Properties

Label 147.8.c
Level $147$
Weight $8$
Character orbit 147.c
Rep. character $\chi_{147}(146,\cdot)$
Character field $\Q$
Dimension $90$
Newform subspaces $3$
Sturm bound $149$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 147.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(149\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(147, [\chi])\).

Total New Old
Modular forms 138 98 40
Cusp forms 122 90 32
Eisenstein series 16 8 8

Trace form

\( 90 q - 5628 q^{4} + 362 q^{9} + 6352 q^{15} + 385780 q^{16} + 34252 q^{18} - 188980 q^{22} + 1117718 q^{25} - 250140 q^{30} + 1835420 q^{36} + 237002 q^{37} + 641114 q^{39} - 1213186 q^{43} - 898000 q^{46}+ \cdots - 24714456 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(147, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
147.8.c.a 147.c 21.c $2$ $45.921$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 21.8.g.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+27\beta q^{3}+128 q^{4}-2187 q^{9}+\cdots\)
147.8.c.b 147.c 21.c $32$ $45.921$ None 21.8.g.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
147.8.c.c 147.c 21.c $56$ $45.921$ None 147.8.c.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{8}^{\mathrm{old}}(147, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(147, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)