.756797 0.653650i \(-0.226763\pi\)
\(230\) −2.26957 4.11910i −0.149651 0.271605i
\(231\) 0 0
\(232\) 9.40499i 0.617468i
\(233\) 1.78655 0.117041 0.0585205 0.998286i \(-0.481362\pi\)
0.0585205 + 0.998286i \(0.481362\pi\)
\(234\) −0.224541 + 2.58330i −0.0146787 + 0.168875i
\(235\) −6.12370 + 3.37408i −0.399466 + 0.220101i
\(236\) 7.09456 0.461817
\(237\) 3.93058 + 4.28704i 0.255318 + 0.278473i
\(238\) 0 0
\(239\) 17.2961i 1.11879i −0.828900 0.559396i \(-0.811033\pi\)
0.828900 0.559396i \(-0.188967\pi\)
\(240\) −1.23722 + 3.67005i −0.0798623 + 0.236901i
\(241\) 8.26145i 0.532167i −0.963950 0.266083i \(-0.914270\pi\)
0.963950 0.266083i \(-0.0857296\pi\)
\(242\) −25.1939 −1.61952
\(243\) −8.39420 13.1353i −0.538488 0.842633i
\(244\) 9.33672i 0.597722i
\(245\) 0 0
\(246\) −6.23105 6.79615i −0.397277 0.433306i
\(247\) 6.15790i 0.391818i
\(248\) 2.68399i 0.170433i
\(249\) −1.63440 + 1.49850i −0.103576 + 0.0949636i
\(250\) −11.1602 0.670330i −0.705835 0.0423954i
\(251\) −15.8307 −0.999224 −0.499612 0.866249i \(-0.666524\pi\)
−0.499612 + 0.866249i \(0.666524\pi\)
\(252\) 0 0
\(253\) 12.6533i 0.795508i
\(254\) 20.8126i 1.30590i
\(255\) 10.4435 + 3.52064i 0.653999 + 0.220471i
\(256\) 1.00000 0.0625000
\(257\) 29.7033i 1.85284i −0.376491 0.926420i \(-0.622869\pi\)
0.376491 0.926420i \(-0.377131\pi\)
\(258\) 3.43410 3.14856i 0.213798 0.196021i
\(259\) 0 0
\(260\) 0.932706 + 1.69279i 0.0578440 + 0.104982i
\(261\) 28.1090 + 2.44324i 1.73990 + 0.151233i
\(262\) −7.45191 −0.460380
\(263\) −23.1913 −1.43003 −0.715017 0.699107i \(-0.753581\pi\)
−0.715017 + 0.699107i \(0.753581\pi\)
\(264\) −7.68063 + 7.04199i −0.472710 + 0.433404i
\(265\) 12.9215 + 23.4515i 0.793760 + 1.44061i
\(266\) 0 0
\(267\) 3.61222 + 3.93981i 0.221064 + 0.241113i
\(268\) 6.56038i 0.400739i
\(269\) −13.3485 −0.813873 −0.406937 0.913456i \(-0.633403\pi\)
−0.406937 + 0.913456i \(0.633403\pi\)
\(270\) −10.6474 4.65113i −0.647980 0.283059i
\(271\) 17.0251i 1.03420i 0.855925 + 0.517099i \(0.172988\pi\)
−0.855925 + 0.517099i \(0.827012\pi\)
\(272\) 2.84561i 0.172540i
\(273\) 0 0
\(274\) −4.00937 −0.242215
\(275\) −25.4284 16.0699i −1.53339 0.969053i
\(276\) −2.46187 2.68514i −0.148187 0.161626i
\(277\) 19.4359i 1.16779i −0.811830 0.583894i \(-0.801528\pi\)
0.811830 0.583894i \(-0.198472\pi\)
\(278\) 15.6807i 0.940468i
\(279\) 8.02171 + 0.697250i 0.480247 + 0.0417433i
\(280\) 0 0
\(281\) 10.9247i 0.651714i −0.945419 0.325857i \(-0.894347\pi\)
0.945419 0.325857i \(-0.105653\pi\)
\(282\) −3.99189 + 3.65996i −0.237713 + 0.217948i
\(283\) −27.9118 −1.65918 −0.829592 0.558371i \(-0.811427\pi\)
−0.829592 + 0.558371i \(0.811427\pi\)
\(284\) 4.46562i 0.264986i
\(285\) 26.1467 + 8.81439i 1.54880 + 0.522119i
\(286\) 5.20002i 0.307484i
\(287\) 0 0
\(288\) −0.259782 + 2.98873i −0.0153078 + 0.176113i
\(289\) 8.90252 0.523678
\(290\) 18.4193 10.1488i 1.08162 0.595959i
\(291\) 2.23041 + 2.43269i 0.130749 + 0.142607i
\(292\) 12.7989 0.749000
\(293\) 9.87883i 0.577127i 0.957461 + 0.288564i \(0.0931777\pi\)
−0.957461 + 0.288564i \(0.906822\pi\)
\(294\) 0 0
\(295\) 7.65566 + 13.8944i 0.445730 + 0.808964i
\(296\) 6.81763i 0.396267i
\(297\) −19.0513 24.7847i −1.10547 1.43816i
\(298\) 8.37964i 0.485420i
\(299\) −1.81792 −0.105133
\(300\) −8.52272 + 1.53726i −0.492060 + 0.0887539i
\(301\) 0 0
\(302\) 8.07977 0.464938
\(303\) 8.21858 + 8.96393i 0.472145 + 0.514964i
\(304\) 7.12434i 0.408609i
\(305\) 18.2856 10.0751i 1.04703 0.576901i
\(306\) 8.50475 + 0.739237i 0.486184 + 0.0422593i
\(307\) 2.95602 0.168709 0.0843545 0.996436i \(-0.473117\pi\)
0.0843545 + 0.996436i \(0.473117\pi\)
\(308\) 0 0
\(309\) −11.1382 12.1483i −0.633629 0.691094i
\(310\) 5.25648 2.89626i 0.298548 0.164496i
\(311\) −8.59316 −0.487273 −0.243637 0.969867i \(-0.578340\pi\)
−0.243637 + 0.969867i \(0.578340\pi\)
\(312\) 1.01173 + 1.10349i 0.0572780 + 0.0624726i
\(313\) 19.8544 1.12224 0.561119 0.827735i \(-0.310371\pi\)
0.561119 + 0.827735i \(0.310371\pi\)
\(314\) 4.46327 0.251877
\(315\) 0 0
\(316\) 3.35798 0.188901
\(317\) −29.2008 −1.64008 −0.820041 0.572304i \(-0.806050\pi\)
−0.820041 + 0.572304i \(0.806050\pi\)
\(318\) 14.0163 + 15.2874i 0.785994 + 0.857277i
\(319\) 56.5817 3.16797
\(320\) 1.07909 + 1.95846i 0.0603229 + 0.109481i
\(321\) 10.8141 + 11.7949i 0.603586 + 0.658326i
\(322\) 0 0
\(323\) −20.2731 −1.12802
\(324\) −8.86503 1.55284i −0.492501 0.0862686i
