Properties

Label 1470.2.d.g.1469.18
Level $1470$
Weight $2$
Character 1470.1469
Analytic conductor $11.738$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1470,2,Mod(1469,1470)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1470, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1470.1469"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,-24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7380090971\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1469.18
Character \(\chi\) \(=\) 1470.1469
Dual form 1470.2.d.g.1469.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(1.17052 + 1.27667i) q^{3} +1.00000 q^{4} +(-1.07909 + 1.95846i) q^{5} +(-1.17052 - 1.27667i) q^{6} -1.00000 q^{8} +(-0.259782 + 2.98873i) q^{9} +(1.07909 - 1.95846i) q^{10} +6.01614i q^{11} +(1.17052 + 1.27667i) q^{12} +0.864346 q^{13} +(-3.76340 + 0.914769i) q^{15} +1.00000 q^{16} -2.84561i q^{17} +(0.259782 - 2.98873i) q^{18} +7.12434i q^{19} +(-1.07909 + 1.95846i) q^{20} -6.01614i q^{22} +2.10323 q^{23} +(-1.17052 - 1.27667i) q^{24} +(-2.67114 - 4.22670i) q^{25} -0.864346 q^{26} +(-4.11971 + 3.16670i) q^{27} -9.40499i q^{29} +(3.76340 - 0.914769i) q^{30} +2.68399i q^{31} -1.00000 q^{32} +(-7.68063 + 7.04199i) q^{33} +2.84561i q^{34} +(-0.259782 + 2.98873i) q^{36} -6.81763i q^{37} -7.12434i q^{38} +(1.01173 + 1.10349i) q^{39} +(1.07909 - 1.95846i) q^{40} +5.32333 q^{41} +2.68989i q^{43} +6.01614i q^{44} +(-5.57299 - 3.73388i) q^{45} -2.10323 q^{46} +3.12679i q^{47} +(1.17052 + 1.27667i) q^{48} +(2.67114 + 4.22670i) q^{50} +(3.63291 - 3.33083i) q^{51} +0.864346 q^{52} -11.9744 q^{53} +(4.11971 - 3.16670i) q^{54} +(-11.7824 - 6.49194i) q^{55} +(-9.09545 + 8.33916i) q^{57} +9.40499i q^{58} -7.09456 q^{59} +(-3.76340 + 0.914769i) q^{60} +9.33672i q^{61} -2.68399i q^{62} +1.00000 q^{64} +(-0.932706 + 1.69279i) q^{65} +(7.68063 - 7.04199i) q^{66} -6.56038i q^{67} -2.84561i q^{68} +(2.46187 + 2.68514i) q^{69} +4.46562i q^{71} +(0.259782 - 2.98873i) q^{72} +12.7989 q^{73} +6.81763i q^{74} +(2.26950 - 8.35759i) q^{75} +7.12434i q^{76} +(-1.01173 - 1.10349i) q^{78} +3.35798 q^{79} +(-1.07909 + 1.95846i) q^{80} +(-8.86503 - 1.55284i) q^{81} -5.32333 q^{82} +1.28020i q^{83} +(5.57301 + 3.07066i) q^{85} -2.68989i q^{86} +(12.0071 - 11.0087i) q^{87} -6.01614i q^{88} -3.08600 q^{89} +(5.57299 + 3.73388i) q^{90} +2.10323 q^{92} +(-3.42657 + 3.14165i) q^{93} -3.12679i q^{94} +(-13.9527 - 7.68780i) q^{95} +(-1.17052 - 1.27667i) q^{96} +1.90549 q^{97} +(-17.9806 - 1.56288i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 24 q^{2} + 24 q^{4} - 24 q^{8} + 8 q^{9} + 24 q^{16} - 8 q^{18} - 16 q^{23} + 8 q^{25} - 24 q^{32} + 8 q^{36} + 16 q^{39} + 16 q^{46} - 8 q^{50} + 16 q^{51} + 16 q^{53} + 16 q^{57} + 24 q^{64} - 48 q^{65}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times\).

\(n\) \(491\) \(1081\) \(1177\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.17052 + 1.27667i 0.675798 + 0.737087i
\(4\) 1.00000 0.500000
\(5\) −1.07909 + 1.95846i −0.482583 + 0.875850i
\(6\) −1.17052 1.27667i −0.477861 0.521199i
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) −0.259782 + 2.98873i −0.0865939 + 0.996244i
\(10\) 1.07909 1.95846i 0.341238 0.619320i
\(11\) 6.01614i 1.81393i 0.421202 + 0.906967i \(0.361608\pi\)
−0.421202 + 0.906967i \(0.638392\pi\)
\(12\) 1.17052 + 1.27667i 0.337899 + 0.368543i
\(13\) 0.864346 0.239726 0.119863 0.992790i \(-0.461754\pi\)
0.119863 + 0.992790i \(0.461754\pi\)
\(14\) 0 0
\(15\) −3.76340 + 0.914769i −0.971706 + 0.236192i
\(16\) 1.00000 0.250000
\(17\) 2.84561i 0.690161i −0.938573 0.345080i \(-0.887852\pi\)
0.938573 0.345080i \(-0.112148\pi\)
\(18\) 0.259782 2.98873i 0.0612311 0.704451i
\(19\) 7.12434i 1.63444i 0.576328 + 0.817218i \(0.304485\pi\)
−0.576328 + 0.817218i \(0.695515\pi\)
\(20\) −1.07909 + 1.95846i −0.241291 + 0.437925i
\(21\) 0 0
\(22\) 6.01614i 1.28264i
\(23\) 2.10323 0.438554 0.219277 0.975663i \(-0.429630\pi\)
0.219277 + 0.975663i \(0.429630\pi\)
\(24\) −1.17052 1.27667i −0.238931 0.260600i
\(25\) −2.67114 4.22670i −0.534227 0.845341i
\(26\) −0.864346 −0.169512
\(27\) −4.11971 + 3.16670i −0.792838 + 0.609432i
\(28\) 0 0
\(29\) 9.40499i 1.74646i −0.487306 0.873231i \(-0.662020\pi\)
0.487306 0.873231i \(-0.337980\pi\)
\(30\) 3.76340 0.914769i 0.687100 0.167013i
\(31\) 2.68399i 0.482058i 0.970518 + 0.241029i \(0.0774849\pi\)
−0.970518 + 0.241029i \(0.922515\pi\)
\(32\) −1.00000 −0.176777
\(33\) −7.68063 + 7.04199i −1.33703 + 1.22585i
\(34\) 2.84561i 0.488017i
\(35\) 0 0
\(36\) −0.259782 + 2.98873i −0.0432970 + 0.498122i
\(37\) 6.81763i 1.12081i −0.828218 0.560406i \(-0.810645\pi\)
0.828218 0.560406i \(-0.189355\pi\)
\(38\) 7.12434i 1.15572i
\(39\) 1.01173 + 1.10349i 0.162007 + 0.176699i
\(40\) 1.07909 1.95846i 0.170619 0.309660i
\(41\) 5.32333 0.831364 0.415682 0.909510i \(-0.363543\pi\)
0.415682 + 0.909510i \(0.363543\pi\)
\(42\) 0 0
\(43\) 2.68989i 0.410204i 0.978741 + 0.205102i \(0.0657526\pi\)
−0.978741 + 0.205102i \(0.934247\pi\)
\(44\) 6.01614i 0.906967i
\(45\) −5.57299 3.73388i −0.830772 0.556614i
\(46\) −2.10323 −0.310105
\(47\) 3.12679i 0.456089i 0.973651 + 0.228045i \(0.0732332\pi\)
−0.973651 + 0.228045i \(0.926767\pi\)
\(48\) 1.17052 + 1.27667i 0.168950 + 0.184272i
\(49\) 0 0
\(50\) 2.67114 + 4.22670i 0.377756 + 0.597746i
\(51\) 3.63291 3.33083i 0.508708 0.466409i
\(52\) 0.864346 0.119863
\(53\) −11.9744 −1.64482 −0.822408 0.568898i \(-0.807370\pi\)
−0.822408 + 0.568898i \(0.807370\pi\)
\(54\) 4.11971 3.16670i 0.560621 0.430934i
\(55\) −11.7824 6.49194i −1.58873 0.875373i
\(56\) 0 0
\(57\) −9.09545 + 8.33916i −1.20472 + 1.10455i
\(58\) 9.40499i 1.23494i
\(59\) −7.09456 −0.923633 −0.461817 0.886975i \(-0.652802\pi\)
−0.461817 + 0.886975i \(0.652802\pi\)
\(60\) −3.76340 + 0.914769i −0.485853 + 0.118096i
\(61\) 9.33672i 1.19544i 0.801703 + 0.597722i \(0.203927\pi\)
−0.801703 + 0.597722i \(0.796073\pi\)
\(62\) 2.68399i 0.340866i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −0.932706 + 1.69279i −0.115688 + 0.209965i
\(66\) 7.68063 7.04199i 0.945420 0.866809i
\(67\) 6.56038i 0.801478i −0.916192 0.400739i \(-0.868753\pi\)
