Properties

Label 147.8.c.b.146.6
Level $147$
Weight $8$
Character 147.146
Analytic conductor $45.921$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [147,8,Mod(146,147)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("147.146"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(147, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 147.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.9205987462\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 146.6
Character \(\chi\) \(=\) 147.146
Dual form 147.8.c.b.146.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+20.7644i q^{2} +(43.7336 - 16.5643i) q^{3} -303.161 q^{4} +343.321 q^{5} +(343.947 + 908.102i) q^{6} -3637.11i q^{8} +(1638.25 - 1448.83i) q^{9} +7128.85i q^{10} -1113.01i q^{11} +(-13258.3 + 5021.63i) q^{12} -5040.70i q^{13} +(15014.6 - 5686.86i) q^{15} +36717.9 q^{16} +12799.2 q^{17} +(30084.1 + 34017.3i) q^{18} -28448.7i q^{19} -104081. q^{20} +23111.1 q^{22} -101790. i q^{23} +(-60246.1 - 159064. i) q^{24} +39744.1 q^{25} +104667. q^{26} +(47647.8 - 90498.9i) q^{27} -73697.1i q^{29} +(118084. + 311770. i) q^{30} +182120. i q^{31} +296875. i q^{32} +(-18436.3 - 48676.1i) q^{33} +265767. i q^{34} +(-496653. + 439228. i) q^{36} +401039. q^{37} +590720. q^{38} +(-83495.4 - 220448. i) q^{39} -1.24870e6i q^{40} +424658. q^{41} -150211. q^{43} +337422. i q^{44} +(562445. - 497413. i) q^{45} +2.11360e6 q^{46} +378601. q^{47} +(1.60580e6 - 608204. i) q^{48} +825264. i q^{50} +(559753. - 212009. i) q^{51} +1.52814e6i q^{52} +737648. i q^{53} +(1.87916e6 + 989377. i) q^{54} -382121. i q^{55} +(-471231. - 1.24416e6i) q^{57} +1.53028e6 q^{58} -1.08041e6 q^{59} +(-4.55185e6 + 1.72403e6i) q^{60} +376699. i q^{61} -3.78162e6 q^{62} -1.46454e6 q^{64} -1.73058e6i q^{65} +(1.01073e6 - 382818. i) q^{66} -2.49206e6 q^{67} -3.88021e6 q^{68} +(-1.68607e6 - 4.45162e6i) q^{69} +1.89722e6i q^{71} +(-5.26955e6 - 5.95850e6i) q^{72} +1.88543e6i q^{73} +8.32733e6i q^{74} +(1.73815e6 - 658332. i) q^{75} +8.62452e6i q^{76} +(4.57747e6 - 1.73373e6i) q^{78} -4.27705e6 q^{79} +1.26060e7 q^{80} +(584759. - 4.74709e6i) q^{81} +8.81778e6i q^{82} +3.62840e6 q^{83} +4.39422e6 q^{85} -3.11905e6i q^{86} +(-1.22074e6 - 3.22304e6i) q^{87} -4.04815e6 q^{88} -4.43094e6 q^{89} +(1.03285e7 + 1.16788e7i) q^{90} +3.08586e7i q^{92} +(3.01669e6 + 7.96477e6i) q^{93} +7.86142e6i q^{94} -9.76702e6i q^{95} +(4.91751e6 + 1.29834e7i) q^{96} -3.45013e6i q^{97} +(-1.61257e6 - 1.82340e6i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 2300 q^{4} + 7032 q^{9} + 27576 q^{15} + 39188 q^{16} - 66996 q^{18} + 105132 q^{22} + 662504 q^{25} + 81324 q^{30} - 227244 q^{36} + 1237496 q^{37} - 3992208 q^{39} - 1416064 q^{43} + 6985680 q^{46}+ \cdots + 35642232 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 20.7644i 1.83533i 0.397353 + 0.917666i \(0.369929\pi\)
−0.397353 + 0.917666i \(0.630071\pi\)
\(3\) 43.7336 16.5643i 0.935170 0.354199i
\(4\) −303.161 −2.36844
\(5\) 343.321 1.22830 0.614151 0.789189i \(-0.289499\pi\)
0.614151 + 0.789189i \(0.289499\pi\)
\(6\) 343.947 + 908.102i 0.650073 + 1.71635i
\(7\) 0 0
\(8\) 3637.11i 2.51155i
\(9\) 1638.25 1448.83i 0.749086 0.662473i
\(10\) 7128.85i 2.25434i
\(11\) 1113.01i 0.252131i −0.992022 0.126065i \(-0.959765\pi\)
0.992022 0.126065i \(-0.0402349\pi\)
\(12\) −13258.3 + 5021.63i −2.21490 + 0.838901i
\(13\) 5040.70i 0.636339i −0.948034 0.318170i \(-0.896932\pi\)
0.948034 0.318170i \(-0.103068\pi\)
\(14\) 0 0
\(15\) 15014.6 5686.86i 1.14867 0.435064i
\(16\) 36717.9 2.24108
\(17\) 12799.2 0.631845 0.315923 0.948785i \(-0.397686\pi\)
0.315923 + 0.948785i \(0.397686\pi\)
\(18\) 30084.1 + 34017.3i 1.21586 + 1.37482i
\(19\) 28448.7i 0.951534i −0.879571 0.475767i \(-0.842171\pi\)
0.879571 0.475767i \(-0.157829\pi\)
\(20\) −104081. −2.90916
\(21\) 0 0
\(22\) 23111.1 0.462744
\(23\) 101790.i 1.74444i −0.489113 0.872220i \(-0.662680\pi\)
0.489113 0.872220i \(-0.337320\pi\)
\(24\) −60246.1 159064.i −0.889589 2.34872i
\(25\) 39744.1 0.508725
\(26\) 104667. 1.16789
\(27\) 47647.8 90498.9i 0.465875 0.884851i
\(28\) 0 0
\(29\) 73697.1i 0.561122i −0.959836 0.280561i \(-0.909480\pi\)
0.959836 0.280561i \(-0.0905205\pi\)
\(30\) 118084. + 311770.i 0.798486 + 2.10819i
\(31\) 182120.i 1.09798i 0.835831 + 0.548988i \(0.184987\pi\)
−0.835831 + 0.548988i \(0.815013\pi\)
\(32\) 296875.i 1.60158i
\(33\) −18436.3 48676.1i −0.0893046 0.235785i
\(34\) 265767.i 1.15965i
\(35\) 0 0
\(36\) −496653. + 439228.i −1.77417 + 1.56903i
\(37\) 401039. 1.30161 0.650804 0.759246i \(-0.274432\pi\)
0.650804 + 0.759246i \(0.274432\pi\)
\(38\) 590720. 1.74638
\(39\) −83495.4 220448.i −0.225391 0.595086i
\(40\) 1.24870e6i 3.08494i
\(41\) 424658. 0.962268 0.481134 0.876647i \(-0.340225\pi\)
0.481134 + 0.876647i \(0.340225\pi\)
\(42\) 0 0
\(43\) −150211. −0.288113 −0.144057 0.989569i \(-0.546015\pi\)
−0.144057 + 0.989569i \(0.546015\pi\)
\(44\) 337422.i 0.597158i
\(45\) 562445. 497413.i 0.920103 0.813717i
\(46\) 2.11360e6 3.20163
\(47\) 378601. 0.531911 0.265955 0.963985i \(-0.414313\pi\)
0.265955 + 0.963985i \(0.414313\pi\)
\(48\) 1.60580e6 608204.i 2.09579 0.793789i
\(49\) 0 0
\(50\) 825264.i 0.933679i
\(51\) 559753. 212009.i 0.590883 0.223799i
\(52\) 1.52814e6i 1.50713i
\(53\) 737648.i 0.680587i 0.940319 + 0.340293i \(0.110526\pi\)
−0.940319 + 0.340293i \(0.889474\pi\)
\(54\) 1.87916e6 + 989377.i 1.62399 + 0.855035i
\(55\) 382121.i 0.309693i
\(56\) 0 0
\(57\) −471231. 1.24416e6i −0.337033 0.889846i
\(58\) 1.53028e6 1.02984
\(59\) −1.08041e6 −0.684870 −0.342435 0.939542i \(-0.611252\pi\)
−0.342435 + 0.939542i \(0.611252\pi\)
\(60\) −4.55185e6 + 1.72403e6i −2.72056 + 1.03042i
\(61\) 376699.i 0.212491i 0.994340 + 0.106245i \(0.0338829\pi\)
−0.994340 + 0.106245i \(0.966117\pi\)
\(62\) −3.78162e6 −2.01515
\(63\) 0 0
\(64\) −1.46454e6 −0.698349
\(65\) 1.73058e6i 0.781617i
\(66\) 1.01073e6 382818.i 0.432744 0.163904i
\(67\) −2.49206e6 −1.01227 −0.506136 0.862454i \(-0.668927\pi\)
−0.506136 + 0.862454i \(0.668927\pi\)
\(68\) −3.88021e6 −1.49649