\(325\) −2.30879 + 3.65334i −0.128068 + 0.202651i
\(326\) 21.7075i 1.20227i
\(327\) 5.78183 + 6.30619i 0.319736 + 0.348733i
\(328\) −5.32333 −0.293932
\(329\) 0 0
\(330\) −22.0795 7.44329i −1.21544 0.409740i
\(331\) −8.99040 −0.494157 −0.247079 0.968995i \(-0.579471\pi\)
−0.247079 + 0.968995i \(0.579471\pi\)
\(332\) 1.28020i 0.0702603i
\(333\) −20.3761 1.77110i −1.11660 0.0970555i
\(334\) 15.0916i 0.825777i
\(335\) −12.8482 + 7.07923i −0.701975 + 0.386780i
\(336\) 0 0
\(337\) 16.7043i 0.909939i −0.890507 0.454969i \(-0.849650\pi\)
0.890507 0.454969i \(-0.150350\pi\)
\(338\) −12.2529 −0.666470
\(339\) −13.3169 14.5246i −0.723274 0.788869i
\(340\) 5.57301 3.07066i 0.302239 0.166530i
\(341\) 16.1472 0.874421
\(342\) 21.2928 + 1.85077i 1.15138 + 0.100078i
\(343\) 0 0
\(344\) 2.68989i 0.145029i
\(345\) 2.60216 7.71897i 0.140096 0.415575i
\(346\) 13.9077i 0.747684i
\(347\) −23.5557 −1.26454 −0.632268 0.774750i \(-0.717876\pi\)
−0.632268 + 0.774750i \(0.717876\pi\)
\(348\) 12.0071 11.0087i 0.643647 0.590128i
\(349\) 26.3071i 1.40819i −0.710108 0.704093i \(-0.751354\pi\)
0.710108 0.704093i \(-0.248646\pi\)
\(350\) 0 0
\(351\) −3.56085 + 2.73713i −0.190064 + 0.146097i
\(352\) 6.01614i 0.320661i
\(353\) 8.37829i 0.445931i 0.974826 + 0.222966i \(0.0715738\pi\)
−0.974826 + 0.222966i \(0.928426\pi\)
\(354\) 8.30430 + 9.05742i 0.441369 + 0.481397i
\(355\) −8.74574 + 4.81880i −0.464176 + 0.255755i
\(356\) 3.08600 0.163558
\(357\) 0 0
\(358\) 19.7081i 1.04161i
\(359\) 26.9651i 1.42317i 0.702602 + 0.711583i \(0.252021\pi\)
−0.702602 + 0.711583i \(0.747979\pi\)
\(360\) −6.13364 + 2.71633i −0.323271 + 0.143163i
\(361\) −31.7563 −1.67138
\(362\) 6.02435i 0.316633i
\(363\) −29.4899 32.1643i −1.54782 1.68819i
\(364\) 0 0
\(365\) 13.8112 + 25.0662i 0.722909 + 1.31202i
\(366\) 11.9199 10.9288i 0.623065 0.571257i
\(367\) 24.6775 1.28815 0.644077 0.764961i \(-0.277242\pi\)
0.644077 + 0.764961i \(0.277242\pi\)
\(368\) −2.10323 −0.109639
\(369\) 1.38290 15.9100i 0.0719911 0.828242i
\(370\) −13.3521 + 7.35683i −0.694141 + 0.382463i
\(371\) 0 0
\(372\) 3.42657 3.14165i 0.177659 0.162887i
\(373\) 26.1293i 1.35293i 0.736477 + 0.676463i \(0.236488\pi\)
−0.736477 + 0.676463i \(0.763512\pi\)
\(374\) 17.1196 0.885231
\(375\) −12.2074 15.0326i −0.630389 0.776279i
\(376\) 3.12679i 0.161252i
\(377\) 8.12917i 0.418673i
\(378\) 0 0
\(379\) 25.5437 1.31209 0.656046 0.754721i \(-0.272228\pi\)
0.656046 + 0.754721i \(0.272228\pi\)
\(380\) 13.9527 7.68780i 0.715761 0.394376i
\(381\) −26.5709 + 24.3615i −1.36127 + 1.24808i
\(382\) 1.81768i 0.0930006i
\(383\) 15.2142i 0.777409i 0.921362 + 0.388705i \(0.127077\pi\)
−0.921362 + 0.388705i \(0.872923\pi\)
\(384\) 1.17052 + 1.27667i 0.0597327 + 0.0651499i
\(385\) 0 0
\(386\) 0.613146i 0.0312083i
\(387\) 8.03935 + 0.698784i 0.408663 + 0.0355212i
\(388\) 1.90549 0.0967368
\(389\) 15.5321i 0.787509i −0.919216 0.393754i \(-0.871176\pi\)
0.919216 0.393754i \(-0.128824\pi\)
\(390\) −1.06939 + 3.17220i −0.0541505 + 0.160630i
\(391\) 5.98497i 0.302673i
\(392\) 0 0
\(393\) −8.72258 9.51364i −0.439996 0.479900i
\(394\) 12.5151 0.630501
\(395\) 3.62356 + 6.57648i 0.182321 + 0.330899i
\(396\) −17.9806 1.56288i −0.903560 0.0785378i
\(397\) 9.93654 0.498701 0.249350 0.968413i \(-0.419783\pi\)
0.249350 + 0.968413i \(0.419783\pi\)
\(398\) 10.7743i 0.540066i
\(399\) 0 0
\(400\) −2.67114 + 4.22670i −0.133557 + 0.211335i
\(401\) 14.2780i 0.713007i −0.934294 0.356504i \(-0.883969\pi\)
0.934294 0.356504i \(-0.116031\pi\)
\(402\) −8.37545 + 7.67903i −0.417730 + 0.382995i
\(403\) 2.31989i 0.115562i
\(404\) 7.02133 0.349324
\(405\) −6.52498 19.0375i −0.324229 0.945979i
\(406\) 0 0
\(407\) −41.0158 −2.03308
\(408\) 3.63291 3.33083i 0.179856 0.164901i
\(409\) 20.1305i 0.995387i 0.867353 + 0.497694i \(0.165820\pi\)
−0.867353 + 0.497694i \(0.834180\pi\)
\(410\) −5.74434 10.4255i −0.283693 0.514880i
\(411\) −4.69304 5.11865i −0.231491 0.252485i
\(412\) −9.51562 −0.468801
\(413\) 0 0
\(414\) 0.546381 6.28599i 0.0268532 0.308940i
\(415\) −2.50723 + 1.38145i −0.123075 + 0.0678129i
\(416\) 0.864346 0.0423781
\(417\) 20.0192 18.3546i 0.980343 0.898827i
\(418\) 42.8610 2.09640
\(419\) −11.8896 −0.580845 −0.290422 0.956899i \(-0.593796\pi\)
−0.290422 + 0.956899i \(0.593796\pi\)
\(420\) 0 0
\(421\) 11.6346 0.567038 0.283519 0.958967i \(-0.408498\pi\)
0.283519 + 0.958967i \(0.408498\pi\)
\(422\) 4.66797 0.227233
