Properties

Label 147.8.c.b.146.13
Level $147$
Weight $8$
Character 147.146
Analytic conductor $45.921$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [147,8,Mod(146,147)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("147.146"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(147, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 147.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.9205987462\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 146.13
Character \(\chi\) \(=\) 147.146
Dual form 147.8.c.b.146.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.39832i q^{2} +(33.2308 + 32.9046i) q^{3} +73.2648 q^{4} -203.095 q^{5} +(243.439 - 245.852i) q^{6} -1489.02i q^{8} +(21.5784 + 2186.89i) q^{9} +1502.56i q^{10} -1946.33i q^{11} +(2434.65 + 2410.75i) q^{12} -7873.88i q^{13} +(-6749.00 - 6682.74i) q^{15} -1638.36 q^{16} +9230.23 q^{17} +(16179.3 - 159.644i) q^{18} +10406.6i q^{19} -14879.7 q^{20} -14399.6 q^{22} -81873.3i q^{23} +(48995.6 - 49481.5i) q^{24} -36877.6 q^{25} -58253.5 q^{26} +(-71241.7 + 73382.4i) q^{27} -195123. i q^{29} +(-49441.0 + 49931.3i) q^{30} +97496.3i q^{31} -178474. i q^{32} +(64043.1 - 64678.2i) q^{33} -68288.2i q^{34} +(1580.94 + 160222. i) q^{36} +570632. q^{37} +76991.4 q^{38} +(259087. - 261656. i) q^{39} +302412. i q^{40} +339491. q^{41} -356328. q^{43} -142598. i q^{44} +(-4382.45 - 444146. i) q^{45} -605725. q^{46} +766151. q^{47} +(-54444.1 - 53909.6i) q^{48} +272832. i q^{50} +(306728. + 303717. i) q^{51} -576879. i q^{52} -158435. i q^{53} +(542906. + 527069. i) q^{54} +395289. i q^{55} +(-342425. + 345820. i) q^{57} -1.44358e6 q^{58} +2.56230e6 q^{59} +(-494465. - 489610. i) q^{60} -1.72901e6i q^{61} +721309. q^{62} -1.53012e6 q^{64} +1.59914e6i q^{65} +(-478510. - 473812. i) q^{66} -2.20518e6 q^{67} +676251. q^{68} +(2.69401e6 - 2.72072e6i) q^{69} -5.29805e6i q^{71} +(3.25633e6 - 32130.7i) q^{72} -2.54319e6i q^{73} -4.22172e6i q^{74} +(-1.22547e6 - 1.21344e6i) q^{75} +762439. i q^{76} +(-1.93581e6 - 1.91681e6i) q^{78} +744581. q^{79} +332742. q^{80} +(-4.78204e6 + 94379.3i) q^{81} -2.51166e6i q^{82} -5.20177e6 q^{83} -1.87461e6 q^{85} +2.63623e6i q^{86} +(6.42044e6 - 6.48411e6i) q^{87} -2.89813e6 q^{88} -1.01641e7 q^{89} +(-3.28594e6 + 32422.8i) q^{90} -5.99844e6i q^{92} +(-3.20807e6 + 3.23989e6i) q^{93} -5.66823e6i q^{94} -2.11353e6i q^{95} +(5.87260e6 - 5.93083e6i) q^{96} -3.36084e6i