\(69\) −1.68607e6 4.45162e6i −0.617880 1.63135i
\(70\) 0 0
\(71\) 1.89722e6i 0.629092i 0.949242 + 0.314546i \(0.101852\pi\)
−0.949242 + 0.314546i \(0.898148\pi\)
\(72\) −5.26955e6 5.95850e6i −1.66383 1.88136i
\(73\) 1.88543e6i 0.567258i 0.958934 + 0.283629i \(0.0915384\pi\)
−0.958934 + 0.283629i \(0.908462\pi\)
\(74\) 8.32733e6i 2.38888i
\(75\) 1.73815e6 658332.i 0.475744 0.180190i
\(76\) 8.62452e6i 2.25365i
\(77\) 0 0
\(78\) 4.57747e6 1.73373e6i 1.09218 0.413667i
\(79\) −4.27705e6 −0.975999 −0.488000 0.872844i \(-0.662273\pi\)
−0.488000 + 0.872844i \(0.662273\pi\)
\(80\) 1.26060e7 2.75272
\(81\) 584759. 4.74709e6i 0.122259 0.992498i
\(82\) 8.81778e6i 1.76608i
\(83\) 3.62840e6 0.696533 0.348267 0.937396i \(-0.386770\pi\)
0.348267 + 0.937396i \(0.386770\pi\)
\(84\) 0 0
\(85\) 4.39422e6 0.776096
\(86\) 3.11905e6i 0.528784i
\(87\) −1.22074e6 3.22304e6i −0.198749 0.524744i
\(88\) −4.04815e6 −0.633239
\(89\) −4.43094e6 −0.666241 −0.333120 0.942884i \(-0.608102\pi\)
−0.333120 + 0.942884i \(0.608102\pi\)
\(90\) 1.03285e7 + 1.16788e7i 1.49344 + 1.68869i
\(91\) 0 0
\(92\) 3.08586e7i 4.13161i
\(93\) 3.01669e6 + 7.96477e6i 0.388902 + 1.02679i
\(94\) 7.86142e6i 0.976233i
\(95\) 9.76702e6i 1.16877i
\(96\) 4.91751e6 + 1.29834e7i 0.567278 + 1.49775i
\(97\) 3.45013e6i 0.383826i −0.981412 0.191913i \(-0.938531\pi\)
0.981412 0.191913i \(-0.0614692\pi\)
\(98\) 0 0
\(99\) −1.61257e6 1.82340e6i −0.167030 0.188868i
\(100\) −1.20489e7 −1.20489
\(101\) 1.34986e7 1.30366 0.651828 0.758367i \(-0.274002\pi\)
0.651828 + 0.758367i \(0.274002\pi\)
\(102\) 4.40224e6 + 1.16230e7i 0.410746 + 1.08447i
\(103\) 2.67558e6i 0.241261i 0.992697 + 0.120631i \(0.0384917\pi\)
−0.992697 + 0.120631i \(0.961508\pi\)
\(104\) −1.83336e7 −1.59820
\(105\) 0 0
\(106\) −1.53168e7 −1.24910
\(107\) 8.35749e6i 0.659527i 0.944064 + 0.329764i \(0.106969\pi\)
−0.944064 + 0.329764i \(0.893031\pi\)
\(108\) −1.44449e7 + 2.74357e7i −1.10340 + 2.09572i
\(109\) −2.01785e7 −1.49244 −0.746218 0.665702i \(-0.768132\pi\)
−0.746218 + 0.665702i \(0.768132\pi\)
\(110\) 7.93451e6 0.568389
\(111\) 1.75389e7 6.64291e6i 1.21723 0.461029i
\(112\) 0 0
\(113\) 1.07711e7i 0.702237i 0.936331 + 0.351119i \(0.114199\pi\)
−0.936331 + 0.351119i \(0.885801\pi\)
\(114\) 2.58343e7 9.78484e6i 1.63316 0.618567i
\(115\) 3.49465e7i 2.14270i
\(116\) 2.23421e7i 1.32899i
\(117\) −7.30311e6 8.25792e6i −0.421558 0.476673i
\(118\) 2.24342e7i 1.25696i
\(119\) 0 0
\(120\) −2.06837e7 5.46099e7i −1.09268 2.88494i
\(121\) 1.82484e7 0.936430
\(122\) −7.82193e6 −0.389991
\(123\) 1.85718e7 7.03415e6i 0.899884 0.340835i
\(124\) 5.52117e7i 2.60049i
\(125\) −1.31769e7 −0.603434
\(126\) 0 0
\(127\) 4.20872e7 1.82321 0.911606 0.411066i \(-0.134843\pi\)
0.911606 + 0.411066i \(0.134843\pi\)
\(128\) 7.58959e6i 0.319877i
\(129\) −6.56928e6 + 2.48814e6i −0.269435 + 0.102050i
\(130\) 3.59344e7 1.43453
\(131\) −2.12950e7 −0.827614 −0.413807 0.910365i \(-0.635801\pi\)
−0.413807 + 0.910365i \(0.635801\pi\)
\(132\) 5.58915e6 + 1.47567e7i 0.211513 + 0.558444i
\(133\) 0 0
\(134\) 5.17462e7i 1.85785i
\(135\) 1.63585e7 3.10701e7i 0.572235 1.08686i
\(136\) 4.65520e7i 1.58691i
\(137\) 1.93619e7i 0.643319i 0.946855 + 0.321659i \(0.104241\pi\)
−0.946855 + 0.321659i \(0.895759\pi\)
\(138\) 9.24354e7 3.50103e7i 2.99407 1.13401i
\(139\) 4.20425e7i 1.32781i −0.747816 0.663906i \(-0.768897\pi\)
0.747816 0.663906i \(-0.231103\pi\)
\(140\) 0 0
\(141\) 1.65576e7 6.27124e6i 0.497427 0.188403i
\(142\) −3.93947e7 −1.15459
\(143\) −5.61036e6 −0.160441
\(144\) 6.01531e7 5.31979e7i 1.67876 1.48466i
\(145\) 2.53017e7i 0.689227i
\(146\) −3.91498e7 −1.04111
\(147\) 0 0
\(148\) −1.21579e8 −3.08279
\(149\) 1.36435e7i 0.337889i 0.985626 + 0.168945i \(0.0540359\pi\)
−0.985626 + 0.168945i \(0.945964\pi\)
\(150\) 1.36699e7 + 3.60917e7i 0.330709 + 0.873149i
\(151\) −5.21813e7 −1.23338 −0.616688 0.787207i \(-0.711526\pi\)
−0.616688 + 0.787207i \(0.711526\pi\)
\(152\) −1.03471e8 −2.38982
\(153\) 2.09682e7 1.85438e7i 0.473306 0.418580i
\(154\) 0 0
\(155\) 6.25257e7i 1.34864i
\(156\) 2.53125e7 + 6.68311e7i 0.533826 + 1.40943i
\(157\) 3.74887e7i 0.773129i 0.922262 + 0.386565i \(0.126338\pi\)
−0.922262 + 0.386565i \(0.873662\pi\)
\(158\) 8.88104e7i 1.79128i
\(159\) 1.22186e7 + 3.22600e7i 0.241063 + 0.636464i
\(160\) 1.01923e8i 1.96722i
\(161\) 0 0
\(162\) 9.85705e7 + 1.21422e7i 1.82156 + 0.224385i
\(163\) 9.44168e7 1.70763 0.853813 0.520580i \(-0.174284\pi\)
0.853813 + 0.520580i \(0.174284\pi\)
\(164\) −1.28740e8 −2.27908
\(165\) −6.32955e6 1.67115e7i −0.109693 0.289615i
\(166\) 7.53416e7i 1.27837i
\(167\) 2.74004e7 0.455249 0.227625 0.973749i \(-0.426904\pi\)
0.227625 + 0.973749i \(0.426904\pi\)
\(168\) 0 0
\(169\) 3.73399e7 0.595072
\(170\) 9.12434e7i 1.42439i
\(171\) −4.12173e7 4.66060e7i −0.630366 0.712781i
\(172\) 4.55382e7 0.682380
\(173\) 6.32915e7 0.929359 0.464680 0.885479i \(-0.346169\pi\)
0.464680 + 0.885479i \(0.346169\pi\)
\(174\) 6.69244e7 2.53479e7i 0.963080 0.364770i
\(175\) 0 0
\(176\) 4.08675e7i 0.565046i
\(177\) −4.72503e7 + 1.78963e7i −0.640470 + 0.242580i
\(178\) 9.20060e7i 1.22277i
\(179\) 2.05120e7i 0.267315i 0.991028 + 0.133657i \(0.0426721\pi\)
−0.991028 + 0.133657i \(0.957328\pi\)
\(180\) −1.70511e8 + 1.50796e8i −2.17921 + 1.92724i
\(181\) 6.65265e6i 0.0833911i 0.999130 + 0.0416956i \(0.0132760\pi\)
−0.999130 + 0.0416956i \(0.986724\pi\)
\(182\) 0 0
\(183\) 6.23974e6 + 1.64744e7i 0.0752641 + 0.198715i
\(184\) −3.70220e8 −4.38125
\(185\) 1.37685e8 1.59877
\(186\) −1.65384e8 + 6.26398e7i −1.88451 + 0.713764i
\(187\) 1.42457e7i 0.159308i
\(188\) −1.14777e8 −1.25980
\(189\) 0 0
\(190\) 2.02806e8 2.14508
\(191\) 1.38193e8i 1.43506i −0.696527 0.717530i \(-0.745273\pi\)
0.696527 0.717530i \(-0.254727\pi\)
\(192\) −6.40497e7 + 2.42591e7i −0.653075 + 0.247355i
\(193\) 1.36873e8 1.37046 0.685229 0.728328i \(-0.259702\pi\)
0.685229 + 0.728328i \(0.259702\pi\)
\(194\) 7.16399e7 0.704448
\(195\) −2.86657e7 7.56843e7i −0.276848 0.730945i
\(196\) 0 0
\(197\) 9.90561e6i 0.0923102i −0.998934 0.0461551i \(-0.985303\pi\)
0.998934 0.0461551i \(-0.0146968\pi\)