\(423\) −9.34514 0.812283i −0.454376 0.0394946i
\(424\) 11.9744 0.581530
\(425\) 12.0275 + 7.60100i 0.583421 + 0.368703i
\(426\) −5.70113 + 5.22708i −0.276221 + 0.253253i
\(427\) 0 0
\(428\) 9.23877 0.446573
\(429\) −6.63872 + 6.08671i −0.320521 + 0.293869i
\(430\) 5.26804 2.90263i 0.254047 0.139977i
\(431\) 4.34854i 0.209462i 0.994501 + 0.104731i \(0.0333981\pi\)
−0.994501 + 0.104731i \(0.966602\pi\)
\(432\) −4.11971 + 3.16670i −0.198210 + 0.152358i
\(433\) 15.3505 0.737698 0.368849 0.929489i \(-0.379752\pi\)
0.368849 + 0.929489i \(0.379752\pi\)
\(434\) 0 0
\(435\) 34.5168 + 11.6360i 1.65495 + 0.557906i
\(436\) 4.93955 0.236562
\(437\) 14.9841i 0.716789i
\(438\) 14.9813 + 16.3400i 0.715837 + 0.780756i
\(439\) 3.55667i 0.169751i −0.996392 0.0848753i \(-0.972951\pi\)
0.996392 0.0848753i \(-0.0270492\pi\)
\(440\) −11.7824 + 6.49194i −0.561702 + 0.309491i
\(441\) 0 0
\(442\) 2.45959i 0.116991i
\(443\) 9.38403 0.445849 0.222924 0.974836i \(-0.428440\pi\)
0.222924 + 0.974836i \(0.428440\pi\)
\(444\) −8.70388 + 7.98015i −0.413068 + 0.378721i
\(445\) 3.33007 + 6.04382i 0.157860 + 0.286504i
\(446\) −0.973096 −0.0460774
\(447\) 10.6981 9.80851i 0.506000 0.463927i
\(448\) 0 0
\(449\) 0.400479i 0.0188998i −0.999955 0.00944989i \(-0.996992\pi\)
0.999955 0.00944989i \(-0.00300804\pi\)
\(450\) −11.9386 9.08133i −0.562790 0.428098i
\(451\) 32.0259i 1.50804i
\(452\) −11.3769 −0.535126
\(453\) 9.45750 + 10.3152i 0.444352 + 0.484651i
\(454\) 23.8398i 1.11886i
\(455\) 0 0
\(456\) 9.09545 8.33916i 0.425933 0.390517i
\(457\) 34.3815i 1.60830i −0.594428 0.804149i \(-0.702622\pi\)
0.594428 0.804149i \(-0.297378\pi\)
\(458\) 19.7831i 0.924401i
\(459\) 9.01119 + 11.7231i 0.420606 + 0.547186i
\(460\) −2.26957 4.11910i −0.105819 0.192054i
\(461\) −33.8119 −1.57478 −0.787389 0.616456i \(-0.788568\pi\)
−0.787389 + 0.616456i \(0.788568\pi\)
\(462\) 0 0
\(463\) 0.505232i 0.0234801i 0.999931 + 0.0117401i \(0.00373706\pi\)
−0.999931 + 0.0117401i \(0.996263\pi\)
\(464\) 9.40499i 0.436616i
\(465\) 9.85037 + 3.32068i 0.456800 + 0.153993i
\(466\) 1.78655 0.0827604
\(467\) 24.8661i 1.15067i −0.817919 0.575333i \(-0.804873\pi\)
0.817919 0.575333i \(-0.195127\pi\)
\(468\) −0.224541 + 2.58330i −0.0103794 + 0.119413i
\(469\) 0 0
\(470\) −6.12370 + 3.37408i −0.282465 + 0.155635i
\(471\) 5.22433 + 5.69812i 0.240724 + 0.262556i
\(472\) 7.09456 0.326554
\(473\) 16.1827 0.744083
\(474\) 3.93058 + 4.28704i 0.180537 + 0.196910i
\(475\) 30.1125 + 19.0301i 1.38166 + 0.873161i
\(476\) 0 0
\(477\) −3.11074 + 35.7884i −0.142431 + 1.63864i
\(478\) 17.2961i 0.791106i
\(479\) −1.48138 −0.0676859 −0.0338430 0.999427i \(-0.510775\pi\)
−0.0338430 + 0.999427i \(0.510775\pi\)
\(480\) −1.23722 + 3.67005i −0.0564711 + 0.167514i
\(481\) 5.89279i 0.268688i
\(482\) 8.26145i 0.376299i
\(483\) 0 0
\(484\) −25.1939 −1.14518
\(485\) 2.05620 + 3.73184i 0.0933671 + 0.169454i
\(486\) −8.39420 13.1353i −0.380769 0.595832i
\(487\) 7.86665i 0.356472i 0.983988 + 0.178236i \(0.0570391\pi\)
−0.983988 + 0.178236i \(0.942961\pi\)
\(488\) 9.33672i 0.422653i
\(489\) 27.7133 25.4090i 1.25324 1.14903i
\(490\) 0 0
\(491\) 16.0379i 0.723778i 0.932221 + 0.361889i \(0.117868\pi\)
−0.932221 + 0.361889i \(0.882132\pi\)
\(492\) −6.23105 6.79615i −0.280917 0.306394i
\(493\) −26.7629 −1.20534
\(494\) 6.15790i 0.277057i
\(495\) −16.3418 36.9008i −0.734510 1.65857i
\(496\) 2.68399i 0.120514i
\(497\) 0 0
\(498\) −1.63440 + 1.49850i −0.0732392 + 0.0671494i
\(499\) 8.37964 0.375124 0.187562 0.982253i \(-0.439941\pi\)
0.187562 + 0.982253i \(0.439941\pi\)
\(500\) −11.1602 0.670330i −0.499101 0.0299781i
\(501\) 19.2671 17.6650i 0.860789 0.789214i
\(502\) −15.8307 −0.706558
\(503\) 31.5447i 1.40651i 0.710939 + 0.703254i \(0.248270\pi\)
−0.710939 + 0.703254i \(0.751730\pi\)
\(504\) 0 0
\(505\) 7.57663 + 13.7510i 0.337156 + 0.611911i
\(506\) 12.6533i 0.562509i
\(507\) −14.3422 15.6429i −0.636961 0.694727i
\(508\) 20.8126i 0.923411i
\(509\) 21.9316 0.972101 0.486051 0.873931i \(-0.338437\pi\)
0.486051 + 0.873931i \(0.338437\pi\)
\(510\) 10.4435 + 3.52064i 0.462447 + 0.155897i
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 22.5607 + 29.3502i 0.996079 + 1.29584i
\(514\) 29.7033i 1.31016i
\(515\) −10.2682 18.6360i −0.452471 0.821199i
\(516\) 3.43410 3.14856i 0.151178 0.138608i
\(517\) −18.8112 −0.827316
\(518\) 0 0
\(519\) −17.7556 + 16.2792i −0.779384 + 0.714578i