q^{97} +(4.25641e6 - 41998.7i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 2300 q^{4} + 7032 q^{9} + 27576 q^{15} + 39188 q^{16} - 66996 q^{18} + 105132 q^{22} + 662504 q^{25} + 81324 q^{30} - 227244 q^{36} + 1237496 q^{37} - 3992208 q^{39} - 1416064 q^{43} + 6985680 q^{46}+ \cdots + 35642232 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 7.39832i 0.653925i −0.945037 0.326963i \(-0.893975\pi\)
0.945037 0.326963i \(-0.106025\pi\)
\(3\) 33.2308 + 32.9046i 0.710587 + 0.703610i
\(4\) 73.2648 0.572382
\(5\) −203.095 −0.726613 −0.363306 0.931670i \(-0.618352\pi\)
−0.363306 + 0.931670i \(0.618352\pi\)
\(6\) 243.439 245.852i 0.460108 0.464671i
\(7\) 0 0
\(8\) 1489.02i 1.02822i
\(9\) 21.5784 + 2186.89i 0.00986667 + 0.999951i
\(10\) 1502.56i 0.475151i
\(11\) 1946.33i 0.440902i −0.975398 0.220451i \(-0.929247\pi\)
0.975398 0.220451i \(-0.0707529\pi\)
\(12\) 2434.65 + 2410.75i 0.406727 + 0.402733i
\(13\) 7873.88i 0.994002i −0.867750 0.497001i \(-0.834435\pi\)
0.867750 0.497001i \(-0.165565\pi\)
\(14\) 0 0
\(15\) −6749.00 6682.74i −0.516321 0.511252i
\(16\) −1638.36 −0.0999977
\(17\) 9230.23 0.455660 0.227830 0.973701i \(-0.426837\pi\)
0.227830 + 0.973701i \(0.426837\pi\)
\(18\) 16179.3 159.644i 0.653894 0.00645206i
\(19\) 10406.6i 0.348074i 0.984739 + 0.174037i \(0.0556812\pi\)
−0.984739 + 0.174037i \(0.944319\pi\)
\(20\) −14879.7 −0.415900
\(21\) 0 0
\(22\) −14399.6 −0.288317
\(23\) 81873.3i 1.40312i −0.712610 0.701560i \(-0.752487\pi\)
0.712610 0.701560i \(-0.247513\pi\)
\(24\) 48995.6 49481.5i 0.723466 0.730640i
\(25\) −36877.6 −0.472034
\(26\) −58253.5 −0.650003
\(27\) −71241.7 + 73382.4i −0.696564 + 0.717494i
\(28\) 0 0
\(29\) 195123.i 1.48565i −0.669487 0.742824i \(-0.733486\pi\)
0.669487 0.742824i \(-0.266514\pi\)
\(30\) −49441.0 + 49931.3i −0.334321 + 0.337636i
\(31\) 97496.3i 0.587790i 0.955838 + 0.293895i \(0.0949516\pi\)
−0.955838 + 0.293895i \(0.905048\pi\)
\(32\) 178474.i 0.962829i
\(33\) 64043.1 64678.2i 0.310223 0.313299i
\(34\) 68288.2i 0.297968i
\(35\) 0 0
\(36\) 1580.94 + 160222.i 0.00564750 + 0.572354i
\(37\) 570632. 1.85204 0.926019 0.377478i \(-0.123208\pi\)
0.926019 + 0.377478i \(0.123208\pi\)
\(38\) 76991.4 0.227614
\(39\) 259087. 261656.i 0.699389 0.706324i
\(40\) 302412.i 0.747118i
\(41\) 339491. 0.769280 0.384640 0.923067i \(-0.374326\pi\)
0.384640 + 0.923067i \(0.374326\pi\)
\(42\) 0 0
\(43\) −356328. −0.683455 −0.341727 0.939799i \(-0.611012\pi\)
