Properties

Label 147.8.c.b.146.24
Level $147$
Weight $8$
Character 147.146
Analytic conductor $45.921$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [147,8,Mod(146,147)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("147.146"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(147, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 147.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.9205987462\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 146.24
Character \(\chi\) \(=\) 147.146
Dual form 147.8.c.b.146.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.33246i q^{2} +(13.8782 + 44.6586i) q^{3} +40.9053 q^{4} -246.682 q^{5} +(-416.775 + 129.518i) q^{6} +1576.30i q^{8} +(-1801.79 + 1239.57i) q^{9} -2302.15i q^{10} +6681.89i q^{11} +(567.693 + 1826.77i) q^{12} +6161.99i q^{13} +(-3423.52 - 11016.5i) q^{15} -9474.88 q^{16} +31753.3 q^{17} +(-11568.2 - 16815.1i) q^{18} +6873.52i q^{19} -10090.6 q^{20} -62358.4 q^{22} +55675.8i q^{23} +(-70395.5 + 21876.3i) q^{24} -17272.8 q^{25} -57506.5 q^{26} +(-80363.0 - 63262.4i) q^{27} -167195. i q^{29} +(102811. - 31949.8i) q^{30} -229331. i q^{31} +113343. i q^{32} +(-298404. + 92732.8i) q^{33} +296336. i q^{34} +(-73702.7 + 50704.8i) q^{36} -280542. q^{37} -64146.8 q^{38} +(-275186. + 85517.5i) q^{39} -388846. i q^{40} +78668.6 q^{41} +118106. q^{43} +273324. i q^{44} +(444469. - 305779. i) q^{45} -519592. q^{46} +8356.96 q^{47} +(-131495. - 423135. i) q^{48} -161198. i q^{50} +(440680. + 1.41806e6i) q^{51} +252058. i q^{52} +177258. i q^{53} +(590394. - 749984. i) q^{54} -1.64830e6i q^{55} +(-306962. + 95392.4i) q^{57} +1.56034e6 q^{58} +234608. q^{59} +(-140040. - 450633. i) q^{60} -237235. i q^{61} +2.14022e6 q^{62} -2.27055e6 q^{64} -1.52005e6i q^{65} +(-865425. - 2.78484e6i) q^{66} -3.36488e6 q^{67} +1.29888e6 q^{68} +(-2.48641e6 + 772682. i) q^{69} +711242. i q^{71} +(-1.95393e6 - 2.84016e6i) q^{72} -5.36998e6i q^{73} -2.61814e6i q^{74} +(-239717. - 771381. i) q^{75} +281163. i q^{76} +(-798089. - 2.56816e6i) q^{78} +2.55196e6 q^{79} +2.33729e6 q^{80} +(1.70992e6 - 4.46688e6i) q^{81} +734172. i q^{82} +2.04843e6 q^{83} -7.83298e6 q^{85} +1.10222e6i q^{86} +(7.46669e6 - 2.32037e6i) q^{87} -1.05327e7 q^{88} +4.63762e6 q^{89} +(2.85367e6 + 4.14799e6i) q^{90} +2.27743e6i q^{92} +(1.02416e7 - 3.18271e6i) q^{93} +77990.9i q^{94} -1.69558e6i q^{95} +(-5.06173e6 + 1.57300e6i) q^{96} +217594. i q^{97} +(-8.28264e6 - 1.20393e7i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 2300 q^{4} + 7032 q^{9} + 27576 q^{15} + 39188 q^{16} - 66996 q^{18} + 105132 q^{22} + 662504 q^{25} + 81324 q^{30} - 227244 q^{36} + 1237496 q^{37} - 3992208 q^{39} - 1416064 q^{43} + 6985680 q^{46}+ \cdots + 35642232 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.33246i 0.824880i 0.910985 + 0.412440i \(0.135323\pi\)
−0.910985 + 0.412440i \(0.864677\pi\)
\(3\) 13.8782 + 44.6586i 0.296763 + 0.954951i
\(4\) 40.9053 0.319572
\(5\) −246.682 −0.882558 −0.441279 0.897370i \(-0.645475\pi\)
−0.441279 + 0.897370i \(0.645475\pi\)
\(6\) −416.775 + 129.518i −0.787720 + 0.244794i
\(7\) 0 0
\(8\) 1576.30i 1.08849i
\(9\) −1801.79 + 1239.57i −0.823863 + 0.566789i
\(10\) 2302.15i 0.728004i
\(11\) 6681.89i 1.51365i 0.653619 + 0.756824i \(0.273250\pi\)
−0.653619 + 0.756824i \(0.726750\pi\)
\(12\) 567.693 + 1826.77i 0.0948373 + 0.305176i
\(13\) 6161.99i 0.777891i 0.921261 + 0.388946i \(0.127161\pi\)
−0.921261 + 0.388946i \(0.872839\pi\)
\(14\) 0 0
\(15\) −3423.52 11016.5i −0.261911 0.842799i
\(16\) −9474.88 −0.578301
\(17\) 31753.3 1.56754 0.783769 0.621053i \(-0.213295\pi\)
0.783769 + 0.621053i \(0.213295\pi\)
\(18\) −11568.2 16815.1i −0.467533 0.679589i
\(19\) 6873.52i 0.229901i 0.993371 + 0.114951i \(0.0366710\pi\)
−0.993371 + 0.114951i \(0.963329\pi\)
\(20\) −10090.6 −0.282041
\(21\) 0 0
\(22\) −62358.4 −1.24858
\(23\) 55675.8i 0.954155i 0.878861 + 0.477078i \(0.158304\pi\)
−0.878861 + 0.477078i \(0.841696\pi\)
\(24\) −70395.5 + 21876.3i −1.03945 + 0.323024i
\(25\) −17272.8 −0.221092
\(26\) −57506.5 −0.641667
\(27\) −80363.0 63262.4i −0.785748 0.618547i
\(28\) 0 0
\(29\) 167195.i 1.27300i −0.771275 0.636502i \(-0.780381\pi\)
0.771275 0.636502i \(-0.219619\pi\)
\(30\) 102811. 31949.8i 0.695209 0.216045i
\(31\) 229331.i 1.38260i −0.722568 0.691300i \(-0.757038\pi\)
0.722568 0.691300i \(-0.242962\pi\)
\(32\) 113343.i 0.611460i
\(33\) −298404. + 92732.8i −1.44546 + 0.449195i
\(34\) 296336.i 1.29303i
\(35\) 0 0
\(36\) −73702.7 + 50704.8i −0.263284 + 0.181130i
\(37\) −280542. −0.910524 −0.455262 0.890358i \(-0.650454\pi\)
−0.455262 + 0.890358i \(0.650454\pi\)
\(38\) −64146.8 −0.189641
\(39\) −275186. + 85517.5i −0.742848 + 0.230850i
\(40\) 388846.i 0.960654i
\(41\) 78668.6 0.178262 0.0891309 0.996020i \(-0.471591\pi\)
0.0891309 + 0.996020i \(0.471591\pi\)
\(42\) 0 0
\(43\) 118106. 0.226533 0.113266 0.993565i \(-0.463869\pi\)
0.113266 + 0.993565i \(0.463869\pi\)
\(44\) 273324.i 0.483720i
\(45\) 444469. 305779.i 0.727107 0.500224i
\(46\) −519592. −0.787064
\(47\) 8356.96 0.0117410 0.00587051 0.999983i \(-0.498131\pi\)
0.00587051 + 0.999983i \(0.498131\pi\)
\(48\) −131495. 423135.i −0.171618 0.552249i
\(49\) 0 0
\(50\) 161198.i 0.182375i
\(51\) 440680. + 1.41806e6i 0.465187 + 1.49692i
\(52\) 252058.i 0.248593i
\(53\) 177258.i 0.163546i 0.996651 + 0.0817731i \(0.0260583\pi\)
−0.996651 + 0.0817731i \(0.973942\pi\)
\(54\) 590394. 749984.i 0.510227 0.648148i
\(55\) 1.64830e6i 1.33588i
\(56\) 0 0
\(57\) −306962. + 95392.4i −0.219545 + 0.0682263i
\(58\) 1.56034e6 1.05008
\(59\) 234608. 0.148717 0.0743586 0.997232i \(-0.476309\pi\)
0.0743586 + 0.997232i \(0.476309\pi\)
\(60\) −140040. 450633.i −0.0836994 0.269335i
\(61\) 237235.i 0.133821i −0.997759 0.0669105i \(-0.978686\pi\)
0.997759 0.0669105i \(-0.0213142\pi\)
\(62\) 2.14022e6 1.14048
\(63\) 0 0
\(64\) −2.27055e6 −1.08268
\(65\) 1.52005e6i 0.686534i
\(66\) −865425. 2.78484e6i −0.370532 1.19233i
\(67\) −3.36488e6 −1.36681 −0.683403 0.730041i \(-0.739501\pi\)
−0.683403 + 0.730041i \(0.739501\pi\)
\(68\) 1.29888e6 0.500942