\(520\) 0.932706 + 1.69279i 0.0409019 + 0.0742337i
\(521\) −6.73422 −0.295032 −0.147516 0.989060i \(-0.547128\pi\)
−0.147516 + 0.989060i \(0.547128\pi\)
\(522\) 28.1090 + 2.44324i 1.23030 + 0.106938i
\(523\) −36.6831 −1.60404 −0.802020 0.597298i \(-0.796241\pi\)
−0.802020 + 0.597298i \(0.796241\pi\)
\(524\) −7.45191 −0.325538
\(525\) 0 0
\(526\) −23.1913 −1.01119
\(527\) −7.63757 −0.332698
\(528\) −7.68063 + 7.04199i −0.334257 + 0.306463i
\(529\) −18.5764 −0.807670
\(530\) 12.9215 + 23.4515i 0.561273 + 1.01867i
\(531\) −1.84304 + 21.2037i −0.0799810 + 0.920164i
\(532\) 0 0
\(533\) −4.60120 −0.199300
\(534\) 3.61222 + 3.93981i 0.156316 + 0.170492i
\(535\) 9.96945 + 18.0938i 0.431017 + 0.782262i
\(536\) 6.56038i 0.283365i
\(537\) −25.1608 + 23.0687i −1.08577 + 0.995487i
\(538\) −13.3485 −0.575495
\(539\) 0 0
\(540\) −10.6474 4.65113i −0.458191 0.200153i
\(541\) 6.45386 0.277473 0.138737 0.990329i \(-0.455696\pi\)
0.138737 + 0.990329i \(0.455696\pi\)
\(542\) 17.0251i 0.731289i
\(543\) −7.69112 + 7.05161i −0.330058 + 0.302613i
\(544\) 2.84561i 0.122004i
\(545\) 5.33021 + 9.67392i 0.228321 + 0.414385i
\(546\) 0 0
\(547\) 17.9484i 0.767418i −0.923454 0.383709i \(-0.874647\pi\)
0.923454 0.383709i \(-0.125353\pi\)
\(548\) −4.00937 −0.171272
\(549\) 27.9049 + 2.42551i 1.19095 + 0.103518i
\(550\) −25.4284 16.0699i −1.08427 0.685224i
\(551\) −67.0044 −2.85448
\(552\) −2.46187 2.68514i −0.104784 0.114287i
\(553\) 0 0
\(554\) 19.4359i 0.825751i
\(555\) −25.0211 8.43491i −1.06208 0.358042i
\(556\) 15.6807i 0.665012i
\(557\) −11.0063 −0.466354 −0.233177 0.972434i \(-0.574912\pi\)
−0.233177 + 0.972434i \(0.574912\pi\)
\(558\) 8.02171 + 0.697250i 0.339586 + 0.0295170i
\(559\) 2.32499i 0.0983368i
\(560\) 0 0
\(561\) 20.0387 + 21.8561i 0.846036 + 0.922763i
\(562\) 10.9247i 0.460831i
\(563\) 7.74278i 0.326319i −0.986600 0.163160i \(-0.947831\pi\)
0.986600 0.163160i \(-0.0521686\pi\)
\(564\) −3.99189 + 3.65996i −0.168089 + 0.154112i
\(565\) −12.2767 22.2813i −0.516485 0.937381i
\(566\) −27.9118 −1.17322
\(567\) 0 0
\(568\) 4.46562i 0.187373i
\(569\) 29.7890i 1.24882i −0.781097 0.624409i \(-0.785340\pi\)
0.781097 0.624409i \(-0.214660\pi\)
\(570\) 26.1467 + 8.81439i 1.09517 + 0.369194i
\(571\) 4.12163 0.172485 0.0862424 0.996274i \(-0.472514\pi\)
0.0862424 + 0.996274i \(0.472514\pi\)
\(572\) 5.20002i 0.217424i
\(573\) 2.32058 2.12763i 0.0969437 0.0888828i
\(574\) 0 0
\(575\) 5.61802 8.88974i 0.234288 0.370728i
\(576\) −0.259782 + 2.98873i −0.0108242 + 0.124530i
\(577\) −15.2456 −0.634681 −0.317341 0.948312i \(-0.602790\pi\)
−0.317341 + 0.948312i \(0.602790\pi\)
\(578\) 8.90252 0.370296
\(579\) 0.782786 0.717698i 0.0325315 0.0298265i
\(580\) 18.4193 10.1488i 0.764820 0.421407i
\(581\) 0 0
\(582\) 2.23041 + 2.43269i 0.0924536 + 0.100838i
\(583\) 72.0399i 2.98359i
\(584\) 12.7989 0.529623
\(585\) −5.30159 + 2.34785i −0.219194 + 0.0970717i
\(586\) 9.87883i 0.408091i
\(587\) 3.06358i 0.126447i 0.997999 + 0.0632237i \(0.0201382\pi\)
−0.997999 + 0.0632237i \(0.979862\pi\)
\(588\) 0 0
\(589\) −19.1216 −0.787893
\(590\) 7.65566 + 13.8944i 0.315178 + 0.572024i
\(591\) 14.6491 + 15.9777i 0.602584 + 0.657233i
\(592\) 6.81763i 0.280203i
\(593\) 0.944328i 0.0387789i −0.999812 0.0193895i \(-0.993828\pi\)
0.999812 0.0193895i \(-0.00617224\pi\)
\(594\) −19.0513 24.7847i −0.781685 1.01693i
\(595\) 0 0
\(596\) 8.37964i 0.343243i
\(597\) 13.7552 12.6115i 0.562963 0.516153i
\(598\) −1.81792 −0.0743403
\(599\) 37.4531i 1.53029i 0.643857 + 0.765146i \(0.277333\pi\)
−0.643857 + 0.765146i \(0.722667\pi\)
\(600\) −8.52272 + 1.53726i −0.347939 + 0.0627585i
\(601\) 46.7301i 1.90616i −0.302716 0.953081i \(-0.597893\pi\)
0.302716 0.953081i \(-0.402107\pi\)
\(602\) 0 0
\(603\) −19.6072 1.70427i −0.798467 0.0694031i
\(604\) 8.07977 0.328761
\(605\) −27.1864 49.3413i −1.10529 2.00601i
\(606\) 8.21858 + 8.96393i 0.333857 + 0.364135i
\(607\) −24.1453 −0.980026 −0.490013 0.871715i \(-0.663008\pi\)
−0.490013 + 0.871715i \(0.663008\pi\)
\(608\) 7.12434i 0.288930i
\(609\) 0 0
\(610\) 18.2856 10.0751i 0.740362 0.407931i
\(611\) 2.70263i 0.109337i
\(612\) 8.50475 + 0.739237i 0.343784 + 0.0298819i
\(613\) 24.6198i 0.994383i −0.867641 0.497191i \(-0.834365\pi\)
0.867641 0.497191i \(-0.165635\pi\)
\(614\) 2.95602 0.119295
\(615\) 6.58614 19.5369i 0.265579 0.787804i
\(616\) 0 0
\(617\) 34.6057 1.39317 0.696586 0.717474i \(-0.254702\pi\)