−0.341727 + 0.939799i \(0.611012\pi\)
\(44\) 142598.i 0.252364i
\(45\) −4382.45 444146.i −0.00716925 0.726578i
\(46\) −605725. −0.917536
\(47\) 766151. 1.07640 0.538198 0.842819i \(-0.319105\pi\)
0.538198 + 0.842819i \(0.319105\pi\)
\(48\) −54444.1 53909.6i −0.0710570 0.0703593i
\(49\) 0 0
\(50\) 272832.i 0.308675i
\(51\) 306728. + 303717.i 0.323786 + 0.320607i
\(52\) 576879.i 0.568948i
\(53\) 158435.i 0.146179i −0.997325 0.0730896i \(-0.976714\pi\)
0.997325 0.0730896i \(-0.0232859\pi\)
\(54\) 542906. + 527069.i 0.469188 + 0.455501i
\(55\) 395289.i 0.320365i
\(56\) 0 0
\(57\) −342425. + 345820.i −0.244908 + 0.247337i
\(58\) −1.44358e6 −0.971503
\(59\) 2.56230e6 1.62423 0.812117 0.583495i \(-0.198315\pi\)
0.812117 + 0.583495i \(0.198315\pi\)
\(60\) −494465. 489610.i −0.295533 0.292631i
\(61\) 1.72901e6i 0.975310i −0.873036 0.487655i \(-0.837852\pi\)
0.873036 0.487655i \(-0.162148\pi\)
\(62\) 721309. 0.384371
\(63\) 0 0
\(64\) −1.53012e6 −0.729616
\(65\) 1.59914e6i 0.722255i
\(66\) −478510. 473812.i −0.204874 0.202863i
\(67\) −2.20518e6 −0.895740 −0.447870 0.894099i \(-0.647817\pi\)
−0.447870 + 0.894099i \(0.647817\pi\)
\(68\) 676251. 0.260812
\(69\) 2.69401e6 2.72072e6i 0.987249 0.997039i
\(70\) 0 0
\(71\) 5.29805e6i 1.75676i −0.477965 0.878379i \(-0.658625\pi\)
0.477965 0.878379i \(-0.341375\pi\)
\(72\) 3.25633e6 32130.7i 1.02817 0.0101451i
\(73\) 2.54319e6i 0.765155i −0.923923 0.382577i \(-0.875037\pi\)
0.923923 0.382577i \(-0.124963\pi\)
\(74\) 4.22172e6i 1.21109i
\(75\) −1.22547e6 1.21344e6i −0.335421 0.332127i
\(76\) 762439.i 0.199231i
\(77\) 0 0
\(78\) −1.93581e6 1.91681e6i −0.461883 0.457348i
\(79\) 744581. 0.169909 0.0849547 0.996385i \(-0.472925\pi\)
0.0849547 + 0.996385i \(0.472925\pi\)
\(80\) 332742. 0.0726596
\(81\) −4.78204e6 + 94379.3i −0.999805 + 0.0197324i
\(82\) 2.51166e6i 0.503052i
\(83\) −5.20177e6 −0.998569 −0.499284 0.866438i \(-0.666404\pi\)
−0.499284 + 0.866438i \(0.666404\pi\)
\(84\) 0 0
\(85\) −1.87461e6 −0.331089
\(86\) 2.63623e6i 0.446929i
\(87\) 6.42044e6 6.48411e6i 1.04532 1.05568i
\(88\) −2.89813e6 −0.453344
\(89\) −1.01641e7 −1.52828 −0.764142 0.645048i \(-0.776837\pi\)
−0.764142 + 0.645048i \(0.776837\pi\)
\(90\) −3.28594e6 + 32422.8i −0.475128 + 0.00468815i
\(91\) 0 0
\(92\) 5.99844e6i 0.803120i
\(93\) −3.20807e6 + 3.23989e6i −0.413575 + 0.417676i
\(94\) 5.66823e6i 0.703882i
\(95\) 2.11353e6i 0.252915i