0.916192 0.400739i \(-0.131247\pi\)
\(68\) 2.84561i 0.345080i
\(69\) 2.46187 + 2.68514i 0.296374 + 0.323252i
\(70\) 0 0
\(71\) 4.46562i 0.529971i 0.964252 + 0.264986i \(0.0853672\pi\)
−0.964252 + 0.264986i \(0.914633\pi\)
\(72\) 0.259782 2.98873i 0.0306156 0.352225i
\(73\) 12.7989 1.49800 0.749000 0.662570i \(-0.230534\pi\)
0.749000 + 0.662570i \(0.230534\pi\)
\(74\) 6.81763i 0.792533i
\(75\) 2.26950 8.35759i 0.262060 0.965052i
\(76\) 7.12434i 0.817218i
\(77\) 0 0
\(78\) −1.01173 1.10349i −0.114556 0.124945i
\(79\) 3.35798 0.377803 0.188901 0.981996i \(-0.439507\pi\)
0.188901 + 0.981996i \(0.439507\pi\)
\(80\) −1.07909 + 1.95846i −0.120646 + 0.218963i
\(81\) −8.86503 1.55284i −0.985003 0.172537i
\(82\) −5.32333 −0.587863
\(83\) 1.28020i 0.140521i 0.997529 + 0.0702603i \(0.0223830\pi\)
−0.997529 + 0.0702603i \(0.977617\pi\)
\(84\) 0 0
\(85\) 5.57301 + 3.07066i 0.604478 + 0.333060i
\(86\) 2.68989i 0.290058i
\(87\) 12.0071 11.0087i 1.28729 1.18026i
\(88\) 6.01614i 0.641322i
\(89\) −3.08600 −0.327116 −0.163558 0.986534i \(-0.552297\pi\)
−0.163558 + 0.986534i \(0.552297\pi\)
\(90\) 5.57299 + 3.73388i 0.587444 + 0.393585i
\(91\) 0 0
\(92\) 2.10323 0.219277
\(93\) −3.42657 + 3.14165i −0.355319 + 0.325774i
\(94\) 3.12679i 0.322504i
\(95\) −13.9527 7.68780i −1.43152 0.788751i
\(96\) −1.17052 1.27667i −0.119465 0.130300i
\(97\) 1.90549 0.193474 0.0967368 0.995310i \(-0.469159\pi\)
0.0967368 + 0.995310i \(0.469159\pi\)
\(98\) 0 0
\(99\) −17.9806 1.56288i −1.80712 0.157076i
\(100\) −2.67114 4.22670i −0.267114 0.422670i
\(101\) −7.02133 −0.698648 −0.349324 0.937002i \(-0.613589\pi\)
−0.349324 + 0.937002i \(0.613589\pi\)
\(102\) −3.63291 + 3.33083i −0.359711 + 0.329801i
\(103\) −9.51562 −0.937602 −0.468801 0.883304i \(-0.655314\pi\)
−0.468801 + 0.883304i \(0.655314\pi\)
\(104\) −0.864346 −0.0847561
\(105\) 0 0
\(106\) 11.9744 1.16306
\(107\) −9.23877 −0.893146 −0.446573 0.894747i \(-0.647356\pi\)
−0.446573 + 0.894747i \(0.647356\pi\)
\(108\) −4.11971 + 3.16670i −0.396419 + 0.304716i
\(109\) 4.93955 0.473123 0.236562 0.971616i \(-0.423979\pi\)
0.236562 + 0.971616i \(0.423979\pi\)
\(110\) 11.7824 + 6.49194i 1.12340 + 0.618982i
\(111\) 8.70388 7.98015i 0.826135 0.757442i
\(112\) 0 0
\(113\) 11.3769 1.07025 0.535126 0.844772i \(-0.320264\pi\)
0.535126 + 0.844772i \(0.320264\pi\)
\(114\) 9.09545 8.33916i 0.851867 0.781034i
\(115\) −2.26957 + 4.11910i −0.211639 + 0.384108i
\(116\) 9.40499i 0.873231i
\(117\) −0.224541 + 2.58330i −0.0207589 + 0.238826i
\(118\) 7.09456 0.653107
\(119\) 0 0
\(120\) 3.76340 0.914769i 0.343550 0.0835066i
\(121\) −25.1939 −2.29035
\(122\) 9.33672i 0.845307i
\(123\) 6.23105 + 6.79615i 0.561835 + 0.612788i
\(124\) 2.68399i 0.241029i
\(125\) 11.1602 0.670330i 0.998201 0.0599562i
\(126\) 0 0
\(127\) 20.8126i 1.84682i −0.383813 0.923411i \(-0.625389\pi\)
0.383813 0.923411i \(-0.374611\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −3.43410 + 3.14856i −0.302356 + 0.277215i
\(130\) 0.932706 1.69279i 0.0818037 0.148467i
\(131\) 7.45191 0.651076 0.325538 0.945529i \(-0.394455\pi\)
0.325538 + 0.945529i \(0.394455\pi\)
\(132\) −7.68063 + 7.04199i −0.668513 + 0.612926i
\(133\) 0 0
\(134\) 6.56038i 0.566731i
\(135\) −1.75634 11.4854i −0.151161 0.988509i
\(136\) 2.84561i 0.244009i
\(137\) 4.00937 0.342544 0.171272 0.985224i \(-0.445212\pi\)
0.171272 + 0.985224i \(0.445212\pi\)
\(138\) −2.46187 2.68514i −0.209568 0.228574i
\(139\) 15.6807i 1.33002i 0.746833 + 0.665012i \(0.231573\pi\)
−0.746833 + 0.665012i \(0.768427\pi\)
\(140\) 0 0
\(141\) −3.99189 + 3.65996i −0.336178 + 0.308224i
\(142\) 4.46562i 0.374746i
\(143\) 5.20002i 0.434848i
\(144\) −0.259782 + 2.98873i −0.0216485 + 0.249061i
\(145\) 18.4193 + 10.1488i 1.52964 + 0.842813i
\(146\) −12.7989 −1.05925
\(147\) 0 0
\(148\) 6.81763i 0.560406i
\(149\) 8.37964i 0.686487i −0.939246 0.343243i \(-0.888474\pi\)
0.939246 0.343243i \(-0.111526\pi\)
\(150\) −2.26950 + 8.35759i −0.185304 + 0.682395i
\(151\) 8.07977 0.657522 0.328761 0.944413i \(-0.393369\pi\)
0.328761 + 0.944413i \(0.393369\pi\)
\(152\) 7.12434i 0.577861i
\(153\) 8.50475 + 0.739237i 0.687568 + 0.0597637i
\(154\) 0 0
\(155\) −5.25648 2.89626i −0.422211 0.232633i
\(156\) 1.01173 + 1.10349i 0.0810033 + 0.0883496i
\(157\) 4.46327 0.356207 0.178104 0.984012i \(-0.443004\pi\)
0.178104 + 0.984012i \(0.443004\pi\)
\(158\) −3.35798 −0.267147
\(159\) −14.0163 15.2874i −1.11156 1.21237i
\(160\) 1.07909 1.95846i 0.0853094 0.154830i
\(161\) 0 0
\(162\) 8.86503 + 1.55284i 0.696502 + 0.122002i
\(163\) 21.7075i 1.70026i 0.526572 + 0.850131i \(0.323477\pi\)
−0.526572 + 0.850131i \(0.676523\pi\)
\(164\) 5.32333 0.415682
\(165\) −5.50338 22.6411i −0.428437 1.76261i
\(166\) 1.28020i 0.0993631i
\(167\) 15.0916i 1.16783i −0.811816 0.583913i \(-0.801521\pi\)
0.811816 0.583913i \(-0.198479\pi\)
\(168\) 0 0
\(169\) −12.2529 −0.942531
\(170\) −5.57301 3.07066i −0.427430 0.235509i
\(171\) −21.2928 1.85077i −1.62830 0.141532i
\(172\) 2.68989i 0.205102i
\(173\) 13.9077i 1.05738i 0.848814 + 0.528692i \(0.177317\pi\)
−0.848814 + 0.528692i \(0.822683\pi\)
\(174\) −12.0071 + 11.0087i −0.910255 + 0.834567i
\(175\) 0 0
\(176\) 6.01614i 0.453483i
\(177\) −8.30430 9.05742i −0.624189 0.680798i
\(178\) 3.08600 0.231306
\(179\) 19.7081i 1.47305i 0.676408 + 0.736527i \(0.263536\pi\)
−0.676408 + 0.736527i \(0.736464\pi\)
\(180\) −5.57299 3.73388i −0.415386 0.278307i
\(181\) 6.02435i 0.447787i −0.974614 0.223893i \(-0.928123\pi\)
0.974614 0.223893i \(-0.0718767\pi\)
\(182\) 0 0
\(183\) −11.9199 + 10.9288i −0.881146 + 0.807879i
\(184\) −2.10323 −0.155052
\(185\) 13.3521 + 7.35683i 0.981663 + 0.540885i
\(186\) 3.42657 3.14165i 0.251248 0.230357i
\(187\) 17.1196 1.25191
\(188\) 3.12679i 0.228045i
\(189\) 0 0
\(190\) 13.9527 + 7.68780i 1.01224 + 0.557731i
\(191\) 1.81768i 0.131523i −0.997835 0.0657614i \(-0.979052\pi\)
0.997835 0.0657614i \(-0.0209476\pi\)
\(192\) 1.17052 + 1.27667i 0.0844748 + 0.0921359i
\(193\) 0.613146i 0.0441352i 0.999756 + 0.0220676i \(0.00702491\pi\)
−0.999756 + 0.0220676i \(0.992975\pi\)
\(194\) −1.90549 −0.136807
