Defining parameters
Level: | \( N \) | \(=\) | \( 147 = 3 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 147.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(149\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(147, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 138 | 98 | 40 |
Cusp forms | 122 | 90 | 32 |
Eisenstein series | 16 | 8 | 8 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(147, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
147.8.c.a | $2$ | $45.921$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+27\beta q^{3}+128 q^{4}-2187 q^{9}+\cdots\) |
147.8.c.b | $32$ | $45.921$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
147.8.c.c | $56$ | $45.921$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{8}^{\mathrm{old}}(147, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(147, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)