\(96\) 5.87260e6 5.93083e6i 0.677456 0.684174i
\(97\) 3.36084e6i 0.373893i −0.982370 0.186946i \(-0.940141\pi\)
0.982370 0.186946i \(-0.0598591\pi\)
\(98\) 0 0
\(99\) 4.25641e6 41998.7i 0.440880 0.00435023i
\(100\) −2.70183e6 −0.270183
\(101\) 1.27094e7 1.22744 0.613718 0.789526i \(-0.289673\pi\)
0.613718 + 0.789526i \(0.289673\pi\)
\(102\) 2.24699e6 2.26927e6i 0.209653 0.211732i
\(103\) 8.58260e6i 0.773907i 0.922099 + 0.386954i \(0.126473\pi\)
−0.922099 + 0.386954i \(0.873527\pi\)
\(104\) −1.17244e7 −1.02205
\(105\) 0 0
\(106\) −1.17215e6 −0.0955903
\(107\) 494253.i 0.0390037i 0.999810 + 0.0195019i \(0.00620803\pi\)
−0.999810 + 0.0195019i \(0.993792\pi\)
\(108\) −5.21951e6 + 5.37635e6i −0.398701 + 0.410681i
\(109\) −1.04794e7 −0.775073 −0.387537 0.921854i \(-0.626674\pi\)
−0.387537 + 0.921854i \(0.626674\pi\)
\(110\) 2.92447e6 0.209495
\(111\) 1.89626e7 + 1.87764e7i 1.31603 + 1.30311i
\(112\) 0 0
\(113\) 63166.9i 0.00411827i −0.999998 0.00205914i \(-0.999345\pi\)
0.999998 0.00205914i \(-0.000655444\pi\)
\(114\) 2.55849e6 + 2.53337e6i 0.161740 + 0.160152i
\(115\) 1.66280e7i 1.01953i
\(116\) 1.42957e7i 0.850358i
\(117\) 1.72193e7 169906.i 0.993953 0.00980748i
\(118\) 1.89567e7i 1.06213i
\(119\) 0 0
\(120\) −9.95074e6 + 1.00494e7i −0.525680 + 0.530892i
\(121\) 1.56990e7 0.805606
\(122\) −1.27918e7 −0.637780
\(123\) 1.12816e7 + 1.11708e7i 0.546640 + 0.541273i
\(124\) 7.14305e6i 0.336440i
\(125\) 2.33564e7 1.06960
\(126\) 0 0
\(127\) −1.51366e7 −0.655716 −0.327858 0.944727i \(-0.606327\pi\)
−0.327858 + 0.944727i \(0.606327\pi\)
\(128\) 1.15243e7i 0.485715i
\(129\) −1.18411e7 1.17248e7i −0.485654 0.480886i
\(130\) 1.18310e7 0.472301
\(131\) 8.27433e6 0.321576 0.160788 0.986989i \(-0.448596\pi\)
0.160788 + 0.986989i \(0.448596\pi\)
\(132\) 4.69211e6 4.73864e6i 0.177566 0.179327i
\(133\) 0 0
\(134\) 1.63146e7i 0.585747i
\(135\) 1.44688e7 1.49036e7i 0.506133 0.521341i
\(136\) 1.37440e7i 0.468519i
\(137\) 3.53464e7i 1.17442i 0.809435 + 0.587210i \(0.199774\pi\)
−0.809435 + 0.587210i \(0.800226\pi\)
\(138\) −2.01288e7 1.99311e7i −0.651989 0.645587i
\(139\) 3.41607e6i 0.107888i 0.998544 + 0.0539442i \(0.0171793\pi\)
−0.998544 + 0.0539442i \(0.982821\pi\)
\(140\) 0 0
\(141\) 2.54598e7 + 2.52099e7i 0.764872 + 0.757362i
\(142\) −3.91967e7 −1.14879
\(143\) −1.53252e7 −0.438257
\(144\) −35353.2 3.58292e6i −0.000986644 0.0999928i
\(145\) 3.96284e7i 1.07949i
\(146\) −1.88154e7 −0.500354