\(69\) −2.48641e6 + 772682.i −0.911172 + 0.283158i
\(70\) 0 0
\(71\) 711242.i 0.235838i 0.993023 + 0.117919i \(0.0376223\pi\)
−0.993023 + 0.117919i \(0.962378\pi\)
\(72\) −1.95393e6 2.84016e6i −0.616943 0.896766i
\(73\) 5.36998e6i 1.61563i −0.589435 0.807816i \(-0.700650\pi\)
0.589435 0.807816i \(-0.299350\pi\)
\(74\) 2.61814e6i 0.751073i
\(75\) −239717. 771381.i −0.0656120 0.211132i
\(76\) 281163.i 0.0734702i
\(77\) 0 0
\(78\) −798089. 2.56816e6i −0.190423 0.612761i
\(79\) 2.55196e6 0.582343 0.291171 0.956671i \(-0.405955\pi\)
0.291171 + 0.956671i \(0.405955\pi\)
\(80\) 2.33729e6 0.510384
\(81\) 1.70992e6 4.46688e6i 0.357501 0.933913i
\(82\) 734172.i 0.147045i
\(83\) 2.04843e6 0.393231 0.196615 0.980481i \(-0.437005\pi\)
0.196615 + 0.980481i \(0.437005\pi\)
\(84\) 0 0
\(85\) −7.83298e6 −1.38344
\(86\) 1.10222e6i 0.186862i
\(87\) 7.46669e6 2.32037e6i 1.21566 0.377781i
\(88\) −1.05327e7 −1.64759
\(89\) 4.63762e6 0.697317 0.348658 0.937250i \(-0.386637\pi\)
0.348658 + 0.937250i \(0.386637\pi\)
\(90\) 2.85367e6 + 4.14799e6i 0.412625 + 0.599776i
\(91\) 0 0
\(92\) 2.27743e6i 0.304922i
\(93\) 1.02416e7 3.18271e6i 1.32032 0.410305i
\(94\) 77990.9i 0.00968493i
\(95\) 1.69558e6i 0.202901i
\(96\) −5.06173e6 + 1.57300e6i −0.583915 + 0.181459i
\(97\) 217594.i 0.0242073i 0.999927 + 0.0121036i \(0.00385280\pi\)
−0.999927 + 0.0121036i \(0.996147\pi\)
\(98\) 0 0
\(99\) −8.28264e6 1.20393e7i −0.857918 1.24704i
\(100\) −706550. −0.0706550
\(101\) −4.06191e6 −0.392289 −0.196144 0.980575i \(-0.562842\pi\)
−0.196144 + 0.980575i \(0.562842\pi\)
\(102\) −1.32340e7 + 4.11263e6i −1.23478 + 0.383724i
\(103\) 3.97387e6i 0.358330i 0.983819 + 0.179165i \(0.0573396\pi\)
−0.983819 + 0.179165i \(0.942660\pi\)
\(104\) −9.71314e6 −0.846726
\(105\) 0 0
\(106\) −1.65425e6 −0.134906
\(107\) 1.23272e7i 0.972796i 0.873737 + 0.486398i \(0.161690\pi\)
−0.873737 + 0.486398i \(0.838310\pi\)
\(108\) −3.28727e6 2.58777e6i −0.251103 0.197671i
\(109\) 1.43296e7 1.05984 0.529922 0.848046i \(-0.322221\pi\)
0.529922 + 0.848046i \(0.322221\pi\)
\(110\) 1.53827e7 1.10194
\(111\) −3.89342e6 1.25286e7i −0.270210 0.869505i
\(112\) 0 0
\(113\) 2.51834e7i 1.64187i 0.571019 + 0.820937i \(0.306548\pi\)
−0.571019 + 0.820937i \(0.693452\pi\)
\(114\) −890245. 2.86471e6i −0.0562785 0.181098i
\(115\) 1.37342e7i 0.842097i
\(116\) 6.83915e6i 0.406817i
\(117\) −7.63819e6 1.11026e7i −0.440900 0.640876i
\(118\) 2.18947e6i 0.122674i
\(119\) 0 0
\(120\) 1.73653e7 5.39649e6i 0.917378 0.285087i
\(121\) −2.51604e7 −1.29113
\(122\) 2.21398e6 0.110386
\(123\) 1.09178e6 + 3.51323e6i 0.0529015 + 0.170231i
\(124\) 9.38084e6i 0.441841i
\(125\) 2.35330e7 1.07768
\(126\) 0 0
\(127\) 2.57045e7 1.11352 0.556758 0.830675i \(-0.312045\pi\)
0.556758 + 0.830675i \(0.312045\pi\)
\(128\) 6.68195e6i 0.281623i
\(129\) 1.63910e6 + 5.27444e6i 0.0672266 + 0.216328i
\(130\) 1.41858e7 0.566308
\(131\) −2.91128e7 −1.13145 −0.565724 0.824594i \(-0.691403\pi\)
−0.565724 + 0.824594i \(0.691403\pi\)
\(132\) −1.22063e7 + 3.79326e6i −0.461929 + 0.143550i
\(133\) 0 0
\(134\) 3.14025e7i 1.12745i
\(135\) 1.98241e7 + 1.56057e7i 0.693468 + 0.545903i
\(136\) 5.00528e7i 1.70625i
\(137\) 5.42048e7i 1.80101i 0.434847 + 0.900504i \(0.356802\pi\)
−0.434847 + 0.900504i \(0.643198\pi\)
\(138\) −7.21102e6 2.32043e7i −0.233572 0.751608i
\(139\) 2.23460e7i 0.705745i −0.935671 0.352872i \(-0.885205\pi\)
0.935671 0.352872i \(-0.114795\pi\)
\(140\) 0 0
\(141\) 115980. + 373210.i 0.00348430 + 0.0112121i
\(142\) −6.63764e6 −0.194538
\(143\) −4.11737e7 −1.17745
\(144\) 1.70717e7 1.17448e7i 0.476441 0.327774i
\(145\) 4.12440e7i 1.12350i
\(146\) 5.01151e7 1.33270
\(147\) 0 0
\(148\) −1.14756e7 −0.290978
\(149\) 1.80962e7i 0.448163i 0.974570 + 0.224081i \(0.0719381\pi\)
−0.974570 + 0.224081i \(0.928062\pi\)
\(150\) 7.19888e6 2.23714e6i 0.174159 0.0541221i
\(151\) −8.24073e6 −0.194781 −0.0973905 0.995246i \(-0.531050\pi\)
−0.0973905 + 0.995246i \(0.531050\pi\)
\(152\) −1.08347e7 −0.250245
\(153\) −5.72128e7 + 3.93604e7i −1.29144 + 0.888462i
\(154\) 0 0
\(155\) 5.65719e7i 1.22022i
\(156\) −1.12566e7 + 3.49812e6i −0.237394 + 0.0737731i
\(157\) 5.34359e7i 1.10201i 0.834503 + 0.551003i \(0.185755\pi\)
−0.834503 + 0.551003i \(0.814245\pi\)
\(158\) 2.38160e7i 0.480363i
\(159\) −7.91611e6 + 2.46003e6i −0.156179 + 0.0485345i
\(160\) 2.79596e7i 0.539649i
\(161\) 0 0
\(162\) 4.16869e7 + 1.59577e7i 0.770366 + 0.294896i
\(163\) −3.01140e7 −0.544643 −0.272322 0.962206i \(-0.587791\pi\)
−0.272322 + 0.962206i \(0.587791\pi\)
\(164\) 3.21796e6 0.0569675
\(165\) 7.36110e7 2.28755e7i 1.27570 0.396440i
\(166\) 1.91169e7i 0.324368i
\(167\) −6.70162e7 −1.11345 −0.556726 0.830696i \(-0.687943\pi\)
−0.556726 + 0.830696i \(0.687943\pi\)
\(168\) 0 0
\(169\) 2.47784e7 0.394885
\(170\) 7.31010e7i 1.14117i
\(171\) −8.52019e6 1.23846e7i −0.130306 0.189407i
\(172\) 4.83114e6 0.0723936
\(173\) 7.28931e7 1.07035 0.535174 0.844742i \(-0.320246\pi\)
0.535174 + 0.844742i \(0.320246\pi\)
\(174\) 2.16547e7 + 6.96825e7i 0.311624 + 1.00277i
\(175\) 0 0
\(176\) 6.33101e7i 0.875344i
\(177\) 3.25595e6 + 1.04773e7i 0.0441338 + 0.142018i
\(178\) 4.32804e7i 0.575203i
\(179\) 1.04960e8i 1.36785i −0.729550 0.683927i \(-0.760271\pi\)
0.729550 0.683927i \(-0.239729\pi\)
\(180\) 1.81811e7 1.25080e7i 0.232363 0.159858i
\(181\) 7.36629e7i 0.923366i 0.887045 + 0.461683i \(0.152754\pi\)
−0.887045 + 0.461683i \(0.847246\pi\)
\(182\) 0 0
\(183\) 1.05946e7 3.29240e6i 0.127792 0.0397131i
\(184\) −8.77618e7 −1.03859
\(185\) 6.92046e7 0.803589
\(186\) 2.97025e7 + 9.55793e7i 0.338452 + 1.08910i
\(187\) 2.12172e8i 2.37270i
\(188\) 341844. 0.00375210
\(189\) 0 0
\(190\) 1.58239e7 0.167369
\(191\) 5.86519e6i 0.0609068i −0.999536 0.0304534i \(-0.990305\pi\)
0.999536 0.0304534i \(-0.00969511\pi\)
\(192\) −3.15112e7 1.01400e8i −0.321300 1.03391i
\(193\) 1.16324e8 1.16471 0.582355 0.812934i \(-0.302131\pi\)
0.582355 + 0.812934i \(0.302131\pi\)
\(194\) −2.03069e6 −0.0199681
\(195\) 6.78835e7 2.10957e7i 0.655606 0.203738i
\(196\) 0 0
\(197\) 2.35040e7i 0.219033i 0.993985 + 0.109516i \(0.0349302\pi\)