\(195\) −3.25288 + 0.790677i −0.232944 + 0.0566216i
\(196\) 0 0
\(197\) −12.5151 −0.891663 −0.445832 0.895117i \(-0.647092\pi\)
−0.445832 + 0.895117i \(0.647092\pi\)
\(198\) 17.9806 + 1.56288i 1.27783 + 0.111069i
\(199\) 10.7743i 0.763768i 0.924210 + 0.381884i \(0.124725\pi\)
−0.924210 + 0.381884i \(0.875275\pi\)
\(200\) 2.67114 + 4.22670i 0.188878 + 0.298873i
\(201\) 8.37545 7.67903i 0.590759 0.541637i
\(202\) 7.02133 0.494019
\(203\) 0 0
\(204\) 3.63291 3.33083i 0.254354 0.233205i
\(205\) −5.74434 + 10.4255i −0.401202 + 0.728151i
\(206\) 9.51562 0.662984
\(207\) −0.546381 + 6.28599i −0.0379761 + 0.436907i
\(208\) 0.864346 0.0599316
\(209\) −42.8610 −2.96476
\(210\) 0 0
\(211\) 4.66797 0.321356 0.160678 0.987007i \(-0.448632\pi\)
0.160678 + 0.987007i \(0.448632\pi\)
\(212\) −11.9744 −0.822408
\(213\) −5.70113 + 5.22708i −0.390635 + 0.358154i
\(214\) 9.23877 0.631550
\(215\) −5.26804 2.90263i −0.359277 0.197957i
\(216\) 4.11971 3.16670i 0.280311 0.215467i
\(217\) 0 0
\(218\) −4.93955 −0.334549
\(219\) 14.9813 + 16.3400i 1.01235 + 1.10416i
\(220\) −11.7824 6.49194i −0.794367 0.437687i
\(221\) 2.45959i 0.165450i
\(222\) −8.70388 + 7.98015i −0.584166 + 0.535593i
\(223\) −0.973096 −0.0651633 −0.0325817 0.999469i \(-0.510373\pi\)
−0.0325817 + 0.999469i \(0.510373\pi\)
\(224\) 0 0
\(225\) 13.3264 6.88529i 0.888426 0.459019i
\(226\) −11.3769 −0.756783
\(227\) 23.8398i 1.58231i 0.611618 + 0.791153i \(0.290519\pi\)
−0.611618 + 0.791153i \(0.709481\pi\)
\(228\) −9.09545 + 8.33916i −0.602361 + 0.552275i
\(229\) 19.7831i 1.30730i 0.756797 + 0.653650i \(0.226763\pi\)
−0.756797 + 0.653650i \(0.773237\pi\)
\(230\) 2.26957 4.11910i 0.149651 0.271605i
\(231\) 0 0
\(232\) 9.40499i 0.617468i
\(233\) −1.78655 −0.117041 −0.0585205 0.998286i \(-0.518638\pi\)
−0.0585205 + 0.998286i \(0.518638\pi\)
\(234\) 0.224541 2.58330i 0.0146787 0.168875i
\(235\) −6.12370 3.37408i −0.399466 0.220101i
\(236\) −7.09456 −0.461817
\(237\) 3.93058 + 4.28704i 0.255318 + 0.278473i
\(238\) 0 0
\(239\) 17.2961i 1.11879i −0.828900 0.559396i \(-0.811033\pi\)
0.828900 0.559396i \(-0.188967\pi\)
\(240\) −3.76340 + 0.914769i −0.242927 + 0.0590481i
\(241\) 8.26145i 0.532167i 0.963950 + 0.266083i \(0.0857296\pi\)
−0.963950 + 0.266083i \(0.914270\pi\)
\(242\) 25.1939 1.61952
\(243\) −8.39420 13.1353i −0.538488 0.842633i
\(244\) 9.33672i 0.597722i
\(245\) 0 0
\(246\) −6.23105 6.79615i −0.397277 0.433306i
\(247\) 6.15790i 0.391818i
\(248\) 2.68399i 0.170433i
\(249\) −1.63440 + 1.49850i −0.103576 + 0.0949636i
\(250\) −11.1602 + 0.670330i −0.705835 + 0.0423954i
\(251\) 15.8307 0.999224 0.499612 0.866249i \(-0.333476\pi\)
0.499612 + 0.866249i \(0.333476\pi\)
\(252\) 0 0
\(253\) 12.6533i 0.795508i
\(254\) 20.8126i 1.30590i
\(255\) 2.60307 + 10.7092i 0.163011 + 0.670634i
\(256\) 1.00000 0.0625000
\(257\) 29.7033i 1.85284i −0.376491 0.926420i \(-0.622869\pi\)
0.376491 0.926420i \(-0.377131\pi\)
\(258\) 3.43410 3.14856i 0.213798 0.196021i
\(259\) 0 0
\(260\) −0.932706 + 1.69279i −0.0578440 + 0.104982i
\(261\) 28.1090 + 2.44324i 1.73990 + 0.151233i
\(262\) −7.45191 −0.460380
\(263\) 23.1913 1.43003 0.715017 0.699107i \(-0.246419\pi\)
0.715017 + 0.699107i \(0.246419\pi\)
\(264\) 7.68063 7.04199i 0.472710 0.433404i
\(265\) 12.9215 23.4515i 0.793760 1.44061i
\(266\) 0 0
\(267\) −3.61222 3.93981i −0.221064 0.241113i
\(268\) 6.56038i 0.400739i
\(269\) 13.3485 0.813873 0.406937 0.913456i \(-0.366597\pi\)
0.406937 + 0.913456i \(0.366597\pi\)
\(270\) 1.75634 + 11.4854i 0.106887 + 0.698981i
\(271\) 17.0251i 1.03420i −0.855925 0.517099i \(-0.827012\pi\)
0.855925 0.517099i \(-0.172988\pi\)
\(272\) 2.84561i 0.172540i
\(273\) 0 0
\(274\) −4.00937 −0.242215
\(275\) 25.4284 16.0699i 1.53339 0.969053i
\(276\) 2.46187 + 2.68514i 0.148187 + 0.161626i
\(277\) 19.4359i 1.16779i 0.811830 + 0.583894i \(0.198472\pi\)
−0.811830 + 0.583894i \(0.801528\pi\)
\(278\) 15.6807i 0.940468i
\(279\) −8.02171 0.697250i −0.480247 0.0417433i
\(280\) 0 0
\(281\) 10.9247i 0.651714i −0.945419 0.325857i \(-0.894347\pi\)
0.945419 0.325857i \(-0.105653\pi\)
\(282\) 3.99189 3.65996i 0.237713 0.217948i
\(283\) −27.9118 −1.65918 −0.829592 0.558371i \(-0.811427\pi\)
−0.829592 + 0.558371i \(0.811427\pi\)
\(284\) 4.46562i 0.264986i
\(285\) −6.51713 26.8118i −0.386042 1.58819i
\(286\) 5.20002i 0.307484i
\(287\) 0 0
\(288\) 0.259782 2.98873i 0.0153078 0.176113i
\(289\) 8.90252 0.523678
\(290\) −18.4193 10.1488i −1.08162 0.595959i
\(291\) 2.23041 + 2.43269i 0.130749 + 0.142607i
\(292\) 12.7989 0.749000
\(293\) 9.87883i 0.577127i 0.957461 + 0.288564i \(0.0931777\pi\)
−0.957461 + 0.288564i \(0.906822\pi\)
\(294\) 0 0
\(295\) 7.65566 13.8944i 0.445730 0.808964i
\(296\) 6.81763i 0.396267i
\(297\) −19.0513 24.7847i −1.10547 1.43816i
\(298\) 8.37964i 0.485420i
\(299\) 1.81792 0.105133
\(300\) 2.26950 8.35759i 0.131030 0.482526i
\(301\) 0 0
\(302\) −8.07977 −0.464938
\(303\) −8.21858 8.96393i −0.472145 0.514964i
\(304\) 7.12434i 0.408609i
\(305\) −18.2856 10.0751i −1.04703 0.576901i
\(306\) −8.50475 0.739237i −0.486184 0.0422593i
\(307\) 2.95602 0.168709 0.0843545 0.996436i \(-0.473117\pi\)
0.0843545 + 0.996436i \(0.473117\pi\)
\(308\) 0 0
\(309\) −11.1382 12.1483i −0.633629 0.691094i
\(310\) 5.25648 + 2.89626i 0.298548 + 0.164496i
\(311\) 8.59316 0.487273 0.243637 0.969867i \(-0.421660\pi\)
0.243637 + 0.969867i \(0.421660\pi\)
\(312\) −1.01173 1.10349i −0.0572780 0.0624726i
\(313\) 19.8544 1.12224 0.561119 0.827735i \(-0.310371\pi\)
0.561119 + 0.827735i \(0.310371\pi\)
\(314\) −4.46327 −0.251877
\(315\) 0 0
\(316\) 3.35798 0.188901
\(317\) 29.2008 1.64008 0.820041 0.572304i \(-0.193950\pi\)
0.820041 + 0.572304i \(0.193950\pi\)
\(318\) 14.0163 + 15.2874i 0.785994 + 0.857277i
\(319\) 56.5817 3.16797
\(320\) −1.07909 + 1.95846i −0.0603229 + 0.109481i
\(321\) −10.8141 11.7949i −0.603586 0.658326i
\(322\) 0 0
\(323\) 20.2731 1.12802
\(324\) −8.86503 1.55284i −0.492501 0.0862686i
\(325\) −2.30879 3.65334i −0.128068 0.202651i
\(326\) 21.7075i 1.20227i
\(327\) 5.78183 + 6.30619i 0.319736 + 0.348733i
\(328\) −5.32333 −0.293932
\(329\) 0 0
\(330\) 5.50338 + 22.6411i 0.302951 + 1.24635i