\(147\) 0 0
\(148\) 4.18072e7 1.06007
\(149\) 2.08728e7i 0.516926i −0.966021 0.258463i \(-0.916784\pi\)
0.966021 0.258463i \(-0.0832161\pi\)
\(150\) −8.97744e6 + 9.06645e6i −0.217187 + 0.219340i
\(151\) 7.97413e7 1.88480 0.942398 0.334495i \(-0.108566\pi\)
0.942398 + 0.334495i \(0.108566\pi\)
\(152\) 1.54957e7 0.357897
\(153\) 199174. + 2.01855e7i 0.00449585 + 0.455638i
\(154\) 0 0
\(155\) 1.98010e7i 0.427096i
\(156\) 1.89819e7 1.91702e7i 0.400318 0.404287i
\(157\) 8.25879e7i 1.70321i 0.524187 + 0.851603i \(0.324369\pi\)
−0.524187 + 0.851603i \(0.675631\pi\)
\(158\) 5.50865e6i 0.111108i
\(159\) 5.21324e6 5.26493e6i 0.102853 0.103873i
\(160\) 3.62470e7i 0.699604i
\(161\) 0 0
\(162\) 698248. + 3.53791e7i 0.0129035 + 0.653798i
\(163\) −4.86596e7 −0.880059 −0.440029 0.897983i \(-0.645032\pi\)
−0.440029 + 0.897983i \(0.645032\pi\)
\(164\) 2.48727e7 0.440322
\(165\) −1.30068e7 + 1.31358e7i −0.225412 + 0.227647i
\(166\) 3.84844e7i 0.652989i
\(167\) −5.93974e7 −0.986869 −0.493435 0.869783i \(-0.664259\pi\)
−0.493435 + 0.869783i \(0.664259\pi\)
\(168\) 0 0
\(169\) 750490. 0.0119603
\(170\) 1.38690e7i 0.216507i
\(171\) −2.27581e7 + 224558.i −0.348057 + 0.00343433i
\(172\) −2.61063e7 −0.391197
\(173\) −1.01802e8 −1.49485 −0.747423 0.664348i \(-0.768709\pi\)
−0.747423 + 0.664348i \(0.768709\pi\)
\(174\) −4.79715e7 4.75005e7i −0.690337 0.683559i
\(175\) 0 0
\(176\) 3.18879e6i 0.0440892i
\(177\) 8.51475e7 + 8.43115e7i 1.15416 + 1.14283i
\(178\) 7.51973e7i 0.999383i
\(179\) 6.33422e7i 0.825481i 0.910849 + 0.412741i \(0.135428\pi\)
−0.910849 + 0.412741i \(0.864572\pi\)
\(180\) −321080. 3.25403e7i −0.00410355 0.415880i
\(181\) 2.79149e6i 0.0349913i −0.999847 0.0174957i \(-0.994431\pi\)
0.999847 0.0174957i \(-0.00556933\pi\)
\(182\) 0 0
\(183\) 5.68923e7 5.74564e7i 0.686238 0.693042i
\(184\) −1.21911e8 −1.44272
\(185\) −1.15892e8 −1.34571
\(186\) 2.39697e7 + 2.37344e7i 0.273129 + 0.270447i
\(187\) 1.79651e7i 0.200901i
\(188\) 5.61319e7 0.616109
\(189\) 0 0
\(190\) −1.56365e7 −0.165388
\(191\) 4.18650e7i 0.434745i −0.976089 0.217373i \(-0.930251\pi\)
0.976089 0.217373i \(-0.0697486\pi\)
\(192\) −5.08470e7 5.03478e7i −0.518455 0.513365i
\(193\) −8.04162e7 −0.805180 −0.402590 0.915380i \(-0.631890\pi\)
−0.402590 + 0.915380i \(0.631890\pi\)
\(194\) −2.48646e7 −0.244498
\(195\) −5.26191e7 + 5.31409e7i −0.508185 + 0.513225i
\(196\) 0 0
\(197\) 2.46045e7i 0.229289i 0.993407 + 0.114645i \(0.0365729\pi\)