−0.993985 + 0.109516i \(0.965070\pi\)
\(198\) 1.12357e8 7.72974e7i 1.02866 0.707680i
\(199\) 1.97440e8i 1.77602i 0.459822 + 0.888011i \(0.347913\pi\)
−0.459822 + 0.888011i \(0.652087\pi\)
\(200\) 2.72272e7i 0.240657i
\(201\) −4.66985e7 1.50271e8i −0.405618 1.30523i
\(202\) 3.79076e7i 0.323591i
\(203\) 0 0
\(204\) 1.80261e7 + 5.80061e7i 0.148661 + 0.478375i
\(205\) −1.94062e7 −0.157326
\(206\) −3.70859e7 −0.295579
\(207\) −6.90139e7 1.00316e8i −0.540804 0.786094i
\(208\) 5.83841e7i 0.449855i
\(209\) −4.59281e7 −0.347990
\(210\) 0 0
\(211\) −1.62963e8 −1.19427 −0.597134 0.802142i \(-0.703694\pi\)
−0.597134 + 0.802142i \(0.703694\pi\)
\(212\) 7.25079e6i 0.0522649i
\(213\) −3.17631e7 + 9.87079e6i −0.225214 + 0.0699880i
\(214\) −1.15043e8 −0.802441
\(215\) −2.91346e7 −0.199928
\(216\) 9.97206e7 1.26676e8i 0.673282 0.855278i
\(217\) 0 0
\(218\) 1.33731e8i 0.874245i
\(219\) 2.39816e8 7.45258e7i 1.54285 0.479460i
\(220\) 6.74243e7i 0.426911i
\(221\) 1.95664e8i 1.21937i
\(222\) 1.16923e8 3.63352e7i 0.717238 0.222891i
\(223\) 1.23475e8i 0.745609i −0.927910 0.372804i \(-0.878396\pi\)
0.927910 0.372804i \(-0.121604\pi\)
\(224\) 0 0
\(225\) 3.11220e7 2.14108e7i 0.182150 0.125313i
\(226\) −2.35023e8 −1.35435
\(227\) −1.30063e8 −0.738013 −0.369007 0.929427i \(-0.620302\pi\)
−0.369007 + 0.929427i \(0.620302\pi\)
\(228\) −1.25564e7 + 3.90205e6i −0.0701604 + 0.0218032i
\(229\) 1.27874e8i 0.703652i −0.936065 0.351826i \(-0.885561\pi\)
0.936065 0.351826i \(-0.114439\pi\)
\(230\) 1.28174e8 0.694629
\(231\) 0 0
\(232\) 2.63549e8 1.38565
\(233\) 5.90812e7i 0.305988i 0.988227 + 0.152994i \(0.0488914\pi\)
−0.988227 + 0.152994i \(0.951109\pi\)
\(234\) 1.03614e8 7.12831e7i 0.528646 0.363690i
\(235\) −2.06151e6 −0.0103621
\(236\) 9.59671e6 0.0475259
\(237\) 3.54167e7 + 1.13967e8i 0.172818 + 0.556109i
\(238\) 0 0
\(239\) 2.73993e8i 1.29822i −0.760696 0.649109i \(-0.775142\pi\)
0.760696 0.649109i \(-0.224858\pi\)
\(240\) 3.24374e7 + 1.04380e8i 0.151463 + 0.487392i
\(241\) 8.65220e7i 0.398169i −0.979982 0.199084i \(-0.936203\pi\)
0.979982 0.199084i \(-0.0637967\pi\)
\(242\) 2.34809e8i 1.06503i
\(243\) 2.23215e8 + 1.43702e7i 0.997934 + 0.0642452i
\(244\) 9.70416e6i 0.0427655i
\(245\) 0 0
\(246\) −3.27871e7 + 1.01890e7i −0.140420 + 0.0436374i
\(247\) −4.23546e7 −0.178838
\(248\) 3.61494e8 1.50495
\(249\) 2.84286e7 + 9.14801e7i 0.116696 + 0.375516i
\(250\) 2.19620e8i 0.888960i
\(251\) −3.83930e8 −1.53248 −0.766238 0.642557i \(-0.777874\pi\)
−0.766238 + 0.642557i \(0.777874\pi\)
\(252\) 0 0
\(253\) −3.72019e8 −1.44425
\(254\) 2.39886e8i 0.918517i
\(255\) −1.08708e8 3.49810e8i −0.410555 1.32112i
\(256\) −2.28271e8 −0.850377
\(257\) −5.17897e8 −1.90317 −0.951585 0.307384i \(-0.900546\pi\)
−0.951585 + 0.307384i \(0.900546\pi\)
\(258\) −4.92235e7 + 1.52968e7i −0.178445 + 0.0554539i
\(259\) 0 0
\(260\) 6.21782e7i 0.219397i
\(261\) 2.07249e8 + 3.01250e8i 0.721524 + 1.04878i
\(262\) 2.71694e8i 0.933310i
\(263\) 7.81847e7i 0.265019i −0.991182 0.132509i \(-0.957697\pi\)
0.991182 0.132509i \(-0.0423035\pi\)
\(264\) −1.46175e8 4.70374e8i −0.488944 1.57337i
\(265\) 4.37264e7i 0.144339i
\(266\) 0 0
\(267\) 6.43620e7 + 2.07110e8i 0.206938 + 0.665904i
\(268\) −1.37641e8 −0.436794
\(269\) 5.93248e7 0.185825 0.0929123 0.995674i \(-0.470382\pi\)
0.0929123 + 0.995674i \(0.470382\pi\)
\(270\) −1.45640e8 + 1.85008e8i −0.450305 + 0.572028i
\(271\) 3.13781e8i 0.957710i 0.877894 + 0.478855i \(0.158948\pi\)
−0.877894 + 0.478855i \(0.841052\pi\)
\(272\) −3.00859e8 −0.906509
\(273\) 0 0
\(274\) −5.05864e8 −1.48562
\(275\) 1.15415e8i 0.334656i
\(276\) −1.01707e8 + 3.16068e7i −0.291185 + 0.0904896i
\(277\) −6.63856e8 −1.87670 −0.938349 0.345689i \(-0.887645\pi\)
−0.938349 + 0.345689i \(0.887645\pi\)
\(278\) 2.08543e8 0.582155
\(279\) 2.84271e8 + 4.13206e8i 0.783642 + 1.13907i
\(280\) 0 0
\(281\) 4.05619e8i 1.09055i −0.838257 0.545275i \(-0.816425\pi\)
0.838257 0.545275i \(-0.183575\pi\)
\(282\) −3.48297e6 + 1.08238e6i −0.00924864 + 0.00287413i
\(283\) 2.97292e8i 0.779707i 0.920877 + 0.389853i \(0.127474\pi\)
−0.920877 + 0.389853i \(0.872526\pi\)
\(284\) 2.90936e7i 0.0753673i
\(285\) 7.57222e7 2.35316e7i 0.193761 0.0602136i
\(286\) 3.84252e8i 0.971258i
\(287\) 0 0
\(288\) −1.40496e8 2.04219e8i −0.346569 0.503760i
\(289\) 5.97935e8 1.45717
\(290\) −3.84908e8 −0.926752
\(291\) −9.71745e6 + 3.01982e6i −0.0231167 + 0.00718382i
\(292\) 2.19660e8i 0.516311i
\(293\) 6.28561e8 1.45986 0.729929 0.683522i \(-0.239553\pi\)
0.729929 + 0.683522i \(0.239553\pi\)
\(294\) 0 0
\(295\) −5.78737e7 −0.131251
\(296\) 4.42218e8i 0.991095i
\(297\) 4.22712e8 5.36977e8i 0.936262 1.18934i
\(298\) −1.68882e8 −0.369681
\(299\) −3.43074e8 −0.742229
\(300\) −9.80567e6 3.15536e7i −0.0209678 0.0674720i
\(301\) 0 0
\(302\) 7.69063e7i 0.160671i
\(303\) −5.63722e7 1.81400e8i −0.116417 0.374617i
\(304\) 6.51258e7i 0.132952i
\(305\) 5.85217e7i 0.118105i
\(306\) −3.67329e8 5.33936e8i −0.732875 1.06528i
\(307\) 1.40498e7i 0.0277132i 0.999904 + 0.0138566i \(0.00441083\pi\)
−0.999904 + 0.0138566i \(0.995589\pi\)
\(308\) 0 0
\(309\) −1.77468e8 + 5.51503e7i −0.342188 + 0.106339i
\(310\) −5.27954e8 −1.00654
\(311\) 3.58535e8 0.675881 0.337941 0.941167i \(-0.390270\pi\)
0.337941 + 0.941167i \(0.390270\pi\)
\(312\) −1.34801e8 4.33776e8i −0.251277 0.808582i
\(313\) 8.60525e8i 1.58620i 0.609090 + 0.793101i \(0.291535\pi\)
−0.609090 + 0.793101i \(0.708465\pi\)
\(314\) −4.98688e8 −0.909024
\(315\) 0 0
\(316\) 1.04389e8 0.186101
\(317\) 3.08439e8i 0.543828i 0.962322 + 0.271914i \(0.0876566\pi\)
−0.962322 + 0.271914i \(0.912343\pi\)
\(318\) −2.29581e7 7.38767e7i −0.0400352 0.128829i
\(319\) 1.11718e9 1.92688
\(320\) 5.60105e8 0.955530
\(321\) −5.50517e8 + 1.71080e8i −0.928973 + 0.288690i
\(322\) 0 0
\(323\) 2.18257e8i 0.360379i
\(324\) 6.99446e7 1.82719e8i 0.114248 0.298453i
\(325\) 1.06435e8i 0.171986i
\(326\) 2.81038e8i 0.449265i
\(327\) 1.98870e8 + 6.39941e8i 0.314523 + 1.01210i
\(328\) 1.24005e8i 0.194036i
\(329\) 0 0
\(330\) 2.13485e8 + 6.86971e8i 0.327016 + 1.05230i
\(331\) −1.50536e8 −0.228162 −0.114081 0.993471i \(-0.536392\pi\)