0.696586 + 0.717474i \(0.254702\pi\)
\(618\) −11.1382 12.1483i −0.448044 0.488677i
\(619\) 17.3011i 0.695388i 0.937608 + 0.347694i \(0.113035\pi\)
−0.937608 + 0.347694i \(0.886965\pi\)
\(620\) 5.25648 2.89626i 0.211105 0.116316i
\(621\) 8.66470 6.66031i 0.347702 0.267269i
\(622\) −8.59316 −0.344554
\(623\) 0 0
\(624\) 1.01173 + 1.10349i 0.0405017 + 0.0441748i
\(625\) −10.7301 22.5802i −0.429202 0.903208i
\(626\) 19.8544 0.793542
\(627\) 50.1695 + 54.7195i 2.00358 + 2.18529i
\(628\) 4.46327 0.178104
\(629\) 19.4003 0.773540
\(630\) 0 0
\(631\) 6.04364 0.240593 0.120297 0.992738i \(-0.461615\pi\)
0.120297 + 0.992738i \(0.461615\pi\)
\(632\) 3.35798 0.133573
\(633\) 5.46394 + 5.95947i 0.217172 + 0.236868i
\(634\) −29.2008 −1.15971
\(635\) −40.7607 + 22.4587i −1.61754 + 0.891245i
\(636\) 14.0163 + 15.2874i 0.555782 + 0.606186i
\(637\) 0 0
\(638\) 56.5817 2.24009
\(639\) −13.3465 1.16009i −0.527981 0.0458923i
\(640\) 1.07909 + 1.95846i 0.0426547 + 0.0774150i
\(641\) 4.78542i 0.189013i −0.995524 0.0945065i \(-0.969873\pi\)
0.995524 0.0945065i \(-0.0301273\pi\)
\(642\) 10.8141 + 11.7949i 0.426800 + 0.465507i
\(643\) −40.9370 −1.61440 −0.807198 0.590280i \(-0.799017\pi\)
−0.807198 + 0.590280i \(0.799017\pi\)
\(644\) 0 0
\(645\) 9.87203 + 3.32799i 0.388711 + 0.131039i
\(646\) −20.2731 −0.797634
\(647\) 24.3583i 0.957623i 0.877918 + 0.478811i \(0.158932\pi\)
−0.877918 + 0.478811i \(0.841068\pi\)
\(648\) −8.86503 1.55284i −0.348251 0.0610011i
\(649\) 42.6818i 1.67541i
\(650\) −2.30879 + 3.65334i −0.0905581 + 0.143296i
\(651\) 0 0
\(652\) 21.7075i 0.850131i
\(653\) −15.9386 −0.623726 −0.311863 0.950127i \(-0.600953\pi\)
−0.311863 + 0.950127i \(0.600953\pi\)
\(654\) 5.78183 + 6.30619i 0.226087 + 0.246591i
\(655\) −8.04127 14.5943i −0.314198 0.570245i
\(656\) −5.32333 −0.207841
\(657\) −3.32493 + 38.2525i −0.129718 + 1.49237i
\(658\) 0 0
\(659\) 1.76616i 0.0687997i −0.999408 0.0343998i \(-0.989048\pi\)
0.999408 0.0343998i \(-0.0109520\pi\)
\(660\) −22.0795 7.44329i −0.859445 0.289730i
\(661\) 30.5932i 1.18994i 0.803748 + 0.594970i \(0.202836\pi\)
−0.803748 + 0.594970i \(0.797164\pi\)
\(662\) −8.99040 −0.349422
\(663\) 3.14009 2.87899i 0.121951 0.111811i
\(664\) 1.28020i 0.0496815i
\(665\) 0 0
\(666\) −20.3761 1.77110i −0.789556 0.0686286i
\(667\) 19.7809i 0.765918i
\(668\) 15.0916i 0.583913i
\(669\) −1.13902 1.24232i −0.0440372 0.0480310i
\(670\) −12.8482 + 7.07923i −0.496371 + 0.273494i
\(671\) 56.1710 2.16846
\(672\) 0 0
\(673\) 8.47471i 0.326676i 0.986570 + 0.163338i \(0.0522261\pi\)
−0.986570 + 0.163338i \(0.947774\pi\)
\(674\) 16.7043i 0.643424i
\(675\) −2.38041 25.8715i −0.0916222 0.995794i
\(676\) −12.2529 −0.471266
\(677\) 8.78118i 0.337488i 0.985660 + 0.168744i \(0.0539712\pi\)
−0.985660 + 0.168744i \(0.946029\pi\)
\(678\) −13.3169 14.5246i −0.511432 0.557814i
\(679\) 0 0
\(680\) 5.57301 3.07066i 0.213715 0.117754i
\(681\) −30.4357 + 27.9049i −1.16630 + 1.06932i
\(682\) 16.1472 0.618309
\(683\) 19.7411 0.755372 0.377686 0.925934i \(-0.376720\pi\)
0.377686 + 0.925934i \(0.376720\pi\)
\(684\) 21.2928 + 1.85077i 0.814149 + 0.0707661i
\(685\) −4.32647 7.85220i −0.165306 0.300017i
\(686\) 0 0
\(687\) 25.2565 23.1564i 0.963594 0.883471i
\(688\) 2.68989i 0.102551i
\(689\) 10.3501 0.394306
\(690\) 2.60216 7.71897i 0.0990626 0.293856i
\(691\) 31.4383i 1.19597i 0.801508 + 0.597984i \(0.204032\pi\)
−0.801508 + 0.597984i \(0.795968\pi\)
\(692\) 13.9077i 0.528692i
\(693\) 0 0
\(694\) −23.5557 −0.894162
\(695\) 30.7101 16.9209i 1.16490 0.641847i
\(696\) 12.0071 11.0087i 0.455127 0.417284i
\(697\) 15.1481i 0.573775i
\(698\) 26.3071i 0.995738i
\(699\) 2.09119 + 2.28084i 0.0790960 + 0.0862693i
\(700\) 0 0
\(701\) 8.41296i 0.317753i 0.987298 + 0.158877i \(0.0507872\pi\)
−0.987298 + 0.158877i \(0.949213\pi\)
\(702\) −3.56085 + 2.73713i −0.134396 + 0.103306i
\(703\) 48.5712 1.83190
\(704\) 6.01614i 0.226742i
\(705\) −11.4755 3.86853i −0.432192 0.145697i
\(706\) 8.37829i 0.315321i
\(707\) 0 0
\(708\) 8.30430 + 9.05742i 0.312095 + 0.340399i
\(709\) 45.6062 1.71278 0.856388 0.516333i \(-0.172703\pi\)
0.856388 + 0.516333i \(0.172703\pi\)
\(710\) −8.74574 + 4.81880i −0.328222 + 0.180846i
\(711\) −0.872343 + 10.0361i −0.0327154 + 0.376384i
\(712\) 3.08600 0.115653
\(713\) 5.64504i 0.211409i
\(714\) 0 0
\(715\) −10.1840 + 5.61128i −0.380862 + 0.209850i
\(716\) 19.7081i 0.736527i