−0.993407 + 0.114645i \(0.963427\pi\)
\(198\) −310720. 3.14903e7i −0.00284473 0.288303i
\(199\) 3.02879e7i 0.272448i 0.990678 + 0.136224i \(0.0434966\pi\)
−0.990678 + 0.136224i \(0.956503\pi\)
\(200\) 5.49116e7i 0.485354i
\(201\) −7.32799e7 7.25605e7i −0.636501 0.630251i
\(202\) 9.40279e7i 0.802651i
\(203\) 0 0
\(204\) 2.24724e7 + 2.22518e7i 0.185329 + 0.183510i
\(205\) −6.89487e7 −0.558969
\(206\) 6.34969e7 0.506077
\(207\) 1.79048e8 1.76670e6i 1.40305 0.0138441i
\(208\) 1.29003e7i 0.0993979i
\(209\) 2.02547e7 0.153466
\(210\) 0 0
\(211\) 6.47500e7 0.474517 0.237258 0.971447i \(-0.423751\pi\)
0.237258 + 0.971447i \(0.423751\pi\)
\(212\) 1.16077e7i 0.0836703i
\(213\) 1.74330e8 1.76059e8i 1.23607 1.24833i
\(214\) 3.65664e6 0.0255055
\(215\) 7.23682e7 0.496607
\(216\) 1.09268e8 + 1.06080e8i 0.737742 + 0.716222i
\(217\) 0 0
\(218\) 7.75298e7i 0.506840i
\(219\) 8.36827e7 8.45125e7i 0.538370 0.543709i
\(220\) 2.89608e7i 0.183371i
\(221\) 7.26777e7i 0.452927i
\(222\) 1.38914e8 1.40291e8i 0.852138 0.860587i
\(223\) 6.67311e7i 0.402959i −0.979493 0.201480i \(-0.935425\pi\)
0.979493 0.201480i \(-0.0645750\pi\)
\(224\) 0 0
\(225\) −795760. 8.06474e7i −0.00465740 0.472011i
\(226\) −467329. −0.00269304
\(227\) −1.43456e8 −0.814008 −0.407004 0.913426i \(-0.633426\pi\)
−0.407004 + 0.913426i \(0.633426\pi\)
\(228\) −2.50877e7 + 2.53365e7i −0.140181 + 0.141571i
\(229\) 3.62088e8i 1.99246i 0.0867559 + 0.996230i \(0.472350\pi\)
−0.0867559 + 0.996230i \(0.527650\pi\)
\(230\) 1.23019e8 0.666694
\(231\) 0 0
\(232\) −2.90543e8 −1.52757
\(233\) 1.97126e8i 1.02094i 0.859896 + 0.510469i \(0.170528\pi\)
−0.859896 + 0.510469i \(0.829472\pi\)
\(234\) −1.25702e6 1.27394e8i −0.00641336 0.649971i
\(235\) −1.55601e8 −0.782123
\(236\) 1.87727e8 0.929681
\(237\) 2.47431e7 + 2.45001e7i 0.120735 + 0.119550i
\(238\) 0 0
\(239\) 8.32422e7i 0.394413i 0.980362 + 0.197206i \(0.0631869\pi\)
−0.980362 + 0.197206i \(0.936813\pi\)
\(240\) 1.10573e7 + 1.09487e7i 0.0516309 + 0.0511240i
\(241\) 2.19094e8i 1.00826i 0.863629 + 0.504128i \(0.168186\pi\)
−0.863629 + 0.504128i \(0.831814\pi\)
\(242\) 1.16146e8i 0.526806i
\(243\) −1.62017e8 1.54215e8i −0.724332 0.689451i
\(244\) 1.26676e8i 0.558250i
\(245\) 0 0
\(246\) 8.26451e7 8.34646e7i 0.353952 0.357462i
\(247\) 8.19404e7 0.345986
\(248\) 1.45174e8 0.604378
\(249\) −1.72859e8 1.71162e8i −0.709569 0.702603i
\(250\) 1.72798e8i 0.699438i