\(198\) 3.78617e7 3.34840e7i 0.346635 0.306555i
\(199\) 2.35572e7i 0.211903i 0.994371 + 0.105952i \(0.0337889\pi\)
−0.994371 + 0.105952i \(0.966211\pi\)
\(200\) 1.44554e8i 1.27769i
\(201\) −1.08987e8 + 4.12792e7i −0.946646 + 0.358546i
\(202\) 2.80290e8i 2.39264i
\(203\) 0 0
\(204\) −1.69695e8 + 6.42728e7i −1.39947 + 0.530056i
\(205\) 1.45794e8 1.18196
\(206\) −5.55568e7 −0.442795
\(207\) −1.47476e8 1.66757e8i −1.15564 1.30674i
\(208\) 1.85084e8i 1.42609i
\(209\) −3.16638e7 −0.239911
\(210\) 0 0
\(211\) −8.68031e6 −0.0636131 −0.0318066 0.999494i \(-0.510126\pi\)
−0.0318066 + 0.999494i \(0.510126\pi\)
\(212\) 2.23626e8i 1.61193i
\(213\) 3.14261e7 + 8.29724e7i 0.222824 + 0.588308i
\(214\) −1.73538e8 −1.21045
\(215\) −5.15707e7 −0.353890
\(216\) −3.29154e8 1.73300e8i −2.22234 1.17007i
\(217\) 0 0
\(218\) 4.18994e8i 2.73911i
\(219\) 3.12308e7 + 8.24566e7i 0.200922 + 0.530482i
\(220\) 1.15844e8i 0.733490i
\(221\) 6.45167e7i 0.402068i
\(222\) 1.37936e8 + 3.64184e8i 0.846141 + 2.23401i
\(223\) 1.90665e8i 1.15134i −0.817683 0.575669i \(-0.804742\pi\)
0.817683 0.575669i \(-0.195258\pi\)
\(224\) 0 0
\(225\) 6.51109e7 5.75825e7i 0.381079 0.337017i
\(226\) −2.23655e8 −1.28884
\(227\) −3.06558e8 −1.73949 −0.869747 0.493499i \(-0.835718\pi\)
−0.869747 + 0.493499i \(0.835718\pi\)
\(228\) 1.42859e8 + 3.77181e8i 0.798243 + 2.10755i
\(229\) 2.84885e8i 1.56764i −0.620989 0.783820i \(-0.713269\pi\)
0.620989 0.783820i \(-0.286731\pi\)
\(230\) 7.25643e8 3.93256
\(231\) 0 0
\(232\) −2.68044e8 −1.40928
\(233\) 424927.i 0.00220074i 0.999999 + 0.00110037i \(0.000350259\pi\)
−0.999999 + 0.00110037i \(0.999650\pi\)
\(234\) 1.71471e8 1.51645e8i 0.874853 0.773699i
\(235\) 1.29981e8 0.653347
\(236\) 3.27539e8 1.62208
\(237\) −1.87051e8 + 7.08462e7i −0.912725 + 0.345698i
\(238\) 0 0
\(239\) 1.59609e8i 0.756250i 0.925755 + 0.378125i \(0.123431\pi\)
−0.925755 + 0.378125i \(0.876569\pi\)
\(240\) 5.51306e8 2.08809e8i 2.57426 0.975013i
\(241\) 7.79671e7i 0.358799i 0.983776 + 0.179400i \(0.0574155\pi\)
−0.983776 + 0.179400i \(0.942584\pi\)
\(242\) 3.78917e8i 1.71866i
\(243\) −5.30584e7 2.17293e8i −0.237210 0.971458i
\(244\) 1.14200e8i 0.503272i
\(245\) 0 0
\(246\) 1.46060e8 + 3.85633e8i 0.625545 + 1.65159i
\(247\) −1.43401e8 −0.605499
\(248\) 6.62392e8 2.75762
\(249\) 1.58683e8 6.01018e7i 0.651377 0.246712i
\(250\) 2.73612e8i 1.10750i
\(251\) 1.08662e7 0.0433730 0.0216865 0.999765i \(-0.493096\pi\)
0.0216865 + 0.999765i \(0.493096\pi\)
\(252\) 0 0
\(253\) −1.13293e8 −0.439827
\(254\) 8.73916e8i 3.34620i
\(255\) 1.92175e8 7.27870e7i 0.725782 0.274893i
\(256\) −3.45055e8 −1.28543
\(257\) −8.16843e7 −0.300174 −0.150087 0.988673i \(-0.547955\pi\)
−0.150087 + 0.988673i \(0.547955\pi\)
\(258\) −5.16648e7 1.36407e8i −0.187295 0.494503i
\(259\) 0 0
\(260\) 5.24643e8i 1.85122i
\(261\) −1.06774e8 1.20734e8i −0.371728 0.420328i
\(262\) 4.42178e8i 1.51895i
\(263\) 2.53072e8i 0.857824i 0.903346 + 0.428912i \(0.141103\pi\)
−0.903346 + 0.428912i \(0.858897\pi\)
\(264\) −1.77040e8 + 6.70547e7i −0.592186 + 0.224293i
\(265\) 2.53250e8i 0.835966i
\(266\) 0 0
\(267\) −1.93781e8 + 7.33953e7i −0.623048 + 0.235982i
\(268\) 7.55495e8 2.39751
\(269\) −5.61342e8 −1.75831 −0.879153 0.476540i \(-0.841891\pi\)
−0.879153 + 0.476540i \(0.841891\pi\)
\(270\) 6.45153e8 + 3.39674e8i 1.99476 + 1.05024i
\(271\) 4.66736e8i 1.42455i 0.701899 + 0.712277i \(0.252336\pi\)
−0.701899 + 0.712277i \(0.747664\pi\)
\(272\) 4.69958e8 1.41602
\(273\) 0 0
\(274\) −4.02039e8 −1.18070
\(275\) 4.42358e7i 0.128265i
\(276\) 5.11150e8 + 1.34956e9i 1.46341 + 3.86376i
\(277\) 1.28270e8 0.362615 0.181307 0.983426i \(-0.441967\pi\)
0.181307 + 0.983426i \(0.441967\pi\)
\(278\) 8.72987e8 2.43698
\(279\) 2.63861e8 + 2.98359e8i 0.727379 + 0.822477i
\(280\) 0 0
\(281\) 3.38344e7i 0.0909675i −0.998965 0.0454837i \(-0.985517\pi\)
0.998965 0.0454837i \(-0.0144829\pi\)
\(282\) 1.30219e8 + 3.43808e8i 0.345781 + 0.912944i
\(283\) 2.66184e8i 0.698120i −0.937100 0.349060i \(-0.886501\pi\)
0.937100 0.349060i \(-0.113499\pi\)
\(284\) 5.75164e8i 1.48997i
\(285\) −1.61783e8 4.27147e8i −0.413978 1.09300i
\(286\) 1.16496e8i 0.294462i
\(287\) 0 0
\(288\) 4.30121e8 + 4.86355e8i 1.06100 + 1.19972i
\(289\) −2.46520e8 −0.600772
\(290\) 5.25376e8 1.26496
\(291\) −5.71489e7 1.50887e8i −0.135951 0.358943i
\(292\) 5.71588e8i 1.34352i
\(293\) −3.87975e8 −0.901088 −0.450544 0.892754i \(-0.648770\pi\)
−0.450544 + 0.892754i \(0.648770\pi\)
\(294\) 0 0
\(295\) −3.70928e8 −0.841227
\(296\) 1.45862e9i 3.26905i
\(297\) −1.00726e8 5.30326e7i −0.223098 0.117461i
\(298\) −2.83300e8 −0.620139
\(299\) −5.13091e8 −1.11006
\(300\) −5.26940e8 + 1.99581e8i −1.12677 + 0.426770i
\(301\) 0 0
\(302\) 1.08351e9i 2.26366i
\(303\) 5.90341e8 2.23594e8i 1.21914 0.461754i
\(304\) 1.04457e9i 2.13247i
\(305\) 1.29329e8i 0.261003i
\(306\) 3.85051e8 + 4.35393e8i 0.768234 + 0.868674i
\(307\) 2.45426e8i 0.484101i 0.970264 + 0.242051i \(0.0778200\pi\)
−0.970264 + 0.242051i \(0.922180\pi\)
\(308\) 0 0
\(309\) 4.43190e7 + 1.17013e8i 0.0854546 + 0.225620i
\(310\) −1.29831e9 −2.47521
\(311\) 5.06429e8 0.954678 0.477339 0.878719i \(-0.341601\pi\)
0.477339 + 0.878719i \(0.341601\pi\)
\(312\) −8.01792e8 + 3.03682e8i −1.49459 + 0.566080i
\(313\) 3.28338e8i 0.605223i 0.953114 + 0.302611i \(0.0978584\pi\)
−0.953114 + 0.302611i \(0.902142\pi\)
\(314\) −7.78432e8 −1.41895
\(315\) 0 0
\(316\) 1.29663e9 2.31160
\(317\) 7.22758e8i 1.27434i −0.770723 0.637170i \(-0.780105\pi\)
0.770723 0.637170i \(-0.219895\pi\)
\(318\) −6.69859e8 + 2.53712e8i −1.16812 + 0.442431i
\(319\) −8.20259e7 −0.141476
\(320\) −5.02808e8 −0.857783
\(321\) 1.38436e8 + 3.65503e8i 0.233604 + 0.616770i
\(322\) 0 0
\(323\) 3.64119e8i 0.601222i
\(324\) −1.77276e8 + 1.43913e9i −0.289563 + 2.35068i
\(325\) 2.00338e8i 0.323722i
\(326\) 1.96051e9i 3.13406i
\(327\) −8.82477e8 + 3.34242e8i −1.39568 + 0.528620i
\(328\) 1.54453e9i 2.41678i
\(329\) 0 0
\(330\) 3.47005e8 1.31429e8i 0.531540 0.201323i
\(331\) −4.38696e8 −0.664914 −0.332457 0.943118i \(-0.607878\pi\)
−0.332457 + 0.943118i \(0.607878\pi\)