\(717\) 22.0815 20.2454i 0.824647 0.756078i
\(718\) 26.9651i 1.00633i
\(719\) 2.90920 0.108495 0.0542475 0.998528i \(-0.482724\pi\)
0.0542475 + 0.998528i \(0.482724\pi\)
\(720\) −6.13364 + 2.71633i −0.228587 + 0.101232i
\(721\) 0 0
\(722\) −31.7563 −1.18185
\(723\) 10.5472 9.67016i 0.392253 0.359637i
\(724\) 6.02435i 0.223893i
\(725\) 39.7521 + 25.1220i 1.47636 + 0.933008i
\(726\) −29.4899 32.1643i −1.09447 1.19373i
\(727\) 38.0076 1.40963 0.704813 0.709394i \(-0.251031\pi\)
0.704813 + 0.709394i \(0.251031\pi\)
\(728\) 0 0
\(729\) 6.94398 26.0918i 0.257184 0.966362i
\(730\) 13.8112 + 25.0662i 0.511174 + 0.927741i
\(731\) −7.65436 −0.283107
\(732\) 11.9199 10.9288i 0.440573 0.403940i
\(733\) −25.5691 −0.944417 −0.472208 0.881487i \(-0.656543\pi\)
−0.472208 + 0.881487i \(0.656543\pi\)
\(734\) 24.6775 0.910862
\(735\) 0 0
\(736\) −2.10323 −0.0775262
\(737\) −39.4681 −1.45383
\(738\) 1.38290 15.9100i 0.0509054 0.585655i
\(739\) −12.6545 −0.465503 −0.232751 0.972536i \(-0.574773\pi\)
−0.232751 + 0.972536i \(0.574773\pi\)
\(740\) −13.3521 + 7.35683i −0.490832 + 0.270442i
\(741\) 7.86162 7.20792i 0.288804 0.264790i
\(742\) 0 0
\(743\) 2.67310 0.0980667 0.0490333 0.998797i \(-0.484386\pi\)
0.0490333 + 0.998797i \(0.484386\pi\)
\(744\) 3.42657 3.14165i 0.125624 0.115178i
\(745\) 16.4112 9.04237i 0.601260 0.331287i
\(746\) 26.1293i 0.956663i
\(747\) −3.82618 0.332574i −0.139993 0.0121682i
\(748\) 17.1196 0.625953
\(749\) 0 0
\(750\) −12.2074 15.0326i −0.445753 0.548912i
\(751\) −23.3381 −0.851620 −0.425810 0.904813i \(-0.640011\pi\)
−0.425810 + 0.904813i \(0.640011\pi\)
\(752\) 3.12679i 0.114022i
\(753\) −18.5301 20.2106i −0.675274 0.736515i
\(754\) 8.12917i 0.296047i
\(755\) 8.71878 + 15.8239i 0.317309 + 0.575891i
\(756\) 0 0
\(757\) 27.4191i 0.996564i 0.867015 + 0.498282i \(0.166036\pi\)
−0.867015 + 0.498282i \(0.833964\pi\)
\(758\) 25.5437 0.927789
\(759\) 16.1541 14.8109i 0.586358 0.537603i
\(760\) 13.9527 7.68780i 0.506119 0.278866i
\(761\) 42.5484 1.54238 0.771188 0.636607i \(-0.219663\pi\)
0.771188 + 0.636607i \(0.219663\pi\)
\(762\) −26.5709 + 24.3615i −0.962562 + 0.882525i
\(763\) 0 0
\(764\) 1.81768i 0.0657614i
\(765\) 7.72961 + 17.4539i 0.279465 + 0.631048i
\(766\) 15.2142i 0.549711i
\(767\) 6.13216 0.221419
\(768\) 1.17052 + 1.27667i 0.0422374 + 0.0460679i
\(769\) 25.4075i 0.916219i −0.888896 0.458110i \(-0.848527\pi\)
0.888896 0.458110i \(-0.151473\pi\)
\(770\) 0 0
\(771\) 37.9214 34.7682i 1.36570 1.25215i
\(772\) 0.613146i 0.0220676i
\(773\) 15.8923i 0.571607i −0.958288 0.285804i \(-0.907739\pi\)
0.958288 0.285804i \(-0.0922605\pi\)
\(774\) 8.03935 + 0.698784i 0.288969 + 0.0251173i
\(775\) 11.3444 + 7.16929i 0.407503 + 0.257529i
\(776\) 1.90549 0.0684033
\(777\) 0 0
\(778\) 15.5321i 0.556853i
\(779\) 37.9252i 1.35881i
\(780\) −1.06939 + 3.17220i −0.0382902 + 0.113583i
\(781\) −26.8658 −0.961333
\(782\) 5.98497i 0.214022i
\(783\) 29.7828 + 38.7458i 1.06435 + 1.38466i
\(784\) 0 0
\(785\) 4.81626 + 8.74113i 0.171900 + 0.311984i
\(786\) −8.72258 9.51364i −0.311124 0.339340i
\(787\) −26.1564 −0.932375 −0.466188 0.884686i \(-0.654373\pi\)
−0.466188 + 0.884686i \(0.654373\pi\)
\(788\) 12.5151 0.445832
\(789\) −27.1458 29.6076i −0.966415 1.05406i
\(790\) 3.62356 + 6.57648i 0.128921 + 0.233981i
\(791\) 0 0
\(792\) −17.9806 1.56288i −0.638913 0.0555346i
\(793\) 8.07016i 0.286580i
\(794\) 9.93654 0.352635
\(795\) −14.8150 + 43.9468i −0.525435 + 1.55863i
\(796\) 10.7743i 0.381884i
\(797\) 29.9169i 1.05971i 0.848088 + 0.529856i \(0.177754\pi\)
−0.848088 + 0.529856i \(0.822246\pi\)
\(798\) 0 0
\(799\) 8.89762 0.314775
\(800\) −2.67114 + 4.22670i −0.0944390 + 0.149437i
\(801\) −0.801687 + 9.22324i −0.0283262 + 0.325887i
\(802\) 14.2780i 0.504172i
\(803\) 77.0001i 2.71727i
\(804\) −8.37545 + 7.67903i −0.295379 + 0.270819i
\(805\) 0 0
\(806\) 2.31989i 0.0817147i
\(807\) −15.6247 17.0417i −0.550014 0.599895i
\(808\) 7.02133 0.247009
\(809\) 21.4579i 0.754421i 0.926128 + 0.377210i \(0.123117\pi\)
−0.926128 + 0.377210i \(0.876883\pi\)
\(810\) −6.52498 19.0375i −0.229264 0.668908i
\(811\) 3.56272i 0.125104i −0.998042 0.0625520i \(-0.980076\pi\)
0.998042 0.0625520i \(-0.0199239\pi\)
\(812\) 0 0
\(813\) −21.7354 + 19.9281i −0.762294 + 0.698909i
\(814\) −41.0158 −1.43760
\(815\) 42.5133 23.4243i 1.48917 0.820517i
\(816\) 3.63291 3.33083i 0.127177 0.116602i
\(817\) −19.1637 −0.670453
\(818\) 20.1305i 0.703845i