−0.114081 + 0.993471i \(0.536392\pi\)
\(332\) 8.37915e7 0.125666
\(333\) 5.05477e8 3.47750e8i 0.750147 0.516074i
\(334\) 6.25425e8i 0.918465i
\(335\) 8.30055e8 1.20629
\(336\) 0 0
\(337\) 4.66726e8 0.664289 0.332145 0.943228i \(-0.392228\pi\)
0.332145 + 0.943228i \(0.392228\pi\)
\(338\) 2.31244e8i 0.325733i
\(339\) −1.12466e9 + 3.49501e8i −1.56791 + 0.487248i
\(340\) −3.20410e8 −0.442110
\(341\) 1.53236e9 2.09277
\(342\) 1.15579e8 7.95143e7i 0.156238 0.107486i
\(343\) 0 0
\(344\) 1.86170e8i 0.246579i
\(345\) 6.13352e8 1.90607e8i 0.804161 0.249903i
\(346\) 6.80272e8i 0.882909i
\(347\) 6.69141e8i 0.859734i 0.902892 + 0.429867i \(0.141440\pi\)
−0.902892 + 0.429867i \(0.858560\pi\)
\(348\) 3.05427e8 9.49153e7i 0.388490 0.120728i
\(349\) 4.41794e8i 0.556327i −0.960534 0.278164i \(-0.910274\pi\)
0.960534 0.278164i \(-0.0897258\pi\)
\(350\) 0 0
\(351\) 3.89822e8 4.95196e8i 0.481162 0.611226i
\(352\) −7.57342e8 −0.925535
\(353\) 8.82746e8 1.06813 0.534065 0.845443i \(-0.320664\pi\)
0.534065 + 0.845443i \(0.320664\pi\)
\(354\) −9.77788e7 + 3.03860e7i −0.117148 + 0.0364051i
\(355\) 1.75451e8i 0.208140i
\(356\) 1.89703e8 0.222843
\(357\) 0 0
\(358\) 9.79538e8 1.12832
\(359\) 9.49168e8i 1.08271i −0.840794 0.541356i \(-0.817911\pi\)
0.840794 0.541356i \(-0.182089\pi\)
\(360\) 4.82000e8 + 7.00618e8i 0.544488 + 0.791448i
\(361\) 8.46626e8 0.947145
\(362\) −6.87456e8 −0.761666
\(363\) −3.49182e8 1.12363e9i −0.383159 1.23296i
\(364\) 0 0
\(365\) 1.32468e9i 1.42589i
\(366\) 3.07262e7 + 9.88735e7i 0.0327586 + 0.105414i
\(367\) 7.92567e8i 0.836961i 0.908226 + 0.418480i \(0.137437\pi\)
−0.908226 + 0.418480i \(0.862563\pi\)
\(368\) 5.27522e8i 0.551789i
\(369\) −1.41744e8 + 9.75150e7i −0.146863 + 0.101037i
\(370\) 6.45849e8i 0.662865i
\(371\) 0 0
\(372\) 4.18936e8 1.30190e8i 0.421936 0.131122i
\(373\) 8.24623e8 0.822762 0.411381 0.911463i \(-0.365046\pi\)
0.411381 + 0.911463i \(0.365046\pi\)
\(374\) −1.98009e9 −1.95719
\(375\) 3.26596e8 + 1.05095e9i 0.319817 + 1.02914i
\(376\) 1.31731e7i 0.0127800i
\(377\) 1.03025e9 0.990258
\(378\) 0 0
\(379\) −4.65185e8 −0.438923 −0.219461 0.975621i \(-0.570430\pi\)
−0.219461 + 0.975621i \(0.570430\pi\)
\(380\) 6.93580e7i 0.0648417i
\(381\) 3.56733e8 + 1.14793e9i 0.330450 + 1.06335i
\(382\) 5.47366e7 0.0502408
\(383\) −1.00110e9 −0.910507 −0.455254 0.890362i \(-0.650451\pi\)
−0.455254 + 0.890362i \(0.650451\pi\)
\(384\) 2.98407e8 9.27338e7i 0.268937 0.0835754i
\(385\) 0 0
\(386\) 1.08559e9i 0.960747i
\(387\) −2.12801e8 + 1.46400e8i −0.186632 + 0.128396i
\(388\) 8.90074e6i 0.00773597i
\(389\) 9.10786e8i 0.784500i 0.919859 + 0.392250i \(0.128303\pi\)
−0.919859 + 0.392250i \(0.871697\pi\)
\(390\) 1.96874e8 + 6.33520e8i 0.168059 + 0.540797i
\(391\) 1.76789e9i 1.49567i
\(392\) 0 0
\(393\) −4.04035e8 1.30014e9i −0.335772 1.08048i
\(394\) −2.19350e8 −0.180676
\(395\) −6.29523e8 −0.513951
\(396\) −3.38804e8 4.92473e8i −0.274167 0.398519i
\(397\) 3.03278e8i 0.243262i 0.992575 + 0.121631i \(0.0388124\pi\)
−0.992575 + 0.121631i \(0.961188\pi\)
\(398\) −1.84260e9 −1.46501
\(399\) 0 0
\(400\) 1.63658e8 0.127858
\(401\) 1.36917e9i 1.06036i 0.847886 + 0.530179i \(0.177875\pi\)
−0.847886 + 0.530179i \(0.822125\pi\)
\(402\) 1.40240e9 4.35812e8i 1.07666 0.334586i
\(403\) 1.41313e9 1.07551
\(404\) −1.66154e8 −0.125365
\(405\) −4.21806e8 + 1.10190e9i −0.315515 + 0.824232i
\(406\) 0 0
\(407\) 1.87455e9i 1.37821i
\(408\) −2.23529e9 + 6.94645e8i −1.62938 + 0.506352i
\(409\) 4.74820e8i 0.343161i −0.985170 0.171580i \(-0.945113\pi\)
0.985170 0.171580i \(-0.0548874\pi\)
\(410\) 1.81107e8i 0.129775i
\(411\) −2.42071e9 + 7.52267e8i −1.71988 + 0.534473i
\(412\) 1.62552e8i 0.114512i
\(413\) 0 0
\(414\) 9.36195e8 6.44069e8i 0.648433 0.446099i
\(415\) −5.05311e8 −0.347049
\(416\) −6.98415e8 −0.475650
\(417\) 9.97941e8 3.10123e8i 0.673952 0.209439i
\(418\) 4.28622e8i 0.287050i
\(419\) −1.13110e9 −0.751197 −0.375598 0.926783i \(-0.622563\pi\)
−0.375598 + 0.926783i \(0.622563\pi\)
\(420\) 0 0
\(421\) 1.77782e9 1.16118 0.580592 0.814195i \(-0.302821\pi\)
0.580592 + 0.814195i \(0.302821\pi\)
\(422\) 1.52085e9i 0.985128i
\(423\) −1.50575e7 + 1.03590e7i −0.00967299 + 0.00665467i
\(424\) −2.79412e8 −0.178018
\(425\) −5.48470e8 −0.346570
\(426\) −9.21187e7 2.96428e8i −0.0577317 0.185774i
\(427\) 0 0
\(428\) 5.04248e8i 0.310879i
\(429\) −5.71418e8 1.83876e9i −0.349425 1.12441i
\(430\) 2.71897e8i 0.164917i
\(431\) 1.90415e8i 0.114559i −0.998358 0.0572797i \(-0.981757\pi\)
0.998358 0.0572797i \(-0.0182427\pi\)
\(432\) 7.61430e8 + 5.99404e8i 0.454399 + 0.357706i
\(433\) 1.11786e9i 0.661729i −0.943678 0.330864i \(-0.892660\pi\)
0.943678 0.330864i \(-0.107340\pi\)
\(434\) 0 0
\(435\) −1.84190e9 + 5.72394e8i −1.07289 + 0.333413i
\(436\) 5.86157e8 0.338697
\(437\) −3.82689e8 −0.219362
\(438\) 6.95509e8 + 2.23807e9i 0.395497 + 1.27267i
\(439\) 6.18150e8i 0.348713i −0.984683 0.174357i \(-0.944215\pi\)
0.984683 0.174357i \(-0.0557845\pi\)
\(440\) 2.59822e9 1.45409
\(441\) 0 0
\(442\) −1.82602e9 −1.00584
\(443\) 2.61419e9i 1.42864i 0.699818 + 0.714322i \(0.253265\pi\)
−0.699818 + 0.714322i \(0.746735\pi\)
\(444\) −1.59262e8 5.12486e8i −0.0863516 0.277870i
\(445\) −1.14402e9 −0.615422
\(446\) 1.15232e9 0.615038
\(447\) −8.08152e8 + 2.51144e8i −0.427973 + 0.132998i
\(448\) 0 0
\(449\) 8.76314e8i 0.456875i 0.973559 + 0.228438i \(0.0733617\pi\)
−0.973559 + 0.228438i \(0.926638\pi\)
\(450\) 1.99816e8 + 2.90445e8i 0.103368 + 0.150252i
\(451\) 5.25655e8i 0.269825i
\(452\) 1.03013e9i 0.524698i
\(453\) −1.14367e8 3.68020e8i −0.0578038 0.186006i
\(454\) 1.21381e9i 0.608773i
\(455\) 0 0
\(456\) −1.50367e8 4.83865e8i −0.0742636 0.238972i
\(457\) 2.30159e9 1.12803 0.564017 0.825763i \(-0.309255\pi\)
0.564017 + 0.825763i \(0.309255\pi\)
\(458\) 1.19338e9 0.580429
\(459\) −2.55179e9 2.00879e9i −1.23169 0.969596i
\(460\) 5.61803e8i 0.269111i
\(461\) −1.26292e9 −0.600376 −0.300188 0.953880i \(-0.597049\pi\)
−0.300188 + 0.953880i \(0.597049\pi\)
\(462\) 0 0
\(463\) 1.16895e9 0.547346 0.273673 0.961823i \(-0.411761\pi\)
0.273673 + 0.961823i \(0.411761\pi\)