\(332\) −1.09999e9 −1.64970
\(333\) 6.57002e8 5.81037e8i 0.975016 0.862281i
\(334\) 5.68953e8i 0.835534i
\(335\) −8.55576e8 −1.24337
\(336\) 0 0
\(337\) −3.32774e8 −0.473636 −0.236818 0.971554i \(-0.576105\pi\)
−0.236818 + 0.971554i \(0.576105\pi\)
\(338\) 7.75341e8i 1.09215i
\(339\) 1.78415e8 + 4.71057e8i 0.248732 + 0.656711i
\(340\) −1.33216e9 −1.83814
\(341\) 2.02702e8 0.276833
\(342\) 9.67747e8 8.55852e8i 1.30819 1.15693i
\(343\) 0 0
\(344\) 5.46336e8i 0.723611i
\(345\) −5.78863e8 1.52833e9i −0.758943 2.00379i
\(346\) 1.31421e9i 1.70568i
\(347\) 1.44259e9i 1.85348i −0.375700 0.926741i \(-0.622598\pi\)
0.375700 0.926741i \(-0.377402\pi\)
\(348\) 3.70080e8 + 9.77098e8i 0.470726 + 1.24283i
\(349\) 7.76311e8i 0.977568i 0.872405 + 0.488784i \(0.162559\pi\)
−0.872405 + 0.488784i \(0.837441\pi\)
\(350\) 0 0
\(351\) −4.56177e8 2.40178e8i −0.563065 0.296455i
\(352\) 3.30426e8 0.403808
\(353\) −2.37025e7 −0.0286802 −0.0143401 0.999897i \(-0.504565\pi\)
−0.0143401 + 0.999897i \(0.504565\pi\)
\(354\) −3.71605e8 9.81126e8i −0.445216 1.17547i
\(355\) 6.51357e8i 0.772715i
\(356\) 1.34329e9 1.57795
\(357\) 0 0
\(358\) −4.25920e8 −0.490611
\(359\) 9.81756e7i 0.111988i 0.998431 + 0.0559942i \(0.0178328\pi\)
−0.998431 + 0.0559942i \(0.982167\pi\)
\(360\) −1.80915e9 2.04568e9i −2.04369 2.31088i
\(361\) 8.45447e7 0.0945826
\(362\) −1.38138e8 −0.153050
\(363\) 7.98066e8 3.02271e8i 0.875721 0.331683i
\(364\) 0 0
\(365\) 6.47307e8i 0.696764i
\(366\) −3.42081e8 + 1.29565e8i −0.364708 + 0.138135i
\(367\) 1.69767e9i 1.79276i 0.443291 + 0.896378i \(0.353811\pi\)
−0.443291 + 0.896378i \(0.646189\pi\)
\(368\) 3.73750e9i 3.90943i
\(369\) 6.95696e8 6.15257e8i 0.720821 0.637477i
\(370\) 2.85895e9i 2.93427i
\(371\) 0 0
\(372\) −9.14542e8 2.41461e9i −0.921093 2.43190i
\(373\) 1.86808e7 0.0186386 0.00931932 0.999957i \(-0.497034\pi\)
0.00931932 + 0.999957i \(0.497034\pi\)
\(374\) 2.95803e8 0.292383
\(375\) −5.76275e8 + 2.18266e8i −0.564313 + 0.213736i
\(376\) 1.37701e9i 1.33592i
\(377\) −3.71485e8 −0.357064
\(378\) 0 0
\(379\) 1.03410e9 0.975719 0.487860 0.872922i \(-0.337778\pi\)
0.487860 + 0.872922i \(0.337778\pi\)
\(380\) 2.96098e9i 2.76817i
\(381\) 1.84062e9 6.97144e8i 1.70501 0.645780i
\(382\) 2.86950e9 2.63381
\(383\) −6.16484e8 −0.560694 −0.280347 0.959899i \(-0.590450\pi\)
−0.280347 + 0.959899i \(0.590450\pi\)
\(384\) 1.25716e8 + 3.31920e8i 0.113300 + 0.299139i
\(385\) 0 0
\(386\) 2.84208e9i 2.51525i
\(387\) −2.46084e8 + 2.17631e8i −0.215822 + 0.190867i
\(388\) 1.04594e9i 0.909071i
\(389\) 7.02287e8i 0.604910i 0.953164 + 0.302455i \(0.0978063\pi\)
−0.953164 + 0.302455i \(0.902194\pi\)
\(390\) 1.57154e9 5.95227e8i 1.34153 0.508108i
\(391\) 1.30282e9i 1.10222i
\(392\) 0 0
\(393\) −9.31305e8 + 3.52736e8i −0.773959 + 0.293140i
\(394\) 2.05684e8 0.169420
\(395\) −1.46840e9 −1.19882
\(396\) 4.88867e8 + 5.52782e8i 0.395601 + 0.447322i
\(397\) 5.89861e8i 0.473133i −0.971615 0.236566i \(-0.923978\pi\)
0.971615 0.236566i \(-0.0760221\pi\)
\(398\) −4.89151e8 −0.388913
\(399\) 0 0
\(400\) 1.45932e9 1.14009
\(401\) 2.17272e8i 0.168267i 0.996454 + 0.0841336i \(0.0268122\pi\)
−0.996454 + 0.0841336i \(0.973188\pi\)
\(402\) −8.57138e8 2.26305e9i −0.658051 1.73741i
\(403\) 9.18013e8 0.698685
\(404\) −4.09224e9 −3.08764
\(405\) 2.00760e8 1.62977e9i 0.150170 1.21909i
\(406\) 0 0
\(407\) 4.46362e8i 0.328176i
\(408\) −7.71100e8 2.03588e9i −0.562082 1.48403i
\(409\) 1.84741e9i 1.33515i −0.744541 0.667577i \(-0.767331\pi\)
0.744541 0.667577i \(-0.232669\pi\)
\(410\) 3.02733e9i 2.16928i
\(411\) 3.20716e8 + 8.46766e8i 0.227863 + 0.601613i
\(412\) 8.11131e8i 0.571414i
\(413\) 0 0
\(414\) 3.46261e9 3.06225e9i 2.39829 2.12099i
\(415\) 1.24571e9 0.855553
\(416\) 1.49646e9 1.01915
\(417\) −6.96403e8 1.83867e9i −0.470310 1.24173i
\(418\) 6.57479e8i 0.440317i
\(419\) −2.39246e9 −1.58890 −0.794448 0.607333i \(-0.792240\pi\)
−0.794448 + 0.607333i \(0.792240\pi\)
\(420\) 0 0
\(421\) −2.88856e9 −1.88666 −0.943331 0.331853i \(-0.892326\pi\)
−0.943331 + 0.331853i \(0.892326\pi\)
\(422\) 1.80242e8i 0.116751i
\(423\) 6.20243e8 5.48528e8i 0.398447 0.352377i
\(424\) 2.68291e9 1.70933
\(425\) 5.08692e8 0.321435
\(426\) −1.72287e9 + 6.52545e8i −1.07974 + 0.408956i
\(427\) 0 0
\(428\) 2.53366e9i 1.56205i
\(429\) −2.45361e8 + 9.29316e7i −0.150039 + 0.0568280i
\(430\) 1.07084e9i 0.649506i
\(431\) 2.78813e9i 1.67742i 0.544575 + 0.838712i \(0.316691\pi\)
−0.544575 + 0.838712i \(0.683309\pi\)
\(432\) 1.74952e9 3.32293e9i 1.04406 1.98302i
\(433\) 2.17509e9i 1.28757i 0.765207 + 0.643784i \(0.222637\pi\)
−0.765207 + 0.643784i \(0.777363\pi\)
\(434\) 0 0
\(435\) −4.19105e8 1.10654e9i −0.244124 0.644544i
\(436\) 6.11732e9 3.53475
\(437\) −2.89578e9 −1.65989
\(438\) −1.71216e9 + 6.48488e8i −0.973611 + 0.368759i
\(439\) 3.33046e9i 1.87879i −0.342837 0.939395i \(-0.611388\pi\)
0.342837 0.939395i \(-0.388612\pi\)
\(440\) −1.38982e9 −0.777808
\(441\) 0 0
\(442\) 1.33965e9 0.737928
\(443\) 5.69632e8i 0.311302i 0.987812 + 0.155651i \(0.0497475\pi\)
−0.987812 + 0.155651i \(0.950253\pi\)
\(444\) −5.31709e9 + 2.01387e9i −2.88293 + 1.09192i
\(445\) −1.52124e9 −0.818345
\(446\) 3.95904e9 2.11309
\(447\) 2.25995e8 + 5.96680e8i 0.119680 + 0.315984i
\(448\) 0 0
\(449\) 3.83593e7i 0.0199990i 0.999950 + 0.00999950i \(0.00318299\pi\)
−0.999950 + 0.00999950i \(0.996817\pi\)
\(450\) 1.19567e9 + 1.35199e9i 0.618537 + 0.699406i
\(451\) 4.72650e8i 0.242617i
\(452\) 3.26536e9i 1.66321i
\(453\) −2.28208e9 + 8.64345e8i −1.15342 + 0.436861i
\(454\) 6.36550e9i 3.19255i
\(455\) 0 0
\(456\) −4.52515e9 + 1.71392e9i −2.23489 + 0.846474i
\(457\) −3.35569e8 −0.164466 −0.0822329 0.996613i \(-0.526205\pi\)
−0.0822329 + 0.996613i \(0.526205\pi\)
\(458\) 5.91548e9 2.87714
\(459\) 6.09852e8 1.15831e9i 0.294361 0.559089i
\(460\) 1.05944e10i 5.07486i
\(461\) 1.91384e9 0.909815 0.454907 0.890539i \(-0.349672\pi\)
0.454907 + 0.890539i \(0.349672\pi\)
\(462\) 0 0
\(463\) 2.37251e9 1.11090 0.555450 0.831550i \(-0.312546\pi\)
0.555450 + 0.831550i \(0.312546\pi\)
\(464\) 2.70600e9i 1.25752i