\(819\) 0 0
\(820\) −5.74434 10.4255i −0.200601 0.364075i
\(821\) 11.2180i 0.391512i 0.980653 + 0.195756i \(0.0627161\pi\)
−0.980653 + 0.195756i \(0.937284\pi\)
\(822\) −4.69304 5.11865i −0.163689 0.178534i
\(823\) 27.0364i 0.942429i 0.882019 + 0.471214i \(0.156184\pi\)
−0.882019 + 0.471214i \(0.843816\pi\)
\(824\) −9.51562 −0.331492
\(825\) −9.24838 51.2739i −0.321987 1.78513i
\(826\) 0 0
\(827\) −26.8301 −0.932974 −0.466487 0.884528i \(-0.654481\pi\)
−0.466487 + 0.884528i \(0.654481\pi\)
\(828\) 0.546381 6.28599i 0.0189881 0.218453i
\(829\) 6.76305i 0.234891i 0.993079 + 0.117445i \(0.0374705\pi\)
−0.993079 + 0.117445i \(0.962530\pi\)
\(830\) −2.50723 + 1.38145i −0.0870272 + 0.0479509i
\(831\) 24.8132 22.7500i 0.860761 0.789189i
\(832\) 0.864346 0.0299658
\(833\) 0 0
\(834\) 20.0192 18.3546i 0.693207 0.635567i
\(835\) 29.5564 16.2852i 1.02284 0.563573i
\(836\) 42.8610 1.48238
\(837\) 8.49939 + 11.0572i 0.293782 + 0.382194i
\(838\) −11.8896 −0.410719
\(839\) −52.6113 −1.81634 −0.908172 0.418597i \(-0.862522\pi\)
−0.908172 + 0.418597i \(0.862522\pi\)
\(840\) 0 0
\(841\) −59.4538 −2.05013
\(842\) 11.6346 0.400956
\(843\) 13.9473 12.7876i 0.480370 0.440427i
\(844\) 4.66797 0.160678
\(845\) −13.2220 23.9968i −0.454849 0.825516i
\(846\) −9.34514 0.812283i −0.321293 0.0279269i
\(847\) 0 0
\(848\) 11.9744 0.411204
\(849\) −32.6712 35.6342i −1.12127 1.22296i
\(850\) 12.0275 + 7.60100i 0.412541 + 0.260712i
\(851\) 14.3391i 0.491537i
\(852\) −5.70113 + 5.22708i −0.195317 + 0.179077i
\(853\) −35.7772 −1.22499 −0.612494 0.790475i \(-0.709834\pi\)
−0.612494 + 0.790475i \(0.709834\pi\)
\(854\) 0 0
\(855\) 19.3521 + 43.6982i 0.661827 + 1.49445i
\(856\) 9.23877 0.315775
\(857\) 26.9017i 0.918946i 0.888192 + 0.459473i \(0.151962\pi\)
−0.888192 + 0.459473i \(0.848038\pi\)
\(858\) −6.63872 + 6.08671i −0.226642 + 0.207797i
\(859\) 24.1993i 0.825670i 0.910806 + 0.412835i \(0.135461\pi\)
−0.910806 + 0.412835i \(0.864539\pi\)
\(860\) 5.26804 2.90263i 0.179639 0.0989787i
\(861\) 0 0
\(862\) 4.34854i 0.148112i
\(863\) 25.2452 0.859355 0.429677 0.902982i \(-0.358627\pi\)
0.429677 + 0.902982i \(0.358627\pi\)
\(864\) −4.11971 + 3.16670i −0.140155 + 0.107733i
\(865\) −27.2377 + 15.0077i −0.926110 + 0.510276i
\(866\) 15.3505 0.521631
\(867\) 10.4206 + 11.3656i 0.353901 + 0.385996i
\(868\) 0 0
\(869\) 20.2021i 0.685309i
\(870\) 34.5168 + 11.6360i 1.17023 + 0.394499i
\(871\) 5.67044i 0.192136i
\(872\) 4.93955 0.167274
\(873\) −0.495013 + 5.69501i −0.0167536 + 0.192747i
\(874\) 14.9841i 0.506846i
\(875\) 0 0
\(876\) 14.9813 + 16.3400i 0.506173 + 0.552078i
\(877\) 26.2898i 0.887744i −0.896090 0.443872i \(-0.853604\pi\)
0.896090 0.443872i \(-0.146396\pi\)
\(878\) 3.55667i 0.120032i
\(879\) −12.6120 + 11.5633i −0.425393 + 0.390022i
\(880\) −11.7824 + 6.49194i −0.397184 + 0.218843i
\(881\) 31.9677 1.07702 0.538510 0.842619i \(-0.318988\pi\)
0.538510 + 0.842619i \(0.318988\pi\)
\(882\) 0 0
\(883\) 6.92050i 0.232893i 0.993197 + 0.116447i \(0.0371504\pi\)
−0.993197 + 0.116447i \(0.962850\pi\)
\(884\) 2.45959i 0.0827249i
\(885\) −8.77754 + 26.0374i −0.295054 + 0.875238i
\(886\) 9.38403 0.315263
\(887\) 37.6658i 1.26469i −0.774685 0.632347i \(-0.782092\pi\)
0.774685 0.632347i \(-0.217908\pi\)
\(888\) −8.70388 + 7.98015i −0.292083 + 0.267796i
\(889\) 0 0
\(890\) 3.33007 + 6.04382i 0.111624 + 0.202589i
\(891\) 9.34207 53.3332i 0.312971 1.78673i
\(892\) −0.973096 −0.0325817
\(893\) 22.2763 0.745449
\(894\) 10.6981 9.80851i 0.357796 0.328046i
\(895\) −38.5976 + 21.2668i −1.29017 + 0.710871i
\(896\) 0 0
\(897\) −2.12791 2.32089i −0.0710487 0.0774922i
\(898\) 0.400479i 0.0133642i
\(899\) −25.2429 −0.841896
\(900\) −11.9386 9.08133i −0.397952 0.302711i
\(901\) 34.0746i 1.13519i
\(902\) 32.0259i 1.06635i
\(903\) 0 0
\(904\) −11.3769 −0.378391
\(905\) −11.7985 + 6.50081i −0.392194 + 0.216094i
\(906\) 9.45750 + 10.3152i 0.314205 + 0.342700i
\(907\) 47.2413i 1.56862i 0.620367 + 0.784312i \(0.286984\pi\)
−0.620367 + 0.784312i \(0.713016\pi\)
\(908\) 23.8398i 0.791153i
\(909\) −1.82401 + 20.9849i −0.0604987 + 0.696024i
\(910\) 0 0
\(911\) 37.3306i 1.23682i 0.785856 + 0.618409i \(0.212223\pi\)
−0.785856 + 0.618409i \(0.787777\pi\)
\(912\) 9.09545 8.33916i 0.301180 0.276137i
\(913\) −7.70188 −0.254895
\(914\) 34.3815i 1.13724i
\(915\) 34.2663 + 11.5516i 1.13281 + 0.381884i
\(916\) 19.7831i 0.653650i
\(917\) 0 0