\(464\) 1.58415e9i 0.736179i
\(465\) −2.52642e9 + 7.85118e8i −1.16525 + 0.362118i
\(466\) −5.51373e8 −0.252403
\(467\) 9.96991e8 0.452983 0.226492 0.974013i \(-0.427274\pi\)
0.226492 + 0.974013i \(0.427274\pi\)
\(468\) −3.12442e8 4.54155e8i −0.140899 0.204806i
\(469\) 0 0
\(470\) 1.92390e7i 0.00854751i
\(471\) −2.38637e9 + 7.41596e8i −1.05236 + 0.327035i
\(472\) 3.69813e8i 0.161877i
\(473\) 7.89169e8i 0.342891i
\(474\) −1.06359e9 + 3.30525e8i −0.458723 + 0.142554i
\(475\) 1.18725e8i 0.0508294i
\(476\) 0 0
\(477\) −2.19723e8 3.19382e8i −0.0926961 0.134740i
\(478\) 2.55703e9 1.07087
\(479\) 3.72553e9 1.54886 0.774432 0.632657i \(-0.218036\pi\)
0.774432 + 0.632657i \(0.218036\pi\)
\(480\) 1.24864e9 3.88030e8i 0.515338 0.160148i
\(481\) 1.72869e9i 0.708288i
\(482\) 8.07463e8 0.328441
\(483\) 0 0
\(484\) −1.02919e9 −0.412609
\(485\) 5.36766e7i 0.0213643i
\(486\) −1.34109e8 + 2.08315e9i −0.0529946 + 0.823176i
\(487\) −1.35403e9 −0.531224 −0.265612 0.964080i \(-0.585574\pi\)
−0.265612 + 0.964080i \(0.585574\pi\)
\(488\) 3.73954e8 0.145663
\(489\) −4.17930e8 1.34485e9i −0.161630 0.520108i
\(490\) 0 0
\(491\) 1.16862e9i 0.445540i 0.974871 + 0.222770i \(0.0715099\pi\)
−0.974871 + 0.222770i \(0.928490\pi\)
\(492\) 4.46596e7 + 1.43710e8i 0.0169059 + 0.0544012i
\(493\) 5.30899e9i 1.99548i
\(494\) 3.95272e8i 0.147520i
\(495\) 2.04318e9 + 2.96989e9i 0.757162 + 1.10058i
\(496\) 2.17288e9i 0.799559i
\(497\) 0 0
\(498\) −8.53734e8 + 2.65309e8i −0.309756 + 0.0962606i
\(499\) 1.28940e9 0.464554 0.232277 0.972650i \(-0.425382\pi\)
0.232277 + 0.972650i \(0.425382\pi\)
\(500\) 9.62622e8 0.344398
\(501\) −9.30066e8 2.99285e9i −0.330432 1.06329i
\(502\) 3.58301e9i 1.26411i
\(503\) 3.67733e9 1.28838 0.644191 0.764864i \(-0.277194\pi\)
0.644191 + 0.764864i \(0.277194\pi\)
\(504\) 0 0
\(505\) 1.00200e9 0.346218
\(506\) 3.47185e9i 1.19134i
\(507\) 3.43881e8 + 1.10657e9i 0.117187 + 0.377096i
\(508\) 1.05145e9 0.355849
\(509\) −1.73776e8 −0.0584088 −0.0292044 0.999573i \(-0.509297\pi\)
−0.0292044 + 0.999573i \(0.509297\pi\)
\(510\) 3.26459e9 1.01451e9i 1.08977 0.338658i
\(511\) 0 0
\(512\) 2.98562e9i 0.983083i
\(513\) 4.34836e8 5.52377e8i 0.142205 0.180645i
\(514\) 4.83325e9i 1.56989i
\(515\) 9.80283e8i 0.316247i
\(516\) 6.70478e7 + 2.15752e8i 0.0214838 + 0.0691324i
\(517\) 5.58402e7i 0.0177718i
\(518\) 0 0
\(519\) 1.01163e9 + 3.25531e9i 0.317640 + 1.02213i
\(520\) 2.39606e9 0.747285
\(521\) −2.71271e9 −0.840370 −0.420185 0.907438i \(-0.638035\pi\)
−0.420185 + 0.907438i \(0.638035\pi\)
\(522\) −2.81140e9 + 1.93414e9i −0.865119 + 0.595171i
\(523\) 1.76487e9i 0.539456i −0.962937 0.269728i \(-0.913066\pi\)
0.962937 0.269728i \(-0.0869337\pi\)
\(524\) −1.19087e9 −0.361580
\(525\) 0 0
\(526\) 7.29655e8 0.218609
\(527\) 7.28202e9i 2.16728i
\(528\) 2.82734e9 8.78633e8i 0.835910 0.259770i
\(529\) 3.05030e8 0.0895874
\(530\) 4.08075e8 0.119062
\(531\) −4.22714e8 + 2.90813e8i −0.122523 + 0.0842912i
\(532\) 0 0
\(533\) 4.84755e8i 0.138668i
\(534\) −1.93284e9 + 6.00656e8i −0.549291 + 0.170699i
\(535\) 3.04091e9i 0.858549i
\(536\) 5.30406e9i 1.48775i
\(537\) 4.68739e9 1.45667e9i 1.30623 0.405929i
\(538\) 5.53646e8i 0.153283i
\(539\) 0 0
\(540\) 8.10912e8 + 6.38356e8i 0.221613 + 0.174456i
\(541\) −1.46669e9 −0.398244 −0.199122 0.979975i \(-0.563809\pi\)
−0.199122 + 0.979975i \(0.563809\pi\)
\(542\) −2.92835e9 −0.789996
\(543\) −3.28968e9 + 1.02231e9i −0.881769 + 0.274021i
\(544\) 3.59900e9i 0.958487i
\(545\) −3.53486e9 −0.935373
\(546\) 0 0
\(547\) −6.14008e9 −1.60405 −0.802026 0.597290i \(-0.796244\pi\)
−0.802026 + 0.597290i \(0.796244\pi\)
\(548\) 2.21726e9i 0.575553i
\(549\) 2.94069e8 + 4.27447e8i 0.0758482 + 0.110250i
\(550\) 1.07711e9 0.276051
\(551\) 1.14922e9 0.292665
\(552\) −1.21798e9 3.91932e9i −0.308215 0.991801i
\(553\) 0 0
\(554\) 6.19540e9i 1.54805i
\(555\) 9.60439e8 + 3.09059e9i 0.238476 + 0.767389i
\(556\) 9.14068e8i 0.225537i
\(557\) 3.53089e9i 0.865747i −0.901455 0.432874i \(-0.857500\pi\)
0.901455 0.432874i \(-0.142500\pi\)
\(558\) −3.85622e9 + 2.65295e9i −0.939599 + 0.646411i
\(559\) 7.27765e8i 0.176218i
\(560\) 0 0
\(561\) −9.47532e9 + 2.94457e9i −2.26581 + 0.704130i
\(562\) 3.78542e9 0.899574
\(563\) −7.95921e8 −0.187971 −0.0939855 0.995574i \(-0.529961\pi\)
−0.0939855 + 0.995574i \(0.529961\pi\)
\(564\) 4.74419e6 + 1.52663e7i 0.00111349 + 0.00358308i
\(565\) 6.21230e9i 1.44905i
\(566\) −2.77447e9 −0.643165
\(567\) 0 0
\(568\) −1.12113e9 −0.256707
\(569\) 6.43234e9i 1.46378i 0.681422 + 0.731891i \(0.261362\pi\)
−0.681422 + 0.731891i \(0.738638\pi\)
\(570\) 2.19608e8 + 7.06674e8i 0.0496690 + 0.159829i
\(571\) −6.12867e9 −1.37765 −0.688827 0.724926i \(-0.741874\pi\)
−0.688827 + 0.724926i \(0.741874\pi\)
\(572\) −1.68422e9 −0.376282
\(573\) 2.61932e8 8.13986e7i 0.0581630 0.0180749i
\(574\) 0 0
\(575\) 9.61679e8i 0.210956i
\(576\) 4.09105e9 2.81450e9i 0.891982 0.613652i
\(577\) 1.88633e9i 0.408792i 0.978888 + 0.204396i \(0.0655230\pi\)
−0.978888 + 0.204396i \(0.934477\pi\)
\(578\) 5.58020e9i 1.20199i
\(579\) 1.61437e9 + 5.19486e9i 0.345643 + 1.11224i
\(580\) 1.68710e9i 0.359039i
\(581\) 0 0
\(582\) −2.81823e7 9.06876e7i −0.00592579 0.0190685i
\(583\) −1.18442e9 −0.247551
\(584\) 8.46470e9 1.75860
\(585\) 1.88421e9 + 2.73881e9i 0.389120 + 0.565610i
\(586\) 5.86602e9i 1.20421i
\(587\) 1.57758e9 0.321927 0.160964 0.986960i \(-0.448540\pi\)
0.160964 + 0.986960i \(0.448540\pi\)
\(588\) 0 0
\(589\) 1.57631e9 0.317862
\(590\) 5.40104e8i 0.108267i
\(591\) −1.04966e9 + 3.26194e8i −0.209166 + 0.0650009i
\(592\) 2.65810e9 0.526557
\(593\) −6.62562e9 −1.30477 −0.652387 0.757886i \(-0.726232\pi\)
−0.652387 + 0.757886i \(0.726232\pi\)
\(594\) 5.01131e9 + 3.94494e9i 0.981067 + 0.772304i
\(595\) 0 0
\(596\) 7.40230e8i 0.143220i
\(597\) −8.81738e9 + 2.74011e9i −1.69601 + 0.527058i
\(598\) 3.20172e9i 0.612250i
\(599\) 3.13094e8i 0.0595225i −0.999557 0.0297612i \(-0.990525\pi\)
0.999557 0.0297612i \(-0.00947469\pi\)
\(600\) 1.21593e9 3.77865e8i 0.229815 0.0714180i
\(601\) 3.12363e7i 0.00586947i 0.999996 + 0.00293474i \(0.000934157\pi\)