\(331\) −8.99040 −0.494157 −0.247079 0.968995i \(-0.579471\pi\)
−0.247079 + 0.968995i \(0.579471\pi\)
\(332\) 1.28020i 0.0702603i
\(333\) 20.3761 + 1.77110i 1.11660 + 0.0970555i
\(334\) 15.0916i 0.825777i
\(335\) 12.8482 + 7.07923i 0.701975 + 0.386780i
\(336\) 0 0
\(337\) 16.7043i 0.909939i 0.890507 + 0.454969i \(0.150350\pi\)
−0.890507 + 0.454969i \(0.849650\pi\)
\(338\) 12.2529 0.666470
\(339\) 13.3169 + 14.5246i 0.723274 + 0.788869i
\(340\) 5.57301 + 3.07066i 0.302239 + 0.166530i
\(341\) −16.1472 −0.874421
\(342\) 21.2928 + 1.85077i 1.15138 + 0.100078i
\(343\) 0 0
\(344\) 2.68989i 0.145029i
\(345\) −7.91531 + 1.92397i −0.426146 + 0.103583i
\(346\) 13.9077i 0.747684i
\(347\) 23.5557 1.26454 0.632268 0.774750i \(-0.282124\pi\)
0.632268 + 0.774750i \(0.282124\pi\)
\(348\) 12.0071 11.0087i 0.643647 0.590128i
\(349\) 26.3071i 1.40819i 0.710108 + 0.704093i \(0.248646\pi\)
−0.710108 + 0.704093i \(0.751354\pi\)
\(350\) 0 0
\(351\) −3.56085 + 2.73713i −0.190064 + 0.146097i
\(352\) 6.01614i 0.320661i
\(353\) 8.37829i 0.445931i 0.974826 + 0.222966i \(0.0715738\pi\)
−0.974826 + 0.222966i \(0.928426\pi\)
\(354\) 8.30430 + 9.05742i 0.441369 + 0.481397i
\(355\) −8.74574 4.81880i −0.464176 0.255755i
\(356\) −3.08600 −0.163558
\(357\) 0 0
\(358\) 19.7081i 1.04161i
\(359\) 26.9651i 1.42317i 0.702602 + 0.711583i \(0.252021\pi\)
−0.702602 + 0.711583i \(0.747979\pi\)
\(360\) 5.57299 + 3.73388i 0.293722 + 0.196793i
\(361\) −31.7563 −1.67138
\(362\) 6.02435i 0.316633i
\(363\) −29.4899 32.1643i −1.54782 1.68819i
\(364\) 0 0
\(365\) −13.8112 + 25.0662i −0.722909 + 1.31202i
\(366\) 11.9199 10.9288i 0.623065 0.571257i
\(367\) 24.6775 1.28815 0.644077 0.764961i \(-0.277242\pi\)
0.644077 + 0.764961i \(0.277242\pi\)
\(368\) 2.10323 0.109639
\(369\) −1.38290 + 15.9100i −0.0719911 + 0.828242i
\(370\) −13.3521 7.35683i −0.694141 0.382463i
\(371\) 0 0
\(372\) −3.42657 + 3.14165i −0.177659 + 0.162887i
\(373\) 26.1293i 1.35293i −0.736477 0.676463i \(-0.763512\pi\)
0.736477 0.676463i \(-0.236488\pi\)
\(374\) −17.1196 −0.885231
\(375\) 13.9190 + 13.4633i 0.718775 + 0.695243i
\(376\) 3.12679i 0.161252i
\(377\) 8.12917i 0.418673i
\(378\) 0 0
\(379\) 25.5437 1.31209 0.656046 0.754721i \(-0.272228\pi\)
0.656046 + 0.754721i \(0.272228\pi\)
\(380\) −13.9527 7.68780i −0.715761 0.394376i
\(381\) 26.5709 24.3615i 1.36127 1.24808i
\(382\) 1.81768i 0.0930006i
\(383\) 15.2142i 0.777409i 0.921362 + 0.388705i \(0.127077\pi\)
−0.921362 + 0.388705i \(0.872923\pi\)
\(384\) −1.17052 1.27667i −0.0597327 0.0651499i
\(385\) 0 0
\(386\) 0.613146i 0.0312083i
\(387\) −8.03935 0.698784i −0.408663 0.0355212i
\(388\) 1.90549 0.0967368
\(389\) 15.5321i 0.787509i −0.919216 0.393754i \(-0.871176\pi\)
0.919216 0.393754i \(-0.128824\pi\)
\(390\) 3.25288 0.790677i 0.164716 0.0400375i
\(391\) 5.98497i 0.302673i
\(392\) 0 0
\(393\) 8.72258 + 9.51364i 0.439996 + 0.479900i
\(394\) 12.5151 0.630501
\(395\) −3.62356 + 6.57648i −0.182321 + 0.330899i
\(396\) −17.9806 1.56288i −0.903560 0.0785378i
\(397\) 9.93654 0.498701 0.249350 0.968413i \(-0.419783\pi\)
0.249350 + 0.968413i \(0.419783\pi\)
\(398\) 10.7743i 0.540066i
\(399\) 0 0
\(400\) −2.67114 4.22670i −0.133557 0.211335i
\(401\) 14.2780i 0.713007i −0.934294 0.356504i \(-0.883969\pi\)
0.934294 0.356504i \(-0.116031\pi\)
\(402\) −8.37545 + 7.67903i −0.417730 + 0.382995i
\(403\) 2.31989i 0.115562i
\(404\) −7.02133 −0.349324
\(405\) 12.6073 15.6862i 0.626462 0.779452i
\(406\) 0 0
\(407\) 41.0158 2.03308
\(408\) −3.63291 + 3.33083i −0.179856 + 0.164901i
\(409\) 20.1305i 0.995387i −0.867353 0.497694i \(-0.834180\pi\)
0.867353 0.497694i \(-0.165820\pi\)
\(410\) 5.74434 10.4255i 0.283693 0.514880i
\(411\) 4.69304 + 5.11865i 0.231491 + 0.252485i
\(412\) −9.51562 −0.468801
\(413\) 0 0
\(414\) 0.546381 6.28599i 0.0268532 0.308940i
\(415\) −2.50723 1.38145i −0.123075 0.0678129i
\(416\) −0.864346 −0.0423781
\(417\) −20.0192 + 18.3546i −0.980343 + 0.898827i
\(418\) 42.8610 2.09640
\(419\) 11.8896 0.580845 0.290422 0.956899i \(-0.406204\pi\)
0.290422 + 0.956899i \(0.406204\pi\)
\(420\) 0 0
\(421\) 11.6346 0.567038 0.283519 0.958967i \(-0.408498\pi\)
0.283519 + 0.958967i \(0.408498\pi\)
\(422\) −4.66797 −0.227233
\(423\) −9.34514 0.812283i −0.454376 0.0394946i
\(424\) 11.9744 0.581530
\(425\) −12.0275 + 7.60100i −0.583421 + 0.368703i
\(426\) 5.70113 5.22708i 0.276221 0.253253i
\(427\) 0 0
\(428\) −9.23877 −0.446573
\(429\) −6.63872 + 6.08671i −0.320521 + 0.293869i
\(430\) 5.26804 + 2.90263i 0.254047 + 0.139977i
\(431\) 4.34854i 0.209462i 0.994501 + 0.104731i \(0.0333981\pi\)
−0.994501 + 0.104731i \(0.966602\pi\)
\(432\) −4.11971 + 3.16670i −0.198210 + 0.152358i
\(433\) 15.3505 0.737698 0.368849 0.929489i \(-0.379752\pi\)
0.368849 + 0.929489i \(0.379752\pi\)
\(434\) 0 0
\(435\) 8.60340 + 35.3948i 0.412501 + 1.69705i
\(436\) 4.93955 0.236562
\(437\) 14.9841i 0.716789i
\(438\) −14.9813 16.3400i −0.715837 0.780756i
\(439\) 3.55667i 0.169751i 0.996392 + 0.0848753i \(0.0270492\pi\)
−0.996392 + 0.0848753i \(0.972951\pi\)
\(440\) 11.7824 + 6.49194i 0.561702 + 0.309491i
\(441\) 0 0
\(442\) 2.45959i 0.116991i
\(443\) −9.38403 −0.445849 −0.222924 0.974836i \(-0.571560\pi\)
−0.222924 + 0.974836i \(0.571560\pi\)
\(444\) 8.70388 7.98015i 0.413068 0.378721i
\(445\) 3.33007 6.04382i 0.157860 0.286504i
\(446\) 0.973096 0.0460774
\(447\) 10.6981 9.80851i 0.506000 0.463927i
\(448\) 0 0
\(449\) 0.400479i 0.0188998i −0.999955 0.00944989i \(-0.996992\pi\)
0.999955 0.00944989i \(-0.00300804\pi\)
\(450\) −13.3264 + 6.88529i −0.628212 + 0.324576i
\(451\) 32.0259i 1.50804i
\(452\) 11.3769 0.535126
\(453\) 9.45750 + 10.3152i 0.444352 + 0.484651i
\(454\) 23.8398i 1.11886i
\(455\) 0 0
\(456\) 9.09545 8.33916i 0.425933 0.390517i
\(457\) 34.3815i 1.60830i 0.594428 + 0.804149i \(0.297378\pi\)
−0.594428 + 0.804149i \(0.702622\pi\)
\(458\) 19.7831i 0.924401i
\(459\) 9.01119 + 11.7231i 0.420606 + 0.547186i
\(460\) −2.26957 + 4.11910i −0.105819 + 0.192054i
\(461\) 33.8119 1.57478 0.787389 0.616456i \(-0.211432\pi\)
0.787389 + 0.616456i \(0.211432\pi\)
\(462\) 0 0