\(465\) 1.03569e9 + 2.73447e9i 0.477689 + 1.26121i
\(466\) −8.82337e6 −0.00403909
\(467\) −1.68770e9 −0.766809 −0.383404 0.923581i \(-0.625248\pi\)
−0.383404 + 0.923581i \(0.625248\pi\)
\(468\) 2.21402e9 + 2.50348e9i 0.998436 + 1.12897i
\(469\) 0 0
\(470\) 2.69899e9i 1.19911i
\(471\) 6.20973e8 + 1.63952e9i 0.273842 + 0.723007i
\(472\) 3.92958e9i 1.72008i
\(473\) 1.67187e8i 0.0726423i
\(474\) −1.47108e9 3.88400e9i −0.634471 1.67515i
\(475\) 1.13067e9i 0.484069i
\(476\) 0 0
\(477\) 1.06873e9 + 1.20845e9i 0.450871 + 0.509818i
\(478\) −3.31419e9 −1.38797
\(479\) −2.55452e9 −1.06202 −0.531012 0.847364i \(-0.678188\pi\)
−0.531012 + 0.847364i \(0.678188\pi\)
\(480\) 1.68828e9 + 4.45747e9i 0.696789 + 1.83969i
\(481\) 2.02151e9i 0.828265i
\(482\) −1.61894e9 −0.658516
\(483\) 0 0
\(484\) −5.53219e9 −2.21788
\(485\) 1.18450e9i 0.471454i
\(486\) 4.51197e9 1.10173e9i 1.78295 0.435358i
\(487\) 2.78226e9 1.09156 0.545778 0.837930i \(-0.316234\pi\)
0.545778 + 0.837930i \(0.316234\pi\)
\(488\) 1.37010e9 0.533681
\(489\) 4.12918e9 1.56394e9i 1.59692 0.604840i
\(490\) 0 0
\(491\) 4.40912e9i 1.68100i 0.541815 + 0.840498i \(0.317737\pi\)
−0.541815 + 0.840498i \(0.682263\pi\)
\(492\) −5.63025e9 + 2.13248e9i −2.13132 + 0.807248i
\(493\) 9.43261e8i 0.354542i
\(494\) 2.97764e9i 1.11129i
\(495\) −5.53628e8 6.26009e8i −0.205163 0.231986i
\(496\) 6.68707e9i 2.46065i
\(497\) 0 0
\(498\) 1.24798e9 + 3.29496e9i 0.452798 + 1.19549i
\(499\) 8.76642e8 0.315842 0.157921 0.987452i \(-0.449521\pi\)
0.157921 + 0.987452i \(0.449521\pi\)
\(500\) 3.99473e9 1.42920
\(501\) 1.19832e9 4.53868e8i 0.425736 0.161249i
\(502\) 2.25630e8i 0.0796039i
\(503\) 2.66652e9 0.934235 0.467118 0.884195i \(-0.345292\pi\)
0.467118 + 0.884195i \(0.345292\pi\)
\(504\) 0 0
\(505\) 4.63434e9 1.60128
\(506\) 2.35247e9i 0.807229i
\(507\) 1.63301e9 6.18508e8i 0.556494 0.210774i
\(508\) −1.27592e10 −4.31817
\(509\) 5.29487e9 1.77969 0.889843 0.456267i \(-0.150814\pi\)
0.889843 + 0.456267i \(0.150814\pi\)
\(510\) 1.51138e9 + 3.99040e9i 0.504520 + 1.33205i
\(511\) 0 0
\(512\) 6.19340e9i 2.03931i
\(513\) −2.57457e9 1.35552e9i −0.841966 0.443296i
\(514\) 1.69613e9i 0.550919i
\(515\) 9.18582e8i 0.296342i
\(516\) 1.99155e9 7.54307e8i 0.638142 0.241699i
\(517\) 4.21388e8i 0.134111i
\(518\) 0 0
\(519\) 2.76796e9 1.04838e9i 0.869109 0.329179i
\(520\) −6.29429e9 −1.96307
\(521\) 4.10919e9 1.27299 0.636494 0.771282i \(-0.280384\pi\)
0.636494 + 0.771282i \(0.280384\pi\)
\(522\) 2.50698e9 2.21711e9i 0.771442 0.682245i
\(523\) 5.01077e9i 1.53161i 0.643073 + 0.765805i \(0.277659\pi\)
−0.643073 + 0.765805i \(0.722341\pi\)
\(524\) 6.45580e9 1.96016
\(525\) 0 0
\(526\) −5.25488e9 −1.57439
\(527\) 2.33099e9i 0.693750i
\(528\) −6.76940e8 1.78728e9i −0.200139 0.528414i
\(529\) −6.95630e9 −2.04307
\(530\) −5.25858e9 −1.53428
\(531\) −1.76999e9 + 1.56533e9i −0.513026 + 0.453708i
\(532\) 0 0
\(533\) 2.14057e9i 0.612329i
\(534\) −1.52401e9 4.02375e9i −0.433106 1.14350i
\(535\) 2.86930e9i 0.810098i
\(536\) 9.06390e9i 2.54237i
\(537\) 3.39766e8 + 8.97063e8i 0.0946826 + 0.249984i
\(538\) 1.16559e10i 3.22707i
\(539\) 0 0
\(540\) −4.95924e9 + 9.41925e9i −1.35531 + 2.57417i
\(541\) 4.68219e9 1.27133 0.635665 0.771965i \(-0.280726\pi\)
0.635665 + 0.771965i \(0.280726\pi\)
\(542\) −9.69150e9 −2.61453
\(543\) 1.10196e8 + 2.90944e8i 0.0295371 + 0.0779849i
\(544\) 3.79975e9i 1.01195i
\(545\) −6.92769e9 −1.83316
\(546\) 0 0
\(547\) 1.79128e9 0.467958 0.233979 0.972242i \(-0.424825\pi\)
0.233979 + 0.972242i \(0.424825\pi\)
\(548\) 5.86977e9i 1.52366i
\(549\) 5.45772e8 + 6.17127e8i 0.140769 + 0.159174i
\(550\) 9.18530e8 0.235409
\(551\) −2.09658e9 −0.533927
\(552\) −1.61910e10 + 6.13242e9i −4.09721 + 1.55183i
\(553\) 0 0
\(554\) 2.66345e9i 0.665519i
\(555\) 6.02145e9 2.28065e9i 1.49512 0.566282i
\(556\) 1.27456e10i 3.14485i
\(557\) 2.56562e9i 0.629069i 0.949246 + 0.314535i \(0.101848\pi\)
−0.949246 + 0.314535i \(0.898152\pi\)
\(558\) −6.19524e9 + 5.47892e9i −1.50952 + 1.33498i
\(559\) 7.57170e8i 0.183338i
\(560\) 0 0
\(561\) −2.35969e8 6.23013e8i −0.0564267 0.148980i
\(562\) 7.02551e8 0.166956
\(563\) −6.11987e9 −1.44532 −0.722658 0.691206i \(-0.757080\pi\)
−0.722658 + 0.691206i \(0.757080\pi\)
\(564\) −5.01960e9 + 1.90119e9i −1.17813 + 0.446221i
\(565\) 3.69793e9i 0.862559i
\(566\) 5.52716e9 1.28128
\(567\) 0 0
\(568\) 6.90041e9 1.58000
\(569\) 7.66269e9i 1.74377i 0.489714 + 0.871883i \(0.337101\pi\)
−0.489714 + 0.871883i \(0.662899\pi\)
\(570\) 8.86945e9 3.35934e9i 2.00602 0.759787i
\(571\) 2.20883e9 0.496520 0.248260 0.968693i \(-0.420141\pi\)
0.248260 + 0.968693i \(0.420141\pi\)
\(572\) 1.70084e9 0.379995
\(573\) −2.28907e9 6.04369e9i −0.508297 1.34203i
\(574\) 0 0
\(575\) 4.04554e9i 0.887440i
\(576\) −2.39929e9 + 2.12187e9i −0.523123 + 0.462638i
\(577\) 8.82063e9i 1.91154i −0.294109 0.955772i \(-0.595023\pi\)
0.294109 0.955772i \(-0.404977\pi\)
\(578\) 5.11884e9i 1.10262i
\(579\) 5.98592e9 2.26719e9i 1.28161 0.485415i
\(580\) 7.67049e9i 1.63240i
\(581\) 0 0
\(582\) 3.13307e9 1.18666e9i 0.658779 0.249515i
\(583\) 8.21012e8 0.171597
\(584\) 6.85752e9 1.42469
\(585\) −2.50731e9 2.83512e9i −0.517800 0.585498i
\(586\) 8.05608e9i 1.65380i
\(587\) −2.02419e9 −0.413064 −0.206532 0.978440i \(-0.566218\pi\)
−0.206532 + 0.978440i \(0.566218\pi\)
\(588\) 0 0
\(589\) 5.18108e9 1.04476
\(590\) 7.70211e9i 1.54393i
\(591\) −1.64079e8 4.33208e8i −0.0326962 0.0863257i
\(592\) 1.47253e10 2.91701
\(593\) 6.17648e9 1.21632 0.608162 0.793813i \(-0.291907\pi\)
0.608162 + 0.793813i \(0.291907\pi\)
\(594\) 1.10119e9 2.09153e9i 0.215581 0.409459i
\(595\) 0 0
\(596\) 4.13618e9i 0.800272i
\(597\) 3.90208e8 + 1.03024e9i 0.0750561 + 0.198166i
\(598\) 1.06540e10i 2.03732i
\(599\) 1.93063e9i 0.367034i 0.983017 + 0.183517i \(0.0587482\pi\)
−0.983017 + 0.183517i \(0.941252\pi\)
\(600\) −2.39443e9 6.32185e9i −0.452556 1.19485i
\(601\) 2.31165e9i 0.434371i −0.976130 0.217186i \(-0.930312\pi\)
0.976130 0.217186i \(-0.0696877\pi\)
\(602\) 0 0
\(603\) −4.08262e9 + 3.61057e9i −0.758278 + 0.670603i
\(604\) 1.58193e10 2.92118