−0.999996 + 0.00293474i \(0.999066\pi\)
\(602\) 0 0
\(603\) 6.06279e9 4.17099e9i 1.12606 0.774691i
\(604\) −3.37089e8 −0.0622466
\(605\) 6.20663e9 1.13949
\(606\) 1.69290e9 5.26091e8i 0.309014 0.0960300i
\(607\) 5.77536e9i 1.04814i −0.851676 0.524069i \(-0.824413\pi\)
0.851676 0.524069i \(-0.175587\pi\)
\(608\) −7.79063e8 −0.140576
\(609\) 0 0
\(610\) −5.46151e8 −0.0974222
\(611\) 5.14954e7i 0.00913323i
\(612\) −2.34030e9 + 1.61005e9i −0.412707 + 0.283928i
\(613\) 1.08666e9 0.190538 0.0952691 0.995452i \(-0.469629\pi\)
0.0952691 + 0.995452i \(0.469629\pi\)
\(614\) −1.31119e8 −0.0228601
\(615\) −2.69323e8 8.66653e8i −0.0466886 0.150239i
\(616\) 0 0
\(617\) 4.36859e9i 0.748761i −0.927275 0.374381i \(-0.877855\pi\)
0.927275 0.374381i \(-0.122145\pi\)
\(618\) −5.14688e8 1.65621e9i −0.0877171 0.282264i
\(619\) 8.97007e9i 1.52012i 0.649851 + 0.760061i \(0.274831\pi\)
−0.649851 + 0.760061i \(0.725169\pi\)
\(620\) 2.31409e9i 0.389950i
\(621\) 3.52219e9 4.47428e9i 0.590190 0.749725i
\(622\) 3.34601e9i 0.557521i
\(623\) 0 0
\(624\) 2.60735e9 8.10269e8i 0.429590 0.133501i
\(625\) −4.45573e9 −0.730026
\(626\) −8.03081e9 −1.30843
\(627\) −6.37401e8 2.05109e9i −0.103271 0.332313i
\(628\) 2.18581e9i 0.352171i
\(629\) −8.90813e9 −1.42728
\(630\) 0 0
\(631\) 1.18971e10 1.88512 0.942558 0.334043i \(-0.108413\pi\)
0.942558 + 0.334043i \(0.108413\pi\)
\(632\) 4.02265e9i 0.633874i
\(633\) −2.26165e9 7.27773e9i −0.354415 1.14047i
\(634\) −2.87849e9 −0.448593
\(635\) −6.34085e9 −0.982741
\(636\) −3.23810e8 + 1.00628e8i −0.0499104 + 0.0155103i
\(637\) 0 0
\(638\) 1.04260e10i 1.58944i
\(639\) −8.81633e8 1.28151e9i −0.133670 0.194298i
\(640\) 1.64832e9i 0.248549i
\(641\) 6.70756e9i 1.00592i 0.864311 + 0.502958i \(0.167755\pi\)
−0.864311 + 0.502958i \(0.832245\pi\)
\(642\) −1.59660e9 5.13768e9i −0.238135 0.766292i
\(643\) 9.24553e9i 1.37149i −0.727840 0.685747i \(-0.759476\pi\)
0.727840 0.685747i \(-0.240524\pi\)
\(644\) 0 0
\(645\) −4.04337e8 1.30111e9i −0.0593313 0.190922i
\(646\) −2.03688e9 −0.297270
\(647\) −5.77075e9 −0.837659 −0.418830 0.908065i \(-0.637560\pi\)
−0.418830 + 0.908065i \(0.637560\pi\)
\(648\) 7.04114e9 + 2.69534e9i 1.01655 + 0.389136i
\(649\) 1.56763e9i 0.225105i
\(650\) 9.93299e8 0.141868
\(651\) 0 0
\(652\) −1.23182e9 −0.174053
\(653\) 3.77885e9i 0.531084i −0.964099 0.265542i \(-0.914449\pi\)
0.964099 0.265542i \(-0.0855510\pi\)
\(654\) −5.97223e9 + 1.85594e9i −0.834861 + 0.259444i
\(655\) 7.18162e9 0.998569
\(656\) −7.45376e8 −0.103089
\(657\) 6.65644e9 + 9.67556e9i 0.915722 + 1.33106i
\(658\) 0 0
\(659\) 1.25248e10i 1.70479i 0.522897 + 0.852396i \(0.324851\pi\)
−0.522897 + 0.852396i \(0.675149\pi\)
\(660\) 3.01108e9 9.35730e8i 0.407679 0.126691i
\(661\) 5.05342e9i 0.680582i 0.940320 + 0.340291i \(0.110526\pi\)
−0.940320 + 0.340291i \(0.889474\pi\)
\(662\) 1.40487e9i 0.188206i
\(663\) −8.73807e9 + 2.71547e9i −1.16444 + 0.361865i
\(664\) 3.22894e9i 0.428028i
\(665\) 0 0
\(666\) 3.24536e9 + 4.71734e9i 0.425700 + 0.618781i
\(667\) 9.30870e9 1.21464
\(668\) −2.74131e9 −0.355829
\(669\) 5.51421e9 1.71361e9i 0.712020 0.221269i
\(670\) 7.74645e9i 0.995041i
\(671\) 1.58518e9 0.202558
\(672\) 0 0
\(673\) 4.68666e9 0.592667 0.296333 0.955085i \(-0.404236\pi\)
0.296333 + 0.955085i \(0.404236\pi\)
\(674\) 4.35570e9i 0.547959i
\(675\) 1.38810e9 + 1.09272e9i 0.173723 + 0.136756i
\(676\) 1.01357e9 0.126194
\(677\) 9.99726e9 1.23829 0.619143 0.785279i \(-0.287480\pi\)
0.619143 + 0.785279i \(0.287480\pi\)
\(678\) −3.26171e9 1.04958e10i −0.401921 1.29334i
\(679\) 0 0
\(680\) 1.23471e10i 1.50586i
\(681\) −1.80505e9 5.80845e9i −0.219015 0.704766i
\(682\) 1.43007e10i 1.72628i
\(683\) 2.74470e9i 0.329626i 0.986325 + 0.164813i \(0.0527021\pi\)
−0.986325 + 0.164813i \(0.947298\pi\)
\(684\) −3.48521e8 5.06597e8i −0.0416421 0.0605294i
\(685\) 1.33714e10i 1.58949i
\(686\) 0 0
\(687\) 5.71068e9 1.77467e9i 0.671954 0.208818i
\(688\) −1.11904e9 −0.131004
\(689\) −1.09226e9 −0.127221
\(690\) 1.77883e9 + 5.72408e9i 0.206140 + 0.663337i
\(691\) 7.67170e9i 0.884542i −0.896881 0.442271i \(-0.854173\pi\)
0.896881 0.442271i \(-0.145827\pi\)
\(692\) 2.98171e9 0.342054
\(693\) 0 0
\(694\) −6.24473e9 −0.709178
\(695\) 5.51236e9i 0.622860i
\(696\) 3.65760e9 + 1.17697e10i 0.411210 + 1.32323i
\(697\) 2.49799e9 0.279432
\(698\) 4.12302e9 0.458903
\(699\) −2.63849e9 + 8.19943e8i −0.292203 + 0.0908058i
\(700\) 0 0
\(701\) 1.08816e10i 1.19311i −0.802571 0.596556i \(-0.796535\pi\)
0.802571 0.596556i \(-0.203465\pi\)
\(702\) 4.62139e9 + 3.63800e9i 0.504189 + 0.396901i
\(703\) 1.92831e9i 0.209331i
\(704\) 1.51716e10i 1.63880i
\(705\) −2.86102e7 9.20644e7i −0.00307510 0.00989532i
\(706\) 8.23819e9i 0.881080i
\(707\) 0 0
\(708\) 1.33185e8 + 4.28576e8i 0.0141039 + 0.0453849i
\(709\) −1.28719e10 −1.35638 −0.678189 0.734887i \(-0.737235\pi\)
−0.678189 + 0.734887i \(0.737235\pi\)
\(710\) 1.63739e9 0.171691
\(711\) −4.59809e9 + 3.16332e9i −0.479771 + 0.330065i
\(712\) 7.31029e9i 0.759022i
\(713\) 1.27682e10 1.31922
\(714\) 0 0
\(715\) 1.01568e10 1.03917
\(716\) 4.29343e9i 0.437129i
\(717\) 1.22362e10 3.80255e9i 1.23973 0.385263i
\(718\) 8.85807e9 0.893107
\(719\) 7.91923e9 0.794569 0.397285 0.917695i \(-0.369953\pi\)
0.397285 + 0.917695i \(0.369953\pi\)
\(720\) −4.21130e9 + 2.89722e9i −0.420487 + 0.289280i
\(721\) 0 0
\(722\) 7.90110e9i 0.781282i
\(723\) 3.86396e9 1.20077e9i 0.380231 0.118162i
\(724\) 3.01320e9i 0.295082i
\(725\) 2.88793e9i 0.281451i
\(726\) 1.04862e10 3.25873e9i 1.01705 0.316060i
\(727\) 1.17473e10i 1.13389i 0.823757 + 0.566943i \(0.191874\pi\)
−0.823757 + 0.566943i \(0.808126\pi\)
\(728\) 0 0
\(729\) 2.45608e9 + 1.01679e10i 0.234799 + 0.972044i
\(730\) −1.23625e10 −1.17619
\(731\) 3.75025e9 0.355099
\(732\) 4.33375e8 1.34677e8i 0.0408390 0.0126912i
\(733\) 6.37551e9i 0.597931i 0.954264 + 0.298965i \(0.0966415\pi\)
−0.954264 + 0.298965i \(0.903359\pi\)
\(734\) −7.39660e9 −0.690392
\(735\) 0 0
\(736\) −6.31044e9 −0.583428
\(737\) 2.24837e10i 2.06886i
\(738\) −9.10055e8 1.32282e9i −0.0833432 0.121145i
\(739\) −6.02664e8 −0.0549312 −0.0274656 0.999623i \(-0.508744\pi\)