\(918\) 9.01119 + 11.7231i 0.297414 + 0.386919i
\(919\) 17.6980 0.583802 0.291901 0.956449i \(-0.405712\pi\)
0.291901 + 0.956449i \(0.405712\pi\)
\(920\) −2.26957 4.11910i −0.0748256 0.135803i
\(921\) 3.46007 + 3.77387i 0.114013 + 0.124353i
\(922\) −33.8119 −1.11354
\(923\) 3.85984i 0.127048i
\(924\) 0 0
\(925\) −28.8161 18.2108i −0.947468 0.598768i
\(926\) 0.505232i 0.0166030i
\(927\) 2.47198 28.4396i 0.0811906 0.934080i
\(928\) 9.40499i 0.308734i
\(929\) −60.2744 −1.97754 −0.988770 0.149443i \(-0.952252\pi\)
−0.988770 + 0.149443i \(0.952252\pi\)
\(930\) 9.85037 + 3.32068i 0.323006 + 0.108889i
\(931\) 0 0
\(932\) 1.78655 0.0585205
\(933\) −10.0584 10.9706i −0.329298 0.359163i
\(934\) 24.8661i 0.813644i
\(935\) 18.4735 + 33.5280i 0.604148 + 1.09648i
\(936\) −0.224541 + 2.58330i −0.00733936 + 0.0844377i
\(937\) −27.4478 −0.896680 −0.448340 0.893863i \(-0.647985\pi\)
−0.448340 + 0.893863i \(0.647985\pi\)
\(938\) 0 0
\(939\) 23.2399 + 25.3476i 0.758406 + 0.827187i
\(940\) −6.12370 + 3.37408i −0.199733 + 0.110051i
\(941\) −23.2585 −0.758205 −0.379103 0.925355i \(-0.623767\pi\)
−0.379103 + 0.925355i \(0.623767\pi\)
\(942\) 5.22433 + 5.69812i 0.170218 + 0.185655i
\(943\) 11.1962 0.364598
\(944\) 7.09456 0.230908
\(945\) 0 0
\(946\) 16.1827 0.526146
\(947\) −5.12103 −0.166411 −0.0832056 0.996532i \(-0.526516\pi\)
−0.0832056 + 0.996532i \(0.526516\pi\)
\(948\) 3.93058 + 4.28704i 0.127659 + 0.139237i
\(949\) 11.0627 0.359110
\(950\) 30.1125 + 19.0301i 0.976978 + 0.617418i
\(951\) −34.1801 37.2799i −1.10836 1.20888i
\(952\) 0 0
\(953\) −7.47194 −0.242040 −0.121020 0.992650i \(-0.538616\pi\)
−0.121020 + 0.992650i \(0.538616\pi\)
\(954\) −3.11074 + 35.7884i −0.100714 + 1.15869i
\(955\) 3.55986 1.96144i 0.115194 0.0634706i
\(956\) 17.2961i 0.559396i
\(957\) 66.2298 + 72.2363i 2.14091 + 2.33507i
\(958\) −1.48138 −0.0478612
\(959\) 0 0
\(960\) −1.23722 + 3.67005i −0.0399311 + 0.118450i
\(961\) 23.7962 0.767620
\(962\) 5.89279i 0.189991i
\(963\) −2.40006 + 27.6122i −0.0773410 + 0.889791i
\(964\) 8.26145i 0.266083i
\(965\) 1.20082 0.661639i 0.0386558 0.0212989i
\(966\) 0 0
\(967\) 13.0565i 0.419869i −0.977716 0.209934i \(-0.932675\pi\)
0.977716 0.209934i \(-0.0673250\pi\)
\(968\) −25.1939 −0.809762
\(969\) −23.7300 25.8821i −0.762317 0.831452i
\(970\) 2.05620 + 3.73184i 0.0660205 + 0.119822i
\(971\) 22.5183 0.722648 0.361324 0.932440i \(-0.382325\pi\)
0.361324 + 0.932440i \(0.382325\pi\)
\(972\) −8.39420 13.1353i −0.269244 0.421317i
\(973\) 0 0
\(974\) 7.86665i 0.252064i
\(975\) −7.36658 + 1.32873i −0.235919 + 0.0425533i
\(976\) 9.33672i 0.298861i
\(977\) −3.50864 −0.112251 −0.0561257 0.998424i \(-0.517875\pi\)
−0.0561257 + 0.998424i \(0.517875\pi\)
\(978\) 27.7133 25.4090i 0.886175 0.812489i
\(979\) 18.5658i 0.593366i
\(980\) 0 0
\(981\) −1.28321 + 14.7630i −0.0409696 + 0.471346i
\(982\) 16.0379i 0.511788i
\(983\) 32.5656i 1.03868i 0.854567 + 0.519341i \(0.173823\pi\)
−0.854567 + 0.519341i \(0.826177\pi\)
\(984\) −6.23105 6.79615i −0.198639 0.216653i
\(985\) 13.5049 + 24.5103i 0.430302 + 0.780964i
\(986\) −26.7629 −0.852304
\(987\) 0 0
\(988\) 6.15790i 0.195909i
\(989\) 5.65746i 0.179897i
\(990\) −16.3418 36.9008i −0.519377 1.17278i
\(991\) 5.17862 0.164504 0.0822521 0.996612i \(-0.473789\pi\)
0.0822521 + 0.996612i \(0.473789\pi\)
\(992\) 2.68399i 0.0852166i
\(993\) −10.5234 11.4778i −0.333951 0.364237i
\(994\) 0 0
\(995\) 21.1010 11.6264i 0.668946 0.368581i
\(996\) −1.63440 + 1.49850i −0.0517879 + 0.0474818i
\(997\) −40.7003 −1.28899 −0.644496 0.764607i \(-0.722933\pi\)
−0.644496 + 0.764607i \(0.722933\pi\)
\(998\) 8.37964 0.265253
\(999\) −21.5894 28.0866i −0.683059 0.888622i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1470.2.d.h.1469.18 yes 24
3.2 odd 2 1470.2.d.g.1469.17 yes 24
5.4 even 2 1470.2.d.g.1469.7 24
7.6 odd 2 inner 1470.2.d.h.1469.7 yes 24
15.14 odd 2 inner 1470.2.d.h.1469.8 yes 24
21.20 even 2 1470.2.d.g.1469.8 yes 24
35.34 odd 2 1470.2.d.g.1469.18 yes 24
105.104 even 2 inner 1470.2.d.h.1469.17 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1470.2.d.g.1469.7 24 5.4 even 2
1470.2.d.g.1469.8 yes 24 21.20 even 2
1470.2.d.g.1469.17 yes 24 3.2 odd 2
1470.2.d.g.1469.18 yes 24 35.34 odd 2
1470.2.d.h.1469.7 yes 24 7.6 odd 2 inner
1470.2.d.h.1469.8 yes 24 15.14 odd 2 inner
1470.2.d.h.1469.17 yes 24 105.104 even 2 inner
1470.2.d.h.1469.18 yes 24 1.1 even 1 trivial