\(605\) 6.26504e9 1.15022
\(606\) 4.64280e9 + 1.22581e10i 0.847472 + 2.23753i
\(607\) 1.47091e9i 0.266947i 0.991052 + 0.133474i \(0.0426132\pi\)
−0.991052 + 0.133474i \(0.957387\pi\)
\(608\) 8.44570e9 1.52396
\(609\) 0 0
\(610\) −2.68543e9 −0.479027
\(611\) 1.90841e9i 0.338476i
\(612\) −6.35675e9 + 5.62176e9i −1.12100 + 0.991384i
\(613\) 6.52558e9 1.14422 0.572108 0.820179i \(-0.306126\pi\)
0.572108 + 0.820179i \(0.306126\pi\)
\(614\) −5.09613e9 −0.888487
\(615\) 6.37609e9 2.41497e9i 1.10533 0.418648i
\(616\) 0 0
\(617\) 2.15423e8i 0.0369228i 0.999830 + 0.0184614i \(0.00587678\pi\)
−0.999830 + 0.0184614i \(0.994123\pi\)
\(618\) −2.42970e9 + 9.20258e8i −0.414088 + 0.156838i
\(619\) 8.91605e9i 1.51097i 0.655167 + 0.755484i \(0.272598\pi\)
−0.655167 + 0.755484i \(0.727402\pi\)
\(620\) 1.89553e10i 3.19419i
\(621\) −9.21185e9 4.85005e9i −1.54357 0.812691i
\(622\) 1.05157e10i 1.75215i
\(623\) 0 0
\(624\) −3.06577e9 8.09437e9i −0.505119 1.33363i
\(625\) −7.62893e9 −1.24992
\(626\) −6.81774e9 −1.11078
\(627\) −1.38477e9 + 5.24487e8i −0.224358 + 0.0849764i
\(628\) 1.13651e10i 1.83111i
\(629\) 5.13296e9 0.822415
\(630\) 0 0
\(631\) 2.86880e9 0.454567 0.227284 0.973829i \(-0.427016\pi\)
0.227284 + 0.973829i \(0.427016\pi\)
\(632\) 1.55561e10i 2.45127i
\(633\) −3.79621e8 + 1.43783e8i −0.0594891 + 0.0225317i
\(634\) 1.50076e10 2.33884
\(635\) 1.44494e10 2.23945
\(636\) −3.70420e9 9.77996e9i −0.570945 1.50743i
\(637\) 0 0
\(638\) 1.70322e9i 0.259656i
\(639\) 2.74875e9 + 3.10813e9i 0.416757 + 0.471244i
\(640\) 2.60566e9i 0.392906i
\(641\) 7.55117e9i 1.13243i 0.824258 + 0.566215i \(0.191593\pi\)
−0.824258 + 0.566215i \(0.808407\pi\)
\(642\) −7.58945e9 + 2.87454e9i −1.13198 + 0.428741i
\(643\) 1.35180e7i 0.00200528i 0.999999 + 0.00100264i \(0.000319150\pi\)
−0.999999 + 0.00100264i \(0.999681\pi\)
\(644\) 0 0
\(645\) −2.25537e9 + 8.54231e8i −0.330947 + 0.125348i
\(646\) 7.56073e9 1.10344
\(647\) 1.65844e8 0.0240733 0.0120367 0.999928i \(-0.496169\pi\)
0.0120367 + 0.999928i \(0.496169\pi\)
\(648\) −1.72657e10 2.12683e9i −2.49271 0.307058i
\(649\) 1.20252e9i 0.172677i
\(650\) 4.15990e9 0.594137
\(651\) 0 0
\(652\) −2.86235e10 −4.04441
\(653\) 9.63138e9i 1.35361i 0.736164 + 0.676803i \(0.236635\pi\)
−0.736164 + 0.676803i \(0.763365\pi\)
\(654\) −6.94033e9 1.83241e10i −0.970193 2.56154i
\(655\) −7.31101e9 −1.01656
\(656\) 1.55925e10 2.15652
\(657\) 2.73167e9 + 3.08881e9i 0.375793 + 0.424925i
\(658\) 0 0
\(659\) 5.54548e9i 0.754814i 0.926048 + 0.377407i \(0.123184\pi\)
−0.926048 + 0.377407i \(0.876816\pi\)
\(660\) 1.91887e9 + 5.06627e9i 0.259802 + 0.685938i
\(661\) 1.79370e9i 0.241571i 0.992679 + 0.120785i \(0.0385413\pi\)
−0.992679 + 0.120785i \(0.961459\pi\)
\(662\) 9.10926e9i 1.22034i
\(663\) −1.06867e9 2.82155e9i −0.142412 0.376002i
\(664\) 1.31969e10i 1.74938i
\(665\) 0 0
\(666\) 1.20649e10 + 1.36423e10i 1.58257 + 1.78948i
\(667\) −7.50160e9 −0.978844
\(668\) −8.30673e9 −1.07823
\(669\) −3.15822e9 8.33844e9i −0.407803 1.07670i
\(670\) 1.77655e10i 2.28201i
\(671\) 4.19271e8 0.0535755
\(672\) 0 0
\(673\) −9.01100e9 −1.13952 −0.569758 0.821813i \(-0.692963\pi\)
−0.569758 + 0.821813i \(0.692963\pi\)
\(674\) 6.90986e9i 0.869280i
\(675\) 1.89372e9 3.59680e9i 0.237002 0.450146i
\(676\) −1.13200e10 −1.40939
\(677\) −5.17968e9 −0.641567 −0.320784 0.947152i \(-0.603946\pi\)
−0.320784 + 0.947152i \(0.603946\pi\)
\(678\) −9.78122e9 + 3.70468e9i −1.20528 + 0.456506i
\(679\) 0 0
\(680\) 1.59823e10i 1.94920i
\(681\) −1.34069e10 + 5.07791e9i −1.62672 + 0.616127i
\(682\) 4.20900e9i 0.508081i
\(683\) 4.37372e9i 0.525265i 0.964896 + 0.262633i \(0.0845907\pi\)
−0.964896 + 0.262633i \(0.915409\pi\)
\(684\) 1.24955e10 + 1.41291e10i 1.49299 + 1.68818i
\(685\) 6.64735e9i 0.790190i
\(686\) 0 0
\(687\) −4.71892e9 1.24591e10i −0.555257 1.46601i
\(688\) −5.51545e9 −0.645686
\(689\) 3.71826e9 0.433084
\(690\) 3.17350e10 1.20197e10i 3.67762 1.39291i
\(691\) 4.68467e9i 0.540139i 0.962841 + 0.270070i \(0.0870467\pi\)
−0.962841 + 0.270070i \(0.912953\pi\)
\(692\) −1.91875e10 −2.20114
\(693\) 0 0
\(694\) 2.99544e10 3.40176
\(695\) 1.44341e10i 1.63095i
\(696\) −1.17225e10 + 4.43996e9i −1.31792 + 0.499168i
\(697\) 5.43527e9 0.608004
\(698\) −1.61196e10 −1.79416
\(699\) 7.03861e6 + 1.85836e7i 0.000779501 + 0.00205807i
\(700\) 0 0
\(701\) 5.56974e8i 0.0610692i 0.999534 + 0.0305346i \(0.00972098\pi\)
−0.999534 + 0.0305346i \(0.990279\pi\)
\(702\) 4.98715e9 9.47225e9i 0.544092 1.03341i
\(703\) 1.14090e10i 1.23852i
\(704\) 1.63006e9i 0.176075i
\(705\) 5.68455e9 2.15305e9i 0.610991 0.231415i
\(706\) 4.92169e8i 0.0526378i
\(707\) 0 0
\(708\) 1.43245e10 5.42544e9i 1.51692 0.574538i
\(709\) 3.88299e9 0.409171 0.204585 0.978849i \(-0.434415\pi\)
0.204585 + 0.978849i \(0.434415\pi\)
\(710\) −1.35250e10 −1.41819
\(711\) −7.00688e9 + 6.19671e9i −0.731107 + 0.646573i
\(712\) 1.61158e10i 1.67330i
\(713\) 1.85380e10 1.91535
\(714\) 0 0
\(715\) −1.92615e9 −0.197070
\(716\) 6.21844e9i 0.633119i
\(717\) 2.64381e9 + 6.98028e9i 0.267863 + 0.707222i
\(718\) −2.03856e9 −0.205536
\(719\) −1.64202e10 −1.64751 −0.823756 0.566944i \(-0.808125\pi\)
−0.823756 + 0.566944i \(0.808125\pi\)
\(720\) 2.06518e10 1.82639e10i 2.06203 1.82361i
\(721\) 0 0
\(722\) 1.75552e9i 0.173591i
\(723\) 1.29147e9 + 3.40978e9i 0.127086 + 0.335538i
\(724\) 2.01682e9i 0.197507i
\(725\) 2.92903e9i 0.285457i
\(726\) 6.27648e9 + 1.65714e10i 0.608748 + 1.60724i
\(727\) 4.75159e9i 0.458636i 0.973351 + 0.229318i \(0.0736497\pi\)
−0.973351 + 0.229318i \(0.926350\pi\)
\(728\) 0 0
\(729\) −5.91974e9 8.62414e9i −0.565921 0.824459i
\(730\) −1.34410e10 −1.27879
\(731\) −1.92258e9 −0.182043
\(732\) −1.89164e9 4.99439e9i −0.178259 0.470645i
\(733\) 6.95925e9i 0.652677i 0.945253 + 0.326338i \(0.105815\pi\)
−0.945253 + 0.326338i \(0.894185\pi\)
\(734\) −3.52510e10 −3.29030
\(735\) 0 0
\(736\) 3.02188e10 2.79386
\(737\) 2.77370e9i 0.255225i
\(738\) 1.27754e10 + 1.44457e10i 1.16998 + 1.32295i
\(739\) −5.47550e9 −0.499078 −0.249539 0.968365i \(-0.580279\pi\)
−0.249539 + 0.968365i \(0.580279\pi\)