\(463\) 0.505232i 0.0234801i −0.999931 0.0117401i \(-0.996263\pi\)
0.999931 0.0117401i \(-0.00373706\pi\)
\(464\) 9.40499i 0.436616i
\(465\) −2.45523 10.1009i −0.113858 0.468419i
\(466\) 1.78655 0.0827604
\(467\) 24.8661i 1.15067i −0.817919 0.575333i \(-0.804873\pi\)
0.817919 0.575333i \(-0.195127\pi\)
\(468\) −0.224541 + 2.58330i −0.0103794 + 0.119413i
\(469\) 0 0
\(470\) 6.12370 + 3.37408i 0.282465 + 0.155635i
\(471\) 5.22433 + 5.69812i 0.240724 + 0.262556i
\(472\) 7.09456 0.326554
\(473\) −16.1827 −0.744083
\(474\) −3.93058 4.28704i −0.180537 0.196910i
\(475\) 30.1125 19.0301i 1.38166 0.873161i
\(476\) 0 0
\(477\) 3.11074 35.7884i 0.142431 1.63864i
\(478\) 17.2961i 0.791106i
\(479\) 1.48138 0.0676859 0.0338430 0.999427i \(-0.489225\pi\)
0.0338430 + 0.999427i \(0.489225\pi\)
\(480\) 3.76340 0.914769i 0.171775 0.0417533i
\(481\) 5.89279i 0.268688i
\(482\) 8.26145i 0.376299i
\(483\) 0 0
\(484\) −25.1939 −1.14518
\(485\) −2.05620 + 3.73184i −0.0933671 + 0.169454i
\(486\) 8.39420 + 13.1353i 0.380769 + 0.595832i
\(487\) 7.86665i 0.356472i −0.983988 0.178236i \(-0.942961\pi\)
0.983988 0.178236i \(-0.0570391\pi\)
\(488\) 9.33672i 0.422653i
\(489\) −27.7133 + 25.4090i −1.25324 + 1.14903i
\(490\) 0 0
\(491\) 16.0379i 0.723778i 0.932221 + 0.361889i \(0.117868\pi\)
−0.932221 + 0.361889i \(0.882132\pi\)
\(492\) 6.23105 + 6.79615i 0.280917 + 0.306394i
\(493\) −26.7629 −1.20534
\(494\) 6.15790i 0.277057i
\(495\) 22.4635 33.5278i 1.00966 1.50696i
\(496\) 2.68399i 0.120514i
\(497\) 0 0
\(498\) 1.63440 1.49850i 0.0732392 0.0671494i
\(499\) 8.37964 0.375124 0.187562 0.982253i \(-0.439941\pi\)
0.187562 + 0.982253i \(0.439941\pi\)
\(500\) 11.1602 0.670330i 0.499101 0.0299781i
\(501\) 19.2671 17.6650i 0.860789 0.789214i
\(502\) −15.8307 −0.706558
\(503\) 31.5447i 1.40651i 0.710939 + 0.703254i \(0.248270\pi\)
−0.710939 + 0.703254i \(0.751730\pi\)
\(504\) 0 0
\(505\) 7.57663 13.7510i 0.337156 0.611911i
\(506\) 12.6533i 0.562509i
\(507\) −14.3422 15.6429i −0.636961 0.694727i
\(508\) 20.8126i 0.923411i
\(509\) −21.9316 −0.972101 −0.486051 0.873931i \(-0.661563\pi\)
−0.486051 + 0.873931i \(0.661563\pi\)
\(510\) −2.60307 10.7092i −0.115266 0.474210i
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) −22.5607 29.3502i −0.996079 1.29584i
\(514\) 29.7033i 1.31016i
\(515\) 10.2682 18.6360i 0.452471 0.821199i
\(516\) −3.43410 + 3.14856i −0.151178 + 0.138608i
\(517\) −18.8112 −0.827316
\(518\) 0 0
\(519\) −17.7556 + 16.2792i −0.779384 + 0.714578i
\(520\) 0.932706 1.69279i 0.0409019 0.0742337i
\(521\) 6.73422 0.295032 0.147516 0.989060i \(-0.452872\pi\)
0.147516 + 0.989060i \(0.452872\pi\)
\(522\) −28.1090 2.44324i −1.23030 0.106938i
\(523\) −36.6831 −1.60404 −0.802020 0.597298i \(-0.796241\pi\)
−0.802020 + 0.597298i \(0.796241\pi\)
\(524\) 7.45191 0.325538
\(525\) 0 0
\(526\) −23.1913 −1.01119
\(527\) 7.63757 0.332698
\(528\) −7.68063 + 7.04199i −0.334257 + 0.306463i
\(529\) −18.5764 −0.807670
\(530\) −12.9215 + 23.4515i −0.561273 + 1.01867i
\(531\) 1.84304 21.2037i 0.0799810 0.920164i
\(532\) 0 0
\(533\) 4.60120 0.199300
\(534\) 3.61222 + 3.93981i 0.156316 + 0.170492i
\(535\) 9.96945 18.0938i 0.431017 0.782262i
\(536\) 6.56038i 0.283365i
\(537\) −25.1608 + 23.0687i −1.08577 + 0.995487i
\(538\) −13.3485 −0.575495
\(539\) 0 0
\(540\) −1.75634 11.4854i −0.0755807 0.494255i
\(541\) 6.45386 0.277473 0.138737 0.990329i \(-0.455696\pi\)
0.138737 + 0.990329i \(0.455696\pi\)
\(542\) 17.0251i 0.731289i
\(543\) 7.69112 7.05161i 0.330058 0.302613i
\(544\) 2.84561i 0.122004i
\(545\) −5.33021 + 9.67392i −0.228321 + 0.414385i
\(546\) 0 0
\(547\) 17.9484i 0.767418i 0.923454 + 0.383709i \(0.125353\pi\)
−0.923454 + 0.383709i \(0.874647\pi\)
\(548\) 4.00937 0.171272
\(549\) −27.9049 2.42551i −1.19095 0.103518i
\(550\) −25.4284 + 16.0699i −1.08427 + 0.685224i
\(551\) 67.0044 2.85448
\(552\) −2.46187 2.68514i −0.104784 0.114287i
\(553\) 0 0
\(554\) 19.4359i 0.825751i
\(555\) 6.23656 + 25.6575i 0.264727 + 1.08910i
\(556\) 15.6807i 0.665012i
\(557\) 11.0063 0.466354 0.233177 0.972434i \(-0.425088\pi\)
0.233177 + 0.972434i \(0.425088\pi\)
\(558\) 8.02171 + 0.697250i 0.339586 + 0.0295170i
\(559\) 2.32499i 0.0983368i
\(560\) 0 0
\(561\) 20.0387 + 21.8561i 0.846036 + 0.922763i
\(562\) 10.9247i 0.460831i
\(563\) 7.74278i 0.326319i −0.986600 0.163160i \(-0.947831\pi\)
0.986600 0.163160i \(-0.0521686\pi\)
\(564\) −3.99189 + 3.65996i −0.168089 + 0.154112i
\(565\) −12.2767 + 22.2813i −0.516485 + 0.937381i
\(566\) 27.9118 1.17322
\(567\) 0 0
\(568\) 4.46562i 0.187373i
\(569\) 29.7890i 1.24882i −0.781097 0.624409i \(-0.785340\pi\)
0.781097 0.624409i \(-0.214660\pi\)
\(570\) 6.51713 + 26.8118i 0.272973 + 1.12302i
\(571\) 4.12163 0.172485 0.0862424 0.996274i \(-0.472514\pi\)
0.0862424 + 0.996274i \(0.472514\pi\)
\(572\) 5.20002i 0.217424i
\(573\) 2.32058 2.12763i 0.0969437 0.0888828i
\(574\) 0 0
\(575\) −5.61802 8.88974i −0.234288 0.370728i
\(576\) −0.259782 + 2.98873i −0.0108242 + 0.124530i
\(577\) −15.2456 −0.634681 −0.317341 0.948312i \(-0.602790\pi\)
−0.317341 + 0.948312i \(0.602790\pi\)
\(578\) −8.90252 −0.370296
\(579\) −0.782786 + 0.717698i −0.0325315 + 0.0298265i
\(580\) 18.4193 + 10.1488i 0.764820 + 0.421407i
\(581\) 0 0
\(582\) −2.23041 2.43269i −0.0924536 0.100838i
\(583\) 72.0399i 2.98359i
\(584\) −12.7989 −0.529623
\(585\) −4.81699 3.22736i −0.199158 0.133435i
\(586\) 9.87883i 0.408091i
\(587\) 3.06358i 0.126447i 0.997999 + 0.0632237i \(0.0201382\pi\)
−0.997999 + 0.0632237i \(0.979862\pi\)
\(588\) 0 0
\(589\) −19.1216 −0.787893
\(590\) −7.65566 + 13.8944i −0.315178 + 0.572024i
\(591\) −14.6491 15.9777i −0.602584 0.657233i
\(592\) 6.81763i 0.280203i
\(593\) 0.944328i 0.0387789i −0.999812 0.0193895i \(-0.993828\pi\)
0.999812 0.0193895i \(-0.00617224\pi\)
\(594\) 19.0513 + 24.7847i 0.781685 + 1.01693i
\(595\) 0 0
\(596\) 8.37964i 0.343243i
\(597\) −13.7552 + 12.6115i −0.562963 + 0.516153i
\(598\) −1.81792 −0.0743403
\(599\) 37.4531i 1.53029i 0.643857 + 0.765146i \(0.277333\pi\)
−0.643857 + 0.765146i \(0.722667\pi\)
\(600\) −2.26950 + 8.35759i −0.0926521 + 0.341197i
\(601\) 46.7301i 1.90616i 0.302716 + 0.953081i \(0.402107\pi\)