−0.0274656 + 0.999623i \(0.508744\pi\)
\(740\) 2.83083e9 0.256805
\(741\) −5.87807e8 1.89150e9i −0.0530727 0.170782i
\(742\) 0 0
\(743\) 1.48198e10i 1.32550i 0.748839 + 0.662752i \(0.230612\pi\)
−0.748839 + 0.662752i \(0.769388\pi\)
\(744\) 5.01691e9 + 1.61439e10i 0.446612 + 1.43715i
\(745\) 4.46401e9i 0.395529i
\(746\) 7.69576e9i 0.678681i
\(747\) −3.69084e9 + 2.53916e9i −0.323968 + 0.222879i
\(748\) 8.67895e9i 0.758249i
\(749\) 0 0
\(750\) −9.80794e9 + 3.04794e9i −0.848914 + 0.263811i
\(751\) −1.77496e10 −1.52915 −0.764573 0.644537i \(-0.777050\pi\)
−0.764573 + 0.644537i \(0.777050\pi\)
\(752\) −7.91812e7 −0.00678984
\(753\) −5.32827e9 1.71458e10i −0.454783 1.46344i
\(754\) 9.61478e9i 0.816845i
\(755\) 2.03284e9 0.171905
\(756\) 0 0
\(757\) −8.54076e9 −0.715585 −0.357792 0.933801i \(-0.616470\pi\)
−0.357792 + 0.933801i \(0.616470\pi\)
\(758\) 4.34132e9i 0.362059i
\(759\) −5.16297e9 1.66139e10i −0.428602 1.37919i
\(760\) 2.67274e9 0.220856
\(761\) −1.20899e10 −0.994435 −0.497217 0.867626i \(-0.665645\pi\)
−0.497217 + 0.867626i \(0.665645\pi\)
\(762\) −1.07130e10 + 3.32920e9i −0.877139 + 0.272582i
\(763\) 0 0
\(764\) 2.39917e8i 0.0194641i
\(765\) 1.41134e10 9.70951e9i 1.13977 0.784119i
\(766\) 9.34276e9i 0.751060i
\(767\) 1.44565e9i 0.115686i
\(768\) −3.16800e9 1.01943e10i −0.252361 0.812068i
\(769\) 1.19507e10i 0.947656i −0.880617 0.473828i \(-0.842872\pi\)
0.880617 0.473828i \(-0.157128\pi\)
\(770\) 0 0
\(771\) −7.18751e9 2.31286e10i −0.564791 1.81744i
\(772\) 4.75826e9 0.372209
\(773\) −4.32773e9 −0.337001 −0.168501 0.985702i \(-0.553893\pi\)
−0.168501 + 0.985702i \(0.553893\pi\)
\(774\) −1.36627e9 1.98596e9i −0.105912 0.153949i
\(775\) 3.96119e9i 0.305682i
\(776\) −3.42993e8 −0.0263493
\(777\) 0 0
\(778\) −8.49987e9 −0.647119
\(779\) 5.40731e8i 0.0409826i
\(780\) 2.77679e9 8.62924e8i 0.209514 0.0651090i
\(781\) −4.75244e9 −0.356975
\(782\) −1.64988e10 −1.23375
\(783\) −1.05771e10 + 1.34363e10i −0.787412 + 1.00026i
\(784\) 0 0
\(785\) 1.31817e10i 0.972584i
\(786\) 1.21335e10 3.77064e9i 0.891265 0.276972i
\(787\) 1.17095e10i 0.856299i 0.903708 + 0.428149i \(0.140834\pi\)
−0.903708 + 0.428149i \(0.859166\pi\)
\(788\) 9.61436e8i 0.0699969i
\(789\) 3.49162e9 1.08507e9i 0.253080 0.0786478i
\(790\) 5.87500e9i 0.423948i
\(791\) 0 0
\(792\) 1.89776e10 1.30559e10i 1.35739 0.933835i
\(793\) 1.46184e9 0.104098
\(794\) −2.83033e9 −0.200662
\(795\) 1.95276e9 6.06846e8i 0.137837 0.0428345i
\(796\) 8.07632e9i 0.567568i
\(797\) 2.83668e10 1.98475 0.992377 0.123238i \(-0.0393279\pi\)
0.992377 + 0.123238i \(0.0393279\pi\)
\(798\) 0 0
\(799\) 2.65361e8 0.0184045
\(800\) 1.95775e9i 0.135189i
\(801\) −8.35601e9 + 5.74864e9i −0.574494 + 0.395231i
\(802\) −1.27777e10 −0.874668
\(803\) 3.58816e10 2.44550
\(804\) −1.91022e9 6.14687e9i −0.129624 0.417117i
\(805\) 0 0
\(806\) 1.31880e10i 0.887169i
\(807\) 8.23324e8 + 2.64937e9i 0.0551459 + 0.177453i
\(808\) 6.40280e9i 0.427002i
\(809\) 1.17287e9i 0.0778809i 0.999242 + 0.0389404i \(0.0123983\pi\)
−0.999242 + 0.0389404i \(0.987602\pi\)
\(810\) −1.02834e10 3.93649e9i −0.679892 0.260262i
\(811\) 1.21163e8i 0.00797623i −0.999992 0.00398811i \(-0.998731\pi\)
0.999992 0.00398811i \(-0.00126946\pi\)
\(812\) 0 0
\(813\) −1.40130e10 + 4.35473e9i −0.914566 + 0.284213i
\(814\) 1.74941e10 1.13686
\(815\) 7.42860e9 0.480679
\(816\) −4.17539e9 1.34360e10i −0.269018 0.865671i
\(817\) 8.11802e8i 0.0520802i
\(818\) 4.43124e9 0.283067
\(819\) 0 0
\(820\) −7.93814e8 −0.0502771
\(821\) 2.10170e10i 1.32547i 0.748853 + 0.662736i \(0.230605\pi\)
−0.748853 + 0.662736i \(0.769395\pi\)
\(822\) −7.02050e9 2.25912e10i −0.440876 1.41869i
\(823\) −7.98981e9 −0.499617 −0.249808 0.968295i \(-0.580368\pi\)
−0.249808 + 0.968295i \(0.580368\pi\)
\(824\) −6.26401e9 −0.390038
\(825\) 5.15428e9 1.60176e9i 0.319580 0.0993135i
\(826\) 0 0
\(827\) 8.63581e9i 0.530926i −0.964121 0.265463i \(-0.914475\pi\)
0.964121 0.265463i \(-0.0855247\pi\)
\(828\) −2.82303e9 4.10346e9i −0.172826 0.251214i
\(829\) 1.26323e10i 0.770092i 0.922897 + 0.385046i \(0.125814\pi\)
−0.922897 + 0.385046i \(0.874186\pi\)
\(830\) 4.71579e9i 0.286274i
\(831\) −9.21315e9 2.96469e10i −0.556935 1.79216i
\(832\) 1.39911e10i 0.842209i
\(833\) 0 0
\(834\) 2.89421e9 + 9.31324e9i 0.172762 + 0.555930i
\(835\) 1.65317e10 0.982686
\(836\) −1.87870e9 −0.111208
\(837\) −1.45080e10 + 1.84297e10i −0.855203 + 1.08637i
\(838\) 1.05560e10i 0.619648i
\(839\) −2.36975e10 −1.38527 −0.692637 0.721287i \(-0.743551\pi\)
−0.692637 + 0.721287i \(0.743551\pi\)
\(840\) 0 0
\(841\) −1.07042e10 −0.620538
\(842\) 1.65915e10i 0.957838i
\(843\) 1.81144e10 5.62927e9i 1.04142 0.323635i
\(844\) −6.66606e9 −0.381655
\(845\) −6.11241e9 −0.348509
\(846\) −9.66750e7 1.40523e8i −0.00548931 0.00797906i
\(847\) 0 0
\(848\) 1.67950e9i 0.0945789i
\(849\) −1.32767e10 + 4.12590e9i −0.744582 + 0.231388i
\(850\) 5.11857e9i 0.285879i
\(851\) 1.56194e10i 0.868781i
\(852\) −1.29928e9 + 4.03768e8i −0.0719721 + 0.0223662i
\(853\) 3.02762e10i 1.67024i −0.550065 0.835122i \(-0.685397\pi\)
0.550065 0.835122i \(-0.314603\pi\)
\(854\) 0 0
\(855\) 2.10178e9 + 3.05507e9i 0.115002 + 0.167163i
\(856\) −1.94314e10 −1.05888
\(857\) 1.30491e10 0.708185 0.354093 0.935210i \(-0.384790\pi\)
0.354093 + 0.935210i \(0.384790\pi\)
\(858\) 1.71602e10 5.33274e9i 0.927504 0.288234i
\(859\) 8.57626e9i 0.461659i −0.972994 0.230830i \(-0.925856\pi\)
0.972994 0.230830i \(-0.0741440\pi\)
\(860\) −1.19176e9 −0.0638916
\(861\) 0 0
\(862\) 1.77704e9 0.0944978
\(863\) 2.04345e10i 1.08225i 0.840943 + 0.541124i \(0.182001\pi\)
−0.840943 + 0.541124i \(0.817999\pi\)
\(864\) 7.17033e9 9.10855e9i 0.378217 0.480453i
\(865\) −1.79814e10 −0.944644
\(866\) 1.04324e10 0.545847
\(867\) 8.29828e9 + 2.67029e10i 0.432435 + 1.39153i
\(868\) 0 0
\(869\) 1.70519e10i 0.881462i
\(870\) −5.34184e9 1.71895e10i −0.275026 0.885003i
\(871\) 2.07343e10i 1.06323i
\(872\) 2.25878e10i 1.15363i
\(873\) −2.69722e8 3.92058e8i −0.0137204 0.0199435i
\(874\) 3.57143e9i 0.180947i
\(875\) 0 0
\(876\) 9.80973e9 3.04850e9i 0.493052 0.153222i