\(740\) −4.17407e10 −3.78659
\(741\) −6.27144e9 + 2.37533e9i −0.566244 + 0.214467i
\(742\) 0 0
\(743\) 1.33440e10i 1.19351i −0.802424 0.596755i \(-0.796457\pi\)
0.802424 0.596755i \(-0.203543\pi\)
\(744\) 2.89688e10 1.09720e10i 2.57884 0.976746i
\(745\) 4.68410e9i 0.415030i
\(746\) 3.87895e8i 0.0342081i
\(747\) 5.94423e9 5.25693e9i 0.521763 0.461435i
\(748\) 4.31872e9i 0.377311i
\(749\) 0 0
\(750\) −4.53217e9 1.19660e10i −0.392276 1.03570i
\(751\) −1.20933e10 −1.04185 −0.520926 0.853602i \(-0.674413\pi\)
−0.520926 + 0.853602i \(0.674413\pi\)
\(752\) 1.39014e10 1.19206
\(753\) 4.75218e8 1.79991e8i 0.0405612 0.0153627i
\(754\) 7.71366e9i 0.655331i
\(755\) −1.79149e10 −1.51496
\(756\) 0 0
\(757\) −5.16465e9 −0.432719 −0.216359 0.976314i \(-0.569418\pi\)
−0.216359 + 0.976314i \(0.569418\pi\)
\(758\) 2.14725e10i 1.79077i
\(759\) −4.95472e9 + 1.87662e9i −0.411313 + 0.155787i
\(760\) −3.55237e10 −2.93542
\(761\) 5.85978e9 0.481987 0.240993 0.970527i \(-0.422527\pi\)
0.240993 + 0.970527i \(0.422527\pi\)
\(762\) 1.44758e10 + 3.82195e10i 1.18522 + 3.12926i
\(763\) 0 0
\(764\) 4.18948e10i 3.39886i
\(765\) 7.19883e9 6.36647e9i 0.581363 0.514143i
\(766\) 1.28009e10i 1.02906i
\(767\) 5.44604e9i 0.435810i
\(768\) −1.50905e10 + 5.71558e9i −1.20210 + 0.455298i
\(769\) 1.46138e10i 1.15883i 0.815033 + 0.579415i \(0.196719\pi\)
−0.815033 + 0.579415i \(0.803281\pi\)
\(770\) 0 0
\(771\) −3.57235e9 + 1.35304e9i −0.280714 + 0.106321i
\(772\) −4.14944e10 −3.24585
\(773\) −1.42212e10 −1.10741 −0.553706 0.832712i \(-0.686787\pi\)
−0.553706 + 0.832712i \(0.686787\pi\)
\(774\) −4.51897e9 5.10979e9i −0.350305 0.396104i
\(775\) 7.23822e9i 0.558567i
\(776\) −1.25485e10 −0.963998
\(777\) 0 0
\(778\) −1.45826e10 −1.11021
\(779\) 1.20810e10i 0.915631i
\(780\) 8.69032e9 + 2.29445e10i 0.655699 + 1.73120i
\(781\) 2.11164e9 0.158614
\(782\) 2.70524e10 2.02293
\(783\) −6.66950e9 3.51150e9i −0.496509 0.261413i
\(784\) 0 0
\(785\) 1.28707e10i 0.949636i
\(786\) −7.32435e9 1.93380e10i −0.538010 1.42047i
\(787\) 1.44143e10i 1.05410i −0.849833 0.527052i \(-0.823297\pi\)
0.849833 0.527052i \(-0.176703\pi\)
\(788\) 3.00299e9i 0.218631i
\(789\) 4.19194e9 + 1.10677e10i 0.303841 + 0.802211i
\(790\) 3.04905e10i 2.20024i
\(791\) 0 0
\(792\) −6.63189e9 + 5.86508e9i −0.474350 + 0.419504i
\(793\) 1.89882e9 0.135216
\(794\) 1.22481e10 0.868356
\(795\) 4.19490e9 + 1.10755e10i 0.296099 + 0.781770i
\(796\) 7.14162e9i 0.501881i
\(797\) 8.69993e9 0.608712 0.304356 0.952558i \(-0.401559\pi\)
0.304356 + 0.952558i \(0.401559\pi\)
\(798\) 0 0
\(799\) 4.84578e9 0.336085
\(800\) 1.17990e10i 0.814764i
\(801\) −7.25900e9 + 6.41968e9i −0.499072 + 0.441367i
\(802\) −4.51153e9 −0.308826
\(803\) 2.09851e9 0.143023
\(804\) 3.30405e10 1.25142e10i 2.24208 0.849196i
\(805\) 0 0
\(806\) 1.90620e10i 1.28232i
\(807\) −2.45495e10 + 9.29821e9i −1.64431 + 0.622791i
\(808\) 4.90958e10i 3.27419i
\(809\) 7.73407e9i 0.513557i 0.966470 + 0.256778i \(0.0826611\pi\)
−0.966470 + 0.256778i \(0.917339\pi\)
\(810\) 3.38413e10 + 4.16866e9i 2.23743 + 0.275613i
\(811\) 2.54241e9i 0.167368i −0.996492 0.0836841i \(-0.973331\pi\)
0.996492 0.0836841i \(-0.0266687\pi\)
\(812\) 0 0
\(813\) 7.73114e9 + 2.04120e10i 0.504576 + 1.33220i
\(814\) 9.26844e9 0.602311
\(815\) 3.24152e10 2.09748
\(816\) 2.05530e10 7.78451e9i 1.32422 0.501552i
\(817\) 4.27332e9i 0.274150i
\(818\) 3.83604e10 2.45045
\(819\) 0 0
\(820\) −4.41990e10 −2.79939
\(821\) 2.73759e10i 1.72650i 0.504776 + 0.863250i \(0.331575\pi\)
−0.504776 + 0.863250i \(0.668425\pi\)
\(822\) −1.75826e10 + 6.65948e9i −1.10416 + 0.418205i
\(823\) 1.01376e10 0.633922 0.316961 0.948439i \(-0.397338\pi\)
0.316961 + 0.948439i \(0.397338\pi\)
\(824\) 9.73138e9 0.605939
\(825\) −7.32733e8 1.93459e9i −0.0454315 0.119950i
\(826\) 0 0
\(827\) 1.43439e10i 0.881858i −0.897542 0.440929i \(-0.854649\pi\)
0.897542 0.440929i \(-0.145351\pi\)
\(828\) 4.47089e10 + 5.05541e10i 2.73708 + 3.09493i
\(829\) 1.74580e10i 1.06428i 0.846658 + 0.532138i \(0.178611\pi\)
−0.846658 + 0.532138i \(0.821389\pi\)
\(830\) 2.58663e10i 1.57022i
\(831\) 5.60970e9 2.12470e9i 0.339107 0.128438i
\(832\) 7.38232e9i 0.444387i
\(833\) 0 0
\(834\) 3.81789e10 1.44604e10i 2.27899 0.863175i
\(835\) 9.40713e9 0.559184
\(836\) 9.59921e9 0.568216
\(837\) 1.64817e10 + 8.67762e9i 0.971544 + 0.511519i
\(838\) 4.96780e10i 2.91615i
\(839\) −2.21478e10 −1.29468 −0.647341 0.762200i \(-0.724119\pi\)
−0.647341 + 0.762200i \(0.724119\pi\)
\(840\) 0 0
\(841\) 1.18186e10 0.685142
\(842\) 5.99793e10i 3.46265i
\(843\) −5.60442e8 1.47970e9i −0.0322206 0.0850701i
\(844\) 2.63153e9 0.150664
\(845\) 1.28196e10 0.730928
\(846\) 1.13899e10 + 1.28790e10i 0.646728 + 0.731282i
\(847\) 0 0
\(848\) 2.70849e10i 1.52525i
\(849\) −4.40915e9 1.16412e10i −0.247274 0.652861i
\(850\) 1.05627e10i 0.589941i
\(851\) 4.08216e10i 2.27058i
\(852\) −9.52717e9 2.51540e10i −0.527746 1.39338i
\(853\) 2.54298e10i 1.40288i 0.712727 + 0.701442i \(0.247460\pi\)
−0.712727 + 0.701442i \(0.752540\pi\)
\(854\) 0 0
\(855\) −1.41507e10 1.60008e10i −0.774279 0.875510i
\(856\) 3.03971e10 1.65643
\(857\) −1.03844e10 −0.563571 −0.281786 0.959477i \(-0.590927\pi\)
−0.281786 + 0.959477i \(0.590927\pi\)
\(858\) −1.92967e9 5.09478e9i −0.104298 0.275372i
\(859\) 1.97174e9i 0.106139i −0.998591 0.0530694i \(-0.983100\pi\)
0.998591 0.0530694i \(-0.0169005\pi\)
\(860\) 1.56342e10 0.838169
\(861\) 0 0
\(862\) −5.78939e10 −3.07863
\(863\) 1.72039e10i 0.911149i −0.890198 0.455574i \(-0.849434\pi\)
0.890198 0.455574i \(-0.150566\pi\)
\(864\) 2.68668e10 + 1.41454e10i 1.41716 + 0.746136i
\(865\) 2.17293e10 1.14153
\(866\) −4.51645e10 −2.36312
\(867\) −1.07812e10 + 4.08342e9i −0.561824 + 0.212793i
\(868\) 0 0
\(869\) 4.76042e9i 0.246080i
\(870\) 2.29766e10 8.70246e9i 1.18295 0.448048i
\(871\) 1.25617e10i 0.644148i
\(872\) 7.33913e10i 3.74832i
\(873\) −4.99865e9 5.65218e9i −0.254275 0.287519i
\(874\) 6.01292e10i 3.04646i
\(875\) 0 0
\(876\) −9.46794e9 2.49976e10i −0.475873 1.25642i
\(877\) 2.12852e10 1.06557 0.532783 0.846252i \(-0.321146\pi\)