−0.302716 + 0.953081i \(0.597893\pi\)
\(602\) 0 0
\(603\) 19.6072 + 1.70427i 0.798467 + 0.0694031i
\(604\) 8.07977 0.328761
\(605\) 27.1864 49.3413i 1.10529 2.00601i
\(606\) 8.21858 + 8.96393i 0.333857 + 0.364135i
\(607\) −24.1453 −0.980026 −0.490013 0.871715i \(-0.663008\pi\)
−0.490013 + 0.871715i \(0.663008\pi\)
\(608\) 7.12434i 0.288930i
\(609\) 0 0
\(610\) 18.2856 + 10.0751i 0.740362 + 0.407931i
\(611\) 2.70263i 0.109337i
\(612\) 8.50475 + 0.739237i 0.343784 + 0.0298819i
\(613\) 24.6198i 0.994383i 0.867641 + 0.497191i \(0.165635\pi\)
−0.867641 + 0.497191i \(0.834365\pi\)
\(614\) −2.95602 −0.119295
\(615\) −20.0338 + 4.86962i −0.807842 + 0.196362i
\(616\) 0 0
\(617\) −34.6057 −1.39317 −0.696586 0.717474i \(-0.745298\pi\)
−0.696586 + 0.717474i \(0.745298\pi\)
\(618\) 11.1382 + 12.1483i 0.448044 + 0.488677i
\(619\) 17.3011i 0.695388i −0.937608 0.347694i \(-0.886965\pi\)
0.937608 0.347694i \(-0.113035\pi\)
\(620\) −5.25648 2.89626i −0.211105 0.116316i
\(621\) −8.66470 + 6.66031i −0.347702 + 0.267269i
\(622\) −8.59316 −0.344554
\(623\) 0 0
\(624\) 1.01173 + 1.10349i 0.0405017 + 0.0441748i
\(625\) −10.7301 + 22.5802i −0.429202 + 0.903208i
\(626\) −19.8544 −0.793542
\(627\) −50.1695 54.7195i −2.00358 2.18529i
\(628\) 4.46327 0.178104
\(629\) −19.4003 −0.773540
\(630\) 0 0
\(631\) 6.04364 0.240593 0.120297 0.992738i \(-0.461615\pi\)
0.120297 + 0.992738i \(0.461615\pi\)
\(632\) −3.35798 −0.133573
\(633\) 5.46394 + 5.95947i 0.217172 + 0.236868i
\(634\) −29.2008 −1.15971
\(635\) 40.7607 + 22.4587i 1.61754 + 0.891245i
\(636\) −14.0163 15.2874i −0.555782 0.606186i
\(637\) 0 0
\(638\) −56.5817 −2.24009
\(639\) −13.3465 1.16009i −0.527981 0.0458923i
\(640\) 1.07909 1.95846i 0.0426547 0.0774150i
\(641\) 4.78542i 0.189013i −0.995524 0.0945065i \(-0.969873\pi\)
0.995524 0.0945065i \(-0.0301273\pi\)
\(642\) 10.8141 + 11.7949i 0.426800 + 0.465507i
\(643\) −40.9370 −1.61440 −0.807198 0.590280i \(-0.799017\pi\)
−0.807198 + 0.590280i \(0.799017\pi\)
\(644\) 0 0
\(645\) −2.46063 10.1231i −0.0968871 0.398598i
\(646\) −20.2731 −0.797634
\(647\) 24.3583i 0.957623i 0.877918 + 0.478811i \(0.158932\pi\)
−0.877918 + 0.478811i \(0.841068\pi\)
\(648\) 8.86503 + 1.55284i 0.348251 + 0.0610011i
\(649\) 42.6818i 1.67541i
\(650\) 2.30879 + 3.65334i 0.0905581 + 0.143296i
\(651\) 0 0
\(652\) 21.7075i 0.850131i
\(653\) 15.9386 0.623726 0.311863 0.950127i \(-0.399047\pi\)
0.311863 + 0.950127i \(0.399047\pi\)
\(654\) −5.78183 6.30619i −0.226087 0.246591i
\(655\) −8.04127 + 14.5943i −0.314198 + 0.570245i
\(656\) 5.32333 0.207841
\(657\) −3.32493 + 38.2525i −0.129718 + 1.49237i
\(658\) 0 0
\(659\) 1.76616i 0.0687997i −0.999408 0.0343998i \(-0.989048\pi\)
0.999408 0.0343998i \(-0.0109520\pi\)
\(660\) −5.50338 22.6411i −0.214219 0.881305i
\(661\) 30.5932i 1.18994i −0.803748 0.594970i \(-0.797164\pi\)
0.803748 0.594970i \(-0.202836\pi\)
\(662\) 8.99040 0.349422
\(663\) 3.14009 2.87899i 0.121951 0.111811i
\(664\) 1.28020i 0.0496815i
\(665\) 0 0
\(666\) −20.3761 1.77110i −0.789556 0.0686286i
\(667\) 19.7809i 0.765918i
\(668\) 15.0916i 0.583913i
\(669\) −1.13902 1.24232i −0.0440372 0.0480310i
\(670\) −12.8482 7.07923i −0.496371 0.273494i
\(671\) −56.1710 −2.16846
\(672\) 0 0
\(673\) 8.47471i 0.326676i −0.986570 0.163338i \(-0.947774\pi\)
0.986570 0.163338i \(-0.0522261\pi\)
\(674\) 16.7043i 0.643424i
\(675\) 24.3890 + 8.95409i 0.938734 + 0.344643i
\(676\) −12.2529 −0.471266
\(677\) 8.78118i 0.337488i 0.985660 + 0.168744i \(0.0539712\pi\)
−0.985660 + 0.168744i \(0.946029\pi\)
\(678\) −13.3169 14.5246i −0.511432 0.557814i
\(679\) 0 0
\(680\) −5.57301 3.07066i −0.213715 0.117754i
\(681\) −30.4357 + 27.9049i −1.16630 + 1.06932i
\(682\) 16.1472 0.618309
\(683\) −19.7411 −0.755372 −0.377686 0.925934i \(-0.623280\pi\)
−0.377686 + 0.925934i \(0.623280\pi\)
\(684\) −21.2928 1.85077i −0.814149 0.0707661i
\(685\) −4.32647 + 7.85220i −0.165306 + 0.300017i
\(686\) 0 0
\(687\) −25.2565 + 23.1564i −0.963594 + 0.883471i
\(688\) 2.68989i 0.102551i
\(689\) −10.3501 −0.394306
\(690\) 7.91531 1.92397i 0.301331 0.0732444i
\(691\) 31.4383i 1.19597i −0.801508 0.597984i \(-0.795968\pi\)
0.801508 0.597984i \(-0.204032\pi\)
\(692\) 13.9077i 0.528692i
\(693\) 0 0
\(694\) −23.5557 −0.894162
\(695\) −30.7101 16.9209i −1.16490 0.641847i
\(696\) −12.0071 + 11.0087i −0.455127 + 0.417284i
\(697\) 15.1481i 0.573775i
\(698\) 26.3071i 0.995738i
\(699\) −2.09119 2.28084i −0.0790960 0.0862693i
\(700\) 0 0
\(701\) 8.41296i 0.317753i 0.987298 + 0.158877i \(0.0507872\pi\)
−0.987298 + 0.158877i \(0.949213\pi\)
\(702\) 3.56085 2.73713i 0.134396 0.103306i
\(703\) 48.5712 1.83190
\(704\) 6.01614i 0.226742i
\(705\) −2.86029 11.7674i −0.107725 0.443185i
\(706\) 8.37829i 0.315321i
\(707\) 0 0
\(708\) −8.30430 9.05742i −0.312095 0.340399i
\(709\) 45.6062 1.71278 0.856388 0.516333i \(-0.172703\pi\)
0.856388 + 0.516333i \(0.172703\pi\)
\(710\) 8.74574 + 4.81880i 0.328222 + 0.180846i
\(711\) −0.872343 + 10.0361i −0.0327154 + 0.376384i
\(712\) 3.08600 0.115653
\(713\) 5.64504i 0.211409i
\(714\) 0 0
\(715\) −10.1840 5.61128i −0.380862 0.209850i
\(716\) 19.7081i 0.736527i
\(717\) 22.0815 20.2454i 0.824647 0.756078i
\(718\) 26.9651i 1.00633i
\(719\) −2.90920 −0.108495 −0.0542475 0.998528i \(-0.517276\pi\)
−0.0542475 + 0.998528i \(0.517276\pi\)
\(720\) −5.57299 3.73388i −0.207693 0.139153i
\(721\) 0 0
\(722\) 31.7563 1.18185
\(723\) −10.5472 + 9.67016i −0.392253 + 0.359637i
\(724\) 6.02435i 0.223893i
\(725\) −39.7521 + 25.1220i −1.47636 + 0.933008i
\(726\) 29.4899 + 32.1643i 1.09447 + 1.19373i
\(727\) 38.0076 1.40963 0.704813 0.709394i \(-0.251031\pi\)
0.704813 + 0.709394i \(0.251031\pi\)
\(728\) 0 0
\(729\) 6.94398 26.0918i 0.257184 0.966362i
\(730\) 13.8112 25.0662i 0.511174 0.927741i
\(731\) 7.65436 0.283107
\(732\) −11.9199 + 10.9288i −0.440573 + 0.403940i
\(733\) −25.5691 −0.944417 −0.472208 0.881487i \(-0.656543\pi\)
−0.472208 + 0.881487i \(0.656543\pi\)
\(734\) −24.6775 −0.910862
\(735\) 0 0
\(736\) −2.10323 −0.0775262
\(737\) 39.4681 1.45383
\(738\) 1.38290 15.9100i 0.0509054 0.585655i