\(251\) −6.98425e6 −0.0278780 −0.0139390 0.999903i \(-0.504437\pi\)
−0.0139390 + 0.999903i \(0.504437\pi\)
\(252\) 0 0
\(253\) −1.59352e8 −0.618638
\(254\) 1.11986e8i 0.428789i
\(255\) −6.22948e7 6.16832e7i −0.235267 0.232957i
\(256\) −2.81116e8 −1.04724
\(257\) 2.58103e8 0.948478 0.474239 0.880396i \(-0.342723\pi\)
0.474239 + 0.880396i \(0.342723\pi\)
\(258\) −8.67439e7 + 8.76040e7i −0.314463 + 0.317581i
\(259\) 0 0
\(260\) 1.17161e8i 0.413405i
\(261\) 4.26714e8 4.21045e6i 1.48558 0.0146584i
\(262\) 6.12162e7i 0.210287i
\(263\) 1.32458e8i 0.448986i −0.974476 0.224493i \(-0.927927\pi\)
0.974476 0.224493i \(-0.0720726\pi\)
\(264\) −9.63072e7 9.53616e7i −0.322140 0.318977i
\(265\) 3.21773e7i 0.106216i
\(266\) 0 0
\(267\) −3.37762e8 3.34445e8i −1.08598 1.07532i
\(268\) −1.61562e8 −0.512705
\(269\) 4.55229e8 1.42593 0.712964 0.701201i \(-0.247352\pi\)
0.712964 + 0.701201i \(0.247352\pi\)
\(270\) −1.10261e8 1.07045e8i −0.340918 0.330973i
\(271\) 5.52448e8i 1.68616i 0.537788 + 0.843080i \(0.319260\pi\)
−0.537788 + 0.843080i \(0.680740\pi\)
\(272\) −1.51225e7 −0.0455650
\(273\) 0 0
\(274\) 2.61504e8 0.767983
\(275\) 7.17760e7i 0.208120i
\(276\) 1.97376e8 1.99333e8i 0.565083 0.570687i
\(277\) 5.25656e8 1.48601 0.743006 0.669285i \(-0.233399\pi\)
0.743006 + 0.669285i \(0.233399\pi\)
\(278\) 2.52732e7 0.0705510
\(279\) −2.13214e8 + 2.10381e6i −0.587762 + 0.00579953i
\(280\) 0 0
\(281\) 3.06215e8i 0.823292i −0.911344 0.411646i \(-0.864954\pi\)
0.911344 0.411646i \(-0.135046\pi\)
\(282\) 1.86511e8 1.88360e8i 0.495258 0.500169i
\(283\) 5.56622e8i 1.45985i −0.683528 0.729924i \(-0.739555\pi\)
0.683528 0.729924i \(-0.260445\pi\)
\(284\) 3.88161e8i 1.00554i
\(285\) 6.95446e7 7.02342e7i 0.177954 0.179718i
\(286\) 1.13381e8i 0.286588i
\(287\) 0 0
\(288\) 3.90303e8 3.85118e6i 0.962782 0.00949991i
\(289\) −3.25142e8 −0.792374
\(290\) 2.93184e8 0.705907
\(291\) 1.10587e8 1.11684e8i 0.263075 0.265683i
\(292\) 1.86327e8i 0.437961i
\(293\) −1.60840e8 −0.373557 −0.186779 0.982402i \(-0.559805\pi\)
−0.186779 + 0.982402i \(0.559805\pi\)
\(294\) 0 0
\(295\) −5.20390e8 −1.18019
\(296\) 8.49683e8i 1.90430i
\(297\) 1.42826e8 + 1.38660e8i 0.316345 + 0.307117i
\(298\) −1.54424e8 −0.338031
\(299\) −6.44661e8 −1.39470
\(300\) −8.97842e7 8.89027e7i −0.191989 0.190104i
\(301\) 0 0
\(302\) 5.89952e8i 1.23252i
\(303\) 4.22343e8 + 4.18196e8i 0.872199 + 0.863635i
\(304\) 1.70498e7i 0.0348066i