0.532783 + 0.846252i \(0.321146\pi\)
\(878\) 6.91550e10 3.44820
\(879\) −1.69675e10 + 6.42652e9i −0.842671 + 0.319165i
\(880\) 1.40307e10i 0.694047i
\(881\) −1.34320e10 −0.661798 −0.330899 0.943666i \(-0.607352\pi\)
−0.330899 + 0.943666i \(0.607352\pi\)
\(882\) 0 0
\(883\) 2.56922e9 0.125585 0.0627927 0.998027i \(-0.479999\pi\)
0.0627927 + 0.998027i \(0.479999\pi\)
\(884\) 1.95589e10i 0.952275i
\(885\) −1.62220e10 + 6.14416e9i −0.786690 + 0.297962i
\(886\) −1.18281e10 −0.571342
\(887\) −3.37177e9 −0.162228 −0.0811138 0.996705i \(-0.525848\pi\)
−0.0811138 + 0.996705i \(0.525848\pi\)
\(888\) −2.41610e10 6.37908e10i −1.15790 3.05712i
\(889\) 0 0
\(890\) 3.15876e10i 1.50193i
\(891\) −5.28357e9 6.50845e8i −0.250240 0.0308252i
\(892\) 5.78020e10i 2.72688i
\(893\) 1.07707e10i 0.506131i
\(894\) −1.23897e10 + 4.69265e9i −0.579935 + 0.219653i
\(895\) 7.04220e9i 0.328343i
\(896\) 0 0
\(897\) −2.24393e10 + 8.49897e9i −1.03809 + 0.393181i
\(898\) −7.96508e8 −0.0367048
\(899\) 1.34217e10 0.616098
\(900\) −1.97391e10 + 1.74567e10i −0.902563 + 0.798205i
\(901\) 9.44128e9i 0.430025i
\(902\) 9.81431e9 0.445284
\(903\) 0 0
\(904\) 3.91755e10 1.76370
\(905\) 2.28399e9i 0.102429i
\(906\) −1.79476e10 4.73860e10i −0.801785 2.11690i
\(907\) −3.61933e9 −0.161065 −0.0805327 0.996752i \(-0.525662\pi\)
−0.0805327 + 0.996752i \(0.525662\pi\)
\(908\) 9.29365e10 4.11989
\(909\) 2.21140e10 1.95571e10i 0.976550 0.863637i
\(910\) 0 0
\(911\) 3.28292e10i 1.43862i −0.694688 0.719311i \(-0.744458\pi\)
0.694688 0.719311i \(-0.255542\pi\)
\(912\) −1.73026e10 4.56830e10i −0.755318 1.99422i
\(913\) 4.03846e9i 0.175618i
\(914\) 6.96790e9i 0.301849i
\(915\) 2.14223e9 + 5.65600e9i 0.0924470 + 0.244082i
\(916\) 8.63661e10i 3.71286i
\(917\) 0 0
\(918\) 2.40516e10 + 1.26632e10i 1.02611 + 0.540250i
\(919\) 1.27468e10 0.541749 0.270875 0.962615i \(-0.412687\pi\)
0.270875 + 0.962615i \(0.412687\pi\)
\(920\) −1.27104e11 −5.38149
\(921\) 4.06530e9 + 1.07334e10i 0.171468 + 0.452717i
\(922\) 3.97398e10i 1.66981i
\(923\) 9.56333e9 0.400316
\(924\) 0 0
\(925\) 1.59389e10 0.662161
\(926\) 4.92638e10i 2.03887i
\(927\) 3.87646e9 + 4.38327e9i 0.159829 + 0.180725i
\(928\) 2.18788e10 0.898681
\(929\) −2.13873e10 −0.875185 −0.437593 0.899173i \(-0.644169\pi\)
−0.437593 + 0.899173i \(0.644169\pi\)
\(930\) −5.67797e10 + 2.15055e10i −2.31474 + 0.876718i
\(931\) 0 0
\(932\) 1.28821e8i 0.00521233i
\(933\) 2.21479e10 8.38862e9i 0.892786 0.338146i
\(934\) 3.50442e10i 1.40735i
\(935\) 4.89083e9i 0.195678i
\(936\) −3.00350e10 + 2.65622e10i −1.19719 + 1.05876i
\(937\) 1.55091e10i 0.615884i 0.951405 + 0.307942i \(0.0996402\pi\)
−0.951405 + 0.307942i \(0.900360\pi\)
\(938\) 0 0
\(939\) 5.43867e9 + 1.43594e10i 0.214370 + 0.565986i
\(940\) −3.94053e10 −1.54742
\(941\) 9.51405e9 0.372222 0.186111 0.982529i \(-0.440412\pi\)
0.186111 + 0.982529i \(0.440412\pi\)
\(942\) −3.40436e10 + 1.28941e10i −1.32696 + 0.502591i
\(943\) 4.32258e10i 1.67862i
\(944\) −3.96705e10 −1.53485
\(945\) 0 0
\(946\) −3.47155e9 −0.133323
\(947\) 1.14360e9i 0.0437572i 0.999761 + 0.0218786i \(0.00696474\pi\)
−0.999761 + 0.0218786i \(0.993035\pi\)
\(948\) 5.67064e10 2.14778e10i 2.16174 0.818767i
\(949\) 9.50388e9 0.360968
\(950\) 2.34777e10 0.888428
\(951\) −1.19719e10 3.16088e10i −0.451370 1.19172i
\(952\) 0 0
\(953\) 2.71794e10i 1.01722i 0.860997 + 0.508611i \(0.169841\pi\)
−0.860997 + 0.508611i \(0.830159\pi\)
\(954\) −2.50928e10 + 2.21915e10i −0.935685 + 0.827497i
\(955\) 4.74446e10i 1.76269i
\(956\) 4.83872e10i 1.79113i
\(957\) −3.58728e9 + 1.35870e9i −0.132304 + 0.0501108i
\(958\) 5.30430e10i 1.94917i
\(959\) 0 0
\(960\) −2.19896e10 + 8.32865e9i −0.802173 + 0.303826i
\(961\) −5.65520e9 −0.205549
\(962\) 4.19756e10 1.52014
\(963\) 1.21086e10 + 1.36917e10i 0.436919 + 0.494042i
\(964\) 2.36366e10i 0.849796i
\(965\) 4.69912e10 1.68334
\(966\) 0 0
\(967\) 3.61731e10 1.28645 0.643226 0.765676i \(-0.277596\pi\)
0.643226 + 0.765676i \(0.277596\pi\)
\(968\) 6.63713e10i 2.35189i
\(969\) −6.03137e9 1.59242e10i −0.212953 0.562245i
\(970\) 2.45955e10 0.865275
\(971\) −4.42111e10 −1.54976 −0.774880 0.632109i \(-0.782190\pi\)
−0.774880 + 0.632109i \(0.782190\pi\)
\(972\) 1.60852e10 + 6.58748e10i 0.561818 + 2.30084i
\(973\) 0 0
\(974\) 5.77720e10i 2.00337i
\(975\) −3.31845e9 8.76150e9i −0.114662 0.302735i
\(976\) 1.38316e10i 0.476209i
\(977\) 1.85701e10i 0.637064i −0.947912 0.318532i \(-0.896810\pi\)
0.947912 0.318532i \(-0.103190\pi\)
\(978\) 3.24744e10 + 8.57401e10i 1.11008 + 2.93088i
\(979\) 4.93170e9i 0.167980i
\(980\) 0 0
\(981\) −3.30574e10 + 2.92352e10i −1.11796 + 0.988699i
\(982\) −9.15527e10 −3.08518
\(983\) −4.53728e10 −1.52356 −0.761778 0.647838i \(-0.775673\pi\)
−0.761778 + 0.647838i \(0.775673\pi\)
\(984\) −2.55840e10 6.75477e10i −0.856023 2.26010i
\(985\) 3.40080e9i 0.113385i
\(986\) 1.95863e10 0.650703
\(987\) 0 0
\(988\) 4.34736e10 1.43409
\(989\) 1.52900e10i 0.502597i
\(990\) 1.29987e10 1.14957e10i 0.425772 0.376543i
\(991\) −1.93474e10 −0.631489 −0.315744 0.948844i \(-0.602254\pi\)
−0.315744 + 0.948844i \(0.602254\pi\)
\(992\) −5.40669e10 −1.75849
\(993\) −1.91857e10 + 7.26667e9i −0.621808 + 0.235512i
\(994\) 0 0
\(995\) 8.08768e9i 0.260281i
\(996\) −4.81064e10 + 1.82205e10i −1.54275 + 0.584323i
\(997\) 5.71238e10i 1.82551i 0.408507 + 0.912755i \(0.366049\pi\)
−0.408507 + 0.912755i \(0.633951\pi\)
\(998\) 1.82030e10i 0.579676i
\(999\) 1.91086e10 3.62936e10i 0.606387 1.15173i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 147.8.c.b.146.6 32
3.2 odd 2 inner 147.8.c.b.146.27 32
7.4 even 3 21.8.g.b.5.1 32
7.5 odd 6 21.8.g.b.17.16 yes 32
7.6 odd 2 inner 147.8.c.b.146.28 32
21.5 even 6 21.8.g.b.17.1 yes 32
21.11 odd 6 21.8.g.b.5.16 yes 32
21.20 even 2 inner 147.8.c.b.146.5 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.8.g.b.5.1 32 7.4 even 3
21.8.g.b.5.16 yes 32 21.11 odd 6
21.8.g.b.17.1 yes 32 21.5 even 6
21.8.g.b.17.16 yes 32 7.5 odd 6
147.8.c.b.146.5 32 21.20 even 2 inner
147.8.c.b.146.6 32 1.1 even 1 trivial
147.8.c.b.146.27 32 3.2 odd 2 inner
147.8.c.b.146.28 32 7.6 odd 2 inner