\(739\) −12.6545 −0.465503 −0.232751 0.972536i \(-0.574773\pi\)
−0.232751 + 0.972536i \(0.574773\pi\)
\(740\) 13.3521 + 7.35683i 0.490832 + 0.270442i
\(741\) −7.86162 + 7.20792i −0.288804 + 0.264790i
\(742\) 0 0
\(743\) −2.67310 −0.0980667 −0.0490333 0.998797i \(-0.515614\pi\)
−0.0490333 + 0.998797i \(0.515614\pi\)
\(744\) 3.42657 3.14165i 0.125624 0.115178i
\(745\) 16.4112 + 9.04237i 0.601260 + 0.331287i
\(746\) 26.1293i 0.956663i
\(747\) −3.82618 0.332574i −0.139993 0.0121682i
\(748\) 17.1196 0.625953
\(749\) 0 0
\(750\) −13.9190 13.4633i −0.508251 0.491611i
\(751\) −23.3381 −0.851620 −0.425810 0.904813i \(-0.640011\pi\)
−0.425810 + 0.904813i \(0.640011\pi\)
\(752\) 3.12679i 0.114022i
\(753\) 18.5301 + 20.2106i 0.675274 + 0.736515i
\(754\) 8.12917i 0.296047i
\(755\) −8.71878 + 15.8239i −0.317309 + 0.575891i
\(756\) 0 0
\(757\) 27.4191i 0.996564i −0.867015 0.498282i \(-0.833964\pi\)
0.867015 0.498282i \(-0.166036\pi\)
\(758\) −25.5437 −0.927789
\(759\) −16.1541 + 14.8109i −0.586358 + 0.537603i
\(760\) 13.9527 + 7.68780i 0.506119 + 0.278866i
\(761\) −42.5484 −1.54238 −0.771188 0.636607i \(-0.780337\pi\)
−0.771188 + 0.636607i \(0.780337\pi\)
\(762\) −26.5709 + 24.3615i −0.962562 + 0.882525i
\(763\) 0 0
\(764\) 1.81768i 0.0657614i
\(765\) −10.6251 + 15.8585i −0.384153 + 0.573366i
\(766\) 15.2142i 0.549711i
\(767\) −6.13216 −0.221419
\(768\) 1.17052 + 1.27667i 0.0422374 + 0.0460679i
\(769\) 25.4075i 0.916219i 0.888896 + 0.458110i \(0.151473\pi\)
−0.888896 + 0.458110i \(0.848527\pi\)
\(770\) 0 0
\(771\) 37.9214 34.7682i 1.36570 1.25215i
\(772\) 0.613146i 0.0220676i
\(773\) 15.8923i 0.571607i −0.958288 0.285804i \(-0.907739\pi\)
0.958288 0.285804i \(-0.0922605\pi\)
\(774\) 8.03935 + 0.698784i 0.288969 + 0.0251173i
\(775\) 11.3444 7.16929i 0.407503 0.257529i
\(776\) −1.90549 −0.0684033
\(777\) 0 0
\(778\) 15.5321i 0.556853i
\(779\) 37.9252i 1.35881i
\(780\) −3.25288 + 0.790677i −0.116472 + 0.0283108i
\(781\) −26.8658 −0.961333
\(782\) 5.98497i 0.214022i
\(783\) 29.7828 + 38.7458i 1.06435 + 1.38466i
\(784\) 0 0
\(785\) −4.81626 + 8.74113i −0.171900 + 0.311984i
\(786\) −8.72258 9.51364i −0.311124 0.339340i
\(787\) −26.1564 −0.932375 −0.466188 0.884686i \(-0.654373\pi\)
−0.466188 + 0.884686i \(0.654373\pi\)
\(788\) −12.5151 −0.445832
\(789\) 27.1458 + 29.6076i 0.966415 + 1.05406i
\(790\) 3.62356 6.57648i 0.128921 0.233981i
\(791\) 0 0
\(792\) 17.9806 + 1.56288i 0.638913 + 0.0555346i
\(793\) 8.07016i 0.286580i
\(794\) −9.93654 −0.352635
\(795\) 45.0646 10.9539i 1.59828 0.388493i
\(796\) 10.7743i 0.381884i
\(797\) 29.9169i 1.05971i 0.848088 + 0.529856i \(0.177754\pi\)
−0.848088 + 0.529856i \(0.822246\pi\)
\(798\) 0 0
\(799\) 8.89762 0.314775
\(800\) 2.67114 + 4.22670i 0.0944390 + 0.149437i
\(801\) 0.801687 9.22324i 0.0283262 0.325887i
\(802\) 14.2780i 0.504172i
\(803\) 77.0001i 2.71727i
\(804\) 8.37545 7.67903i 0.295379 0.270819i
\(805\) 0 0
\(806\) 2.31989i 0.0817147i
\(807\) 15.6247 + 17.0417i 0.550014 + 0.599895i
\(808\) 7.02133 0.247009
\(809\) 21.4579i 0.754421i 0.926128 + 0.377210i \(0.123117\pi\)
−0.926128 + 0.377210i \(0.876883\pi\)
\(810\) −12.6073 + 15.6862i −0.442976 + 0.551156i
\(811\) 3.56272i 0.125104i 0.998042 + 0.0625520i \(0.0199239\pi\)
−0.998042 + 0.0625520i \(0.980076\pi\)
\(812\) 0 0
\(813\) 21.7354 19.9281i 0.762294 0.698909i
\(814\) −41.0158 −1.43760
\(815\) −42.5133 23.4243i −1.48917 0.820517i
\(816\) 3.63291 3.33083i 0.127177 0.116602i
\(817\) −19.1637 −0.670453
\(818\) 20.1305i 0.703845i
\(819\) 0 0
\(820\) −5.74434 + 10.4255i −0.200601 + 0.364075i
\(821\) 11.2180i 0.391512i 0.980653 + 0.195756i \(0.0627161\pi\)
−0.980653 + 0.195756i \(0.937284\pi\)
\(822\) −4.69304 5.11865i −0.163689 0.178534i
\(823\) 27.0364i 0.942429i −0.882019 0.471214i \(-0.843816\pi\)
0.882019 0.471214i \(-0.156184\pi\)
\(824\) 9.51562 0.331492
\(825\) 50.2804 + 13.6536i 1.75054 + 0.475359i
\(826\) 0 0
\(827\) 26.8301 0.932974 0.466487 0.884528i \(-0.345519\pi\)
0.466487 + 0.884528i \(0.345519\pi\)
\(828\) −0.546381 + 6.28599i −0.0189881 + 0.218453i
\(829\) 6.76305i 0.234891i −0.993079 0.117445i \(-0.962530\pi\)
0.993079 0.117445i \(-0.0374705\pi\)
\(830\) 2.50723 + 1.38145i 0.0870272 + 0.0479509i
\(831\) −24.8132 + 22.7500i −0.860761 + 0.789189i
\(832\) 0.864346 0.0299658
\(833\) 0 0
\(834\) 20.0192 18.3546i 0.693207 0.635567i
\(835\) 29.5564 + 16.2852i 1.02284 + 0.563573i
\(836\) −42.8610 −1.48238
\(837\) −8.49939 11.0572i −0.293782 0.382194i
\(838\) −11.8896 −0.410719
\(839\) 52.6113 1.81634 0.908172 0.418597i \(-0.137478\pi\)
0.908172 + 0.418597i \(0.137478\pi\)
\(840\) 0 0
\(841\) −59.4538 −2.05013
\(842\) −11.6346 −0.400956
\(843\) 13.9473 12.7876i 0.480370 0.440427i
\(844\) 4.66797 0.160678
\(845\) 13.2220 23.9968i 0.454849 0.825516i
\(846\) 9.34514 + 0.812283i 0.321293 + 0.0279269i
\(847\) 0 0
\(848\) −11.9744 −0.411204
\(849\) −32.6712 35.6342i −1.12127 1.22296i
\(850\) 12.0275 7.60100i 0.412541 0.260712i
\(851\) 14.3391i 0.491537i
\(852\) −5.70113 + 5.22708i −0.195317 + 0.179077i
\(853\) −35.7772 −1.22499 −0.612494 0.790475i \(-0.709834\pi\)
−0.612494 + 0.790475i \(0.709834\pi\)
\(854\) 0 0
\(855\) 26.6014 39.7039i 0.909750 1.35784i
\(856\) 9.23877 0.315775
\(857\) 26.9017i 0.918946i 0.888192 + 0.459473i \(0.151962\pi\)
−0.888192 + 0.459473i \(0.848038\pi\)
\(858\) 6.63872 6.08671i 0.226642 0.207797i
\(859\) 24.1993i 0.825670i −0.910806 0.412835i \(-0.864539\pi\)
0.910806 0.412835i \(-0.135461\pi\)
\(860\) −5.26804 2.90263i −0.179639 0.0989787i
\(861\) 0 0
\(862\) 4.34854i 0.148112i
\(863\) −25.2452 −0.859355 −0.429677 0.902982i \(-0.641373\pi\)
−0.429677 + 0.902982i \(0.641373\pi\)
\(864\) 4.11971 3.16670i 0.140155 0.107733i
\(865\) −27.2377 15.0077i −0.926110 0.510276i
\(866\) −15.3505 −0.521631
\(867\) 10.4206 + 11.3656i 0.353901 + 0.385996i
\(868\) 0 0
\(869\) 20.2021i 0.685309i
\(870\) −8.60340 35.3948i −0.291682 1.19999i
\(871\) 5.67044i 0.192136i
\(872\) −4.93955 −0.167274
\(873\) −0.495013 + 5.69501i −0.0167536 + 0.192747i
\(874\) 14.9841i 0.506846i
\(875\) 0 0
\(876\) 14.9813 + 16.3400i 0.506173 + 0.552078i
\(877\) 26.2898i 0.887744i 0.896090 + 0.443872i \(0.146396\pi\)