\(877\) −2.47321e10 −1.23812 −0.619061 0.785343i \(-0.712487\pi\)
−0.619061 + 0.785343i \(0.712487\pi\)
\(878\) 5.76886e9 0.287647
\(879\) 8.72332e9 + 2.80707e10i 0.433232 + 1.39409i
\(880\) 1.56175e10i 0.772541i
\(881\) −6.10025e9 −0.300560 −0.150280 0.988643i \(-0.548018\pi\)
−0.150280 + 0.988643i \(0.548018\pi\)
\(882\) 0 0
\(883\) 7.46738e9 0.365011 0.182505 0.983205i \(-0.441579\pi\)
0.182505 + 0.983205i \(0.441579\pi\)
\(884\) 8.00367e9i 0.389678i
\(885\) −8.03185e8 2.58456e9i −0.0389506 0.125339i
\(886\) −2.43968e10 −1.17846
\(887\) 7.39914e9 0.355999 0.178000 0.984031i \(-0.443037\pi\)
0.178000 + 0.984031i \(0.443037\pi\)
\(888\) 1.97489e10 6.13721e9i 0.946447 0.294121i
\(889\) 0 0
\(890\) 1.06765e10i 0.507650i
\(891\) 2.98471e10 + 1.14255e10i 1.41361 + 0.541131i
\(892\) 5.05077e9i 0.238276i
\(893\) 5.74417e7i 0.00269928i
\(894\) −2.34379e9 7.54204e9i −0.109708 0.353027i
\(895\) 2.58919e10i 1.20721i
\(896\) 0 0
\(897\) −4.76126e9 1.53212e10i −0.220266 0.708793i
\(898\) −8.17816e9 −0.376867
\(899\) −3.83429e10 −1.76005
\(900\) 1.27305e9 8.75816e8i 0.0582100 0.0400464i
\(901\) 5.62853e9i 0.256365i
\(902\) −4.90565e9 −0.222574
\(903\) 0 0
\(904\) −3.96966e10 −1.78716
\(905\) 1.81713e10i 0.814923i
\(906\) 3.43453e9 1.06732e9i 0.153433 0.0476812i
\(907\) −1.14080e10 −0.507674 −0.253837 0.967247i \(-0.581693\pi\)
−0.253837 + 0.967247i \(0.581693\pi\)
\(908\) −5.32027e9 −0.235849
\(909\) 7.31871e9 5.03502e9i 0.323192 0.222345i
\(910\) 0 0
\(911\) 9.95158e9i 0.436091i 0.975939 + 0.218046i \(0.0699682\pi\)
−0.975939 + 0.218046i \(0.930032\pi\)
\(912\) 2.90843e9 9.03832e8i 0.126963 0.0394553i
\(913\) 1.36874e10i 0.595213i
\(914\) 2.14795e10i 0.930493i
\(915\) −2.61350e9 + 8.12178e8i −0.112784 + 0.0350491i
\(916\) 5.23072e9i 0.224868i
\(917\) 0 0
\(918\) 1.87470e10 2.38145e10i 0.799800 1.01600i
\(919\) 3.18281e10 1.35271 0.676357 0.736574i \(-0.263557\pi\)
0.676357 + 0.736574i \(0.263557\pi\)
\(920\) 2.16493e10 0.916614
\(921\) −6.27446e8 + 1.94987e8i −0.0264648 + 0.00822426i
\(922\) 1.17862e10i 0.495238i
\(923\) −4.38267e9 −0.183456
\(924\) 0 0
\(925\) 4.84575e9 0.201310
\(926\) 1.09092e10i 0.451495i
\(927\) −4.92587e9 7.16007e9i −0.203097 0.295215i
\(928\) 1.89503e10 0.778391
\(929\) −3.34390e10 −1.36835 −0.684177 0.729316i \(-0.739839\pi\)
−0.684177 + 0.729316i \(0.739839\pi\)
\(930\) −7.32708e9 2.35777e10i −0.298704 0.961195i
\(931\) 0 0
\(932\) 2.41673e9i 0.0977852i
\(933\) 4.97584e9 + 1.60117e10i 0.200577 + 0.645434i
\(934\) 9.30437e9i 0.373657i
\(935\) 5.23391e10i 2.09404i
\(936\) 1.75010e10 1.20401e10i 0.697587 0.479915i
\(937\) 2.48503e10i 0.986832i −0.869793 0.493416i \(-0.835748\pi\)
0.869793 0.493416i \(-0.164252\pi\)
\(938\) 0 0
\(939\) −3.84299e10 + 1.19426e10i −1.51475 + 0.470726i
\(940\) −8.43268e7 −0.00331145
\(941\) −1.96550e10 −0.768971 −0.384485 0.923131i \(-0.625621\pi\)
−0.384485 + 0.923131i \(0.625621\pi\)
\(942\) −6.92091e9 2.22707e10i −0.269765 0.868073i
\(943\) 4.37994e9i 0.170089i
\(944\) −2.22289e9 −0.0860033
\(945\) 0 0
\(946\) −7.36488e9 −0.282844
\(947\) 3.64835e10i 1.39596i −0.716119 0.697979i \(-0.754083\pi\)
0.716119 0.697979i \(-0.245917\pi\)
\(948\) 1.44873e9 + 4.66185e9i 0.0552278 + 0.177717i
\(949\) 3.30897e10 1.25679
\(950\) 1.10800e9 0.0419282
\(951\) −1.37745e10 + 4.28059e9i −0.519329 + 0.161388i
\(952\) 0 0
\(953\) 1.60579e10i 0.600984i −0.953784 0.300492i \(-0.902849\pi\)
0.953784 0.300492i \(-0.0971508\pi\)
\(954\) 2.98061e9 2.05056e9i 0.111144 0.0764632i
\(955\) 1.44684e9i 0.0537537i
\(956\) 1.12078e10i 0.414874i
\(957\) 1.55044e10 + 4.98916e10i 0.571826 + 1.84007i
\(958\) 3.47683e10i 1.27763i
\(959\) 0 0
\(960\) 7.77327e9 + 2.50135e10i 0.283566 + 0.912484i
\(961\) −2.50800e10 −0.911583
\(962\) 1.61330e10 0.584253
\(963\) −1.52804e10 2.22110e10i −0.551370 0.801451i
\(964\) 3.53921e9i 0.127244i
\(965\) −2.86950e10 −1.02792
\(966\) 0 0
\(967\) 5.02193e10 1.78599 0.892993 0.450071i \(-0.148601\pi\)
0.892993 + 0.450071i \(0.148601\pi\)
\(968\) 3.96604e10i 1.40538i
\(969\) −9.74707e9 + 3.02903e9i −0.344144 + 0.106947i
\(970\) 5.00934e8 0.0176230
\(971\) −2.45564e10 −0.860791 −0.430396 0.902640i \(-0.641626\pi\)
−0.430396 + 0.902640i \(0.641626\pi\)
\(972\) 9.13068e9 + 5.87817e8i 0.318912 + 0.0205310i
\(973\) 0 0
\(974\) 1.26364e10i 0.438196i
\(975\) 4.75324e9 1.47713e9i 0.164238 0.0510390i
\(976\) 2.24777e9i 0.0773888i
\(977\) 6.17851e9i 0.211959i 0.994368 + 0.105980i \(0.0337978\pi\)
−0.994368 + 0.105980i \(0.966202\pi\)
\(978\) 1.25508e10 3.90031e9i 0.429027 0.133325i
\(979\) 3.09881e10i 1.05549i
\(980\) 0 0
\(981\) −2.58190e10 + 1.77625e10i −0.873167 + 0.600708i
\(982\) −1.09061e10 −0.367517
\(983\) 3.38979e10 1.13824 0.569122 0.822253i \(-0.307283\pi\)
0.569122 + 0.822253i \(0.307283\pi\)
\(984\) −5.53791e9 + 1.72098e9i −0.185295 + 0.0575827i
\(985\) 5.79801e9i 0.193309i
\(986\) 4.95459e10 1.64603
\(987\) 0 0
\(988\) −1.73252e9 −0.0571518
\(989\) 6.57563e9i 0.216148i
\(990\) −2.77164e10 + 1.90679e10i −0.907849 + 0.624568i
\(991\) 3.70960e10 1.21079 0.605395 0.795925i \(-0.293015\pi\)
0.605395 + 0.795925i \(0.293015\pi\)
\(992\) 2.59930e10 0.845405
\(993\) −2.08918e9 6.72275e9i −0.0677101 0.217884i
\(994\) 0 0
\(995\) 4.87049e10i 1.56744i
\(996\) 1.16288e9 + 3.74202e9i 0.0372930 + 0.120005i
\(997\) 6.89036e9i 0.220196i −0.993921 0.110098i \(-0.964884\pi\)
0.993921 0.110098i \(-0.0351164\pi\)
\(998\) 1.20333e10i 0.383201i
\(999\) 2.25452e10 + 1.77477e10i 0.715442 + 0.563202i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 147.8.c.b.146.24 32
3.2 odd 2 inner 147.8.c.b.146.9 32
7.2 even 3 21.8.g.b.17.11 yes 32
7.3 odd 6 21.8.g.b.5.6 32
7.6 odd 2 inner 147.8.c.b.146.10 32
21.2 odd 6 21.8.g.b.17.6 yes 32
21.17 even 6 21.8.g.b.5.11 yes 32
21.20 even 2 inner 147.8.c.b.146.23 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.8.g.b.5.6 32 7.3 odd 6
21.8.g.b.5.11 yes 32 21.17 even 6
21.8.g.b.17.6 yes 32 21.2 odd 6
21.8.g.b.17.11 yes 32 7.2 even 3
147.8.c.b.146.9 32 3.2 odd 2 inner
147.8.c.b.146.10 32 7.6 odd 2 inner
147.8.c.b.146.23 32 21.20 even 2 inner
147.8.c.b.146.24 32 1.1 even 1 trivial