−0.896090 + 0.443872i \(0.853604\pi\)
\(878\) 3.55667i 0.120032i
\(879\) −12.6120 + 11.5633i −0.425393 + 0.390022i
\(880\) −11.7824 6.49194i −0.397184 0.218843i
\(881\) −31.9677 −1.07702 −0.538510 0.842619i \(-0.681012\pi\)
−0.538510 + 0.842619i \(0.681012\pi\)
\(882\) 0 0
\(883\) 6.92050i 0.232893i −0.993197 0.116447i \(-0.962850\pi\)
0.993197 0.116447i \(-0.0371504\pi\)
\(884\) 2.45959i 0.0827249i
\(885\) 26.6997 6.48989i 0.897500 0.218155i
\(886\) 9.38403 0.315263
\(887\) 37.6658i 1.26469i −0.774685 0.632347i \(-0.782092\pi\)
0.774685 0.632347i \(-0.217908\pi\)
\(888\) −8.70388 + 7.98015i −0.292083 + 0.267796i
\(889\) 0 0
\(890\) −3.33007 + 6.04382i −0.111624 + 0.202589i
\(891\) 9.34207 53.3332i 0.312971 1.78673i
\(892\) −0.973096 −0.0325817
\(893\) −22.2763 −0.745449
\(894\) −10.6981 + 9.80851i −0.357796 + 0.328046i
\(895\) −38.5976 21.2668i −1.29017 0.710871i
\(896\) 0 0
\(897\) 2.12791 + 2.32089i 0.0710487 + 0.0774922i
\(898\) 0.400479i 0.0133642i
\(899\) 25.2429 0.841896
\(900\) 13.3264 6.88529i 0.444213 0.229510i
\(901\) 34.0746i 1.13519i
\(902\) 32.0259i 1.06635i
\(903\) 0 0
\(904\) −11.3769 −0.378391
\(905\) 11.7985 + 6.50081i 0.392194 + 0.216094i
\(906\) −9.45750 10.3152i −0.314205 0.342700i
\(907\) 47.2413i 1.56862i −0.620367 0.784312i \(-0.713016\pi\)
0.620367 0.784312i \(-0.286984\pi\)
\(908\) 23.8398i 0.791153i
\(909\) 1.82401 20.9849i 0.0604987 0.696024i
\(910\) 0 0
\(911\) 37.3306i 1.23682i 0.785856 + 0.618409i \(0.212223\pi\)
−0.785856 + 0.618409i \(0.787777\pi\)
\(912\) −9.09545 + 8.33916i −0.301180 + 0.276137i
\(913\) −7.70188 −0.254895
\(914\) 34.3815i 1.13724i
\(915\) −8.54095 35.1378i −0.282355 1.16162i
\(916\) 19.7831i 0.653650i
\(917\) 0 0
\(918\) −9.01119 11.7231i −0.297414 0.386919i
\(919\) 17.6980 0.583802 0.291901 0.956449i \(-0.405712\pi\)
0.291901 + 0.956449i \(0.405712\pi\)
\(920\) 2.26957 4.11910i 0.0748256 0.135803i
\(921\) 3.46007 + 3.77387i 0.114013 + 0.124353i
\(922\) −33.8119 −1.11354
\(923\) 3.85984i 0.127048i
\(924\) 0 0
\(925\) −28.8161 + 18.2108i −0.947468 + 0.598768i
\(926\) 0.505232i 0.0166030i
\(927\) 2.47198 28.4396i 0.0811906 0.934080i
\(928\) 9.40499i 0.308734i
\(929\) 60.2744 1.97754 0.988770 0.149443i \(-0.0477482\pi\)
0.988770 + 0.149443i \(0.0477482\pi\)
\(930\) 2.45523 + 10.1009i 0.0805101 + 0.331222i
\(931\) 0 0
\(932\) −1.78655 −0.0585205
\(933\) 10.0584 + 10.9706i 0.329298 + 0.359163i
\(934\) 24.8661i 0.813644i
\(935\) −18.4735 + 33.5280i −0.604148 + 1.09648i
\(936\) 0.224541 2.58330i 0.00733936 0.0844377i
\(937\) −27.4478 −0.896680 −0.448340 0.893863i \(-0.647985\pi\)
−0.448340 + 0.893863i \(0.647985\pi\)
\(938\) 0 0
\(939\) 23.2399 + 25.3476i 0.758406 + 0.827187i
\(940\) −6.12370 3.37408i −0.199733 0.110051i
\(941\) 23.2585 0.758205 0.379103 0.925355i \(-0.376233\pi\)
0.379103 + 0.925355i \(0.376233\pi\)
\(942\) −5.22433 5.69812i −0.170218 0.185655i
\(943\) 11.1962 0.364598
\(944\) −7.09456 −0.230908
\(945\) 0 0
\(946\) 16.1827 0.526146
\(947\) 5.12103 0.166411 0.0832056 0.996532i \(-0.473484\pi\)
0.0832056 + 0.996532i \(0.473484\pi\)
\(948\) 3.93058 + 4.28704i 0.127659 + 0.139237i
\(949\) 11.0627 0.359110
\(950\) −30.1125 + 19.0301i −0.976978 + 0.617418i
\(951\) 34.1801 + 37.2799i 1.10836 + 1.20888i
\(952\) 0 0
\(953\) 7.47194 0.242040 0.121020 0.992650i \(-0.461384\pi\)
0.121020 + 0.992650i \(0.461384\pi\)
\(954\) −3.11074 + 35.7884i −0.100714 + 1.15869i
\(955\) 3.55986 + 1.96144i 0.115194 + 0.0634706i
\(956\) 17.2961i 0.559396i
\(957\) 66.2298 + 72.2363i 2.14091 + 2.33507i
\(958\) −1.48138 −0.0478612
\(959\) 0 0
\(960\) −3.76340 + 0.914769i −0.121463 + 0.0295241i
\(961\) 23.7962 0.767620
\(962\) 5.89279i 0.189991i
\(963\) 2.40006 27.6122i 0.0773410 0.889791i
\(964\) 8.26145i 0.266083i
\(965\) −1.20082 0.661639i −0.0386558 0.0212989i
\(966\) 0 0
\(967\) 13.0565i 0.419869i 0.977716 + 0.209934i \(0.0673250\pi\)
−0.977716 + 0.209934i \(0.932675\pi\)
\(968\) 25.1939 0.809762
\(969\) 23.7300 + 25.8821i 0.762317 + 0.831452i
\(970\) 2.05620 3.73184i 0.0660205 0.119822i
\(971\) −22.5183 −0.722648 −0.361324 0.932440i \(-0.617675\pi\)
−0.361324 + 0.932440i \(0.617675\pi\)
\(972\) −8.39420 13.1353i −0.269244 0.421317i
\(973\) 0 0
\(974\) 7.86665i 0.252064i
\(975\) 1.96164 7.22385i 0.0628226 0.231348i
\(976\) 9.33672i 0.298861i
\(977\) 3.50864 0.112251 0.0561257 0.998424i \(-0.482125\pi\)
0.0561257 + 0.998424i \(0.482125\pi\)
\(978\) 27.7133 25.4090i 0.886175 0.812489i
\(979\) 18.5658i 0.593366i
\(980\) 0 0
\(981\) −1.28321 + 14.7630i −0.0409696 + 0.471346i
\(982\) 16.0379i 0.511788i
\(983\) 32.5656i 1.03868i 0.854567 + 0.519341i \(0.173823\pi\)
−0.854567 + 0.519341i \(0.826177\pi\)
\(984\) −6.23105 6.79615i −0.198639 0.216653i
\(985\) 13.5049 24.5103i 0.430302 0.780964i
\(986\) 26.7629 0.852304
\(987\) 0 0
\(988\) 6.15790i 0.195909i
\(989\) 5.65746i 0.179897i
\(990\) −22.4635 + 33.5278i −0.713937 + 1.06558i
\(991\) 5.17862 0.164504 0.0822521 0.996612i \(-0.473789\pi\)
0.0822521 + 0.996612i \(0.473789\pi\)
\(992\) 2.68399i 0.0852166i
\(993\) −10.5234 11.4778i −0.333951 0.364237i
\(994\) 0 0
\(995\) −21.1010 11.6264i −0.668946 0.368581i
\(996\) −1.63440 + 1.49850i −0.0517879 + 0.0474818i
\(997\) −40.7003 −1.28899 −0.644496 0.764607i \(-0.722933\pi\)
−0.644496 + 0.764607i \(0.722933\pi\)
\(998\) −8.37964 −0.265253
\(999\) 21.5894 + 28.0866i 0.683059 + 0.888622i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1470.2.d.g.1469.18 yes 24
3.2 odd 2 1470.2.d.h.1469.17 yes 24
5.4 even 2 1470.2.d.h.1469.7 yes 24
7.6 odd 2 inner 1470.2.d.g.1469.7 24
15.14 odd 2 inner 1470.2.d.g.1469.8 yes 24
21.20 even 2 1470.2.d.h.1469.8 yes 24
35.34 odd 2 1470.2.d.h.1469.18 yes 24
105.104 even 2 inner 1470.2.d.g.1469.17 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1470.2.d.g.1469.7 24 7.6 odd 2 inner
1470.2.d.g.1469.8 yes 24 15.14 odd 2 inner
1470.2.d.g.1469.17 yes 24 105.104 even 2 inner
1470.2.d.g.1469.18 yes 24 1.1 even 1 trivial
1470.2.d.h.1469.7 yes 24 5.4 even 2
1470.2.d.h.1469.8 yes 24 21.20 even 2
1470.2.d.h.1469.17 yes 24 3.2 odd 2
1470.2.d.h.1469.18 yes 24 35.34 odd 2