\(305\) 3.51152e8i 0.708673i
\(306\) 1.49339e8 1.47355e6i 0.297953 0.00293995i
\(307\) 1.76458e8i 0.348063i −0.984740 0.174032i \(-0.944321\pi\)
0.984740 0.174032i \(-0.0556795\pi\)
\(308\) 0 0
\(309\) −2.82407e8 + 2.85207e8i −0.544529 + 0.549928i
\(310\) −1.46494e8 −0.279289
\(311\) −7.07166e8 −1.33309 −0.666546 0.745464i \(-0.732228\pi\)
−0.666546 + 0.745464i \(0.732228\pi\)
\(312\) −3.89611e8 3.85786e8i −0.726257 0.719126i
\(313\) 5.14674e8i 0.948696i −0.880337 0.474348i \(-0.842684\pi\)
0.880337 0.474348i \(-0.157316\pi\)
\(314\) 6.11011e8 1.11377
\(315\) 0 0
\(316\) 5.45516e7 0.0972530
\(317\) 8.11502e8i 1.43081i 0.698710 + 0.715405i \(0.253758\pi\)
−0.698710 + 0.715405i \(0.746242\pi\)
\(318\) −3.89517e7 3.85692e7i −0.0679252 0.0672583i
\(319\) −3.79774e8 −0.655025
\(320\) 3.10758e8 0.530149
\(321\) −1.62632e7 + 1.64244e7i −0.0274434 + 0.0277155i
\(322\) 0 0
\(323\) 9.60554e7i 0.158604i
\(324\) −3.50355e8 + 6.91469e6i −0.572270 + 0.0112944i
\(325\) 2.90370e8i 0.469202i
\(326\) 3.59999e8i 0.575493i
\(327\) −3.48239e8 3.44819e8i −0.550757 0.545349i
\(328\) 5.05509e8i 0.790989i
\(329\) 0 0
\(330\) 9.71827e7 + 9.62285e7i 0.148864 + 0.147403i
\(331\) 7.17416e7 0.108736 0.0543680 0.998521i \(-0.482686\pi\)
0.0543680 + 0.998521i \(0.482686\pi\)
\(332\) −3.81107e8 −0.571562
\(333\) 1.23133e7 + 1.24791e9i 0.0182734 + 1.85195i
\(334\) 4.39441e8i 0.645339i
\(335\) 4.47860e8 0.650856
\(336\) 0 0
\(337\) 8.22484e7 0.117064 0.0585320 0.998286i \(-0.481358\pi\)
0.0585320 + 0.998286i \(0.481358\pi\)
\(338\) 5.55236e6i 0.00782113i
\(339\) 2.07848e6 2.09909e6i 0.00289766 0.00292639i
\(340\) −1.37343e8 −0.189509
\(341\) 1.89760e8 0.259158
\(342\) 1.66135e6 + 1.68372e8i 0.00224580 + 0.227603i
\(343\) 0 0
\(344\) 5.30580e8i 0.702742i
\(345\) −5.47138e8 + 5.52563e8i −0.717348 + 0.724461i
\(346\) 7.53167e8i 0.977518i
\(347\) 8.88130e7i 0.114110i 0.998371 + 0.0570550i \(0.0181710\pi\)
−0.998371 + 0.0570550i \(0.981829\pi\)
\(348\) 4.70393e8 4.75057e8i 0.598320 0.604253i
\(349\) 1.32408e8i 0.166735i 0.996519 + 0.0833673i \(0.0265675\pi\)
−0.996519 + 0.0833673i \(0.973433\pi\)
\(350\) 0 0
\(351\) 5.77804e8 + 5.60949e8i 0.713191 + 0.692386i
\(352\) −3.47369e8 −0.424513
\(353\) 2.87459e8 0.347828 0.173914 0.984761i \(-0.444359\pi\)
0.173914 + 0.984761i \(0.444359\pi\)
\(354\) 6.23763e8 6.29949e8i 0.747323 0.754734i
\(355\) 1.07600e9i 1.27648i
\(356\) −7.44671e8 −0.874761
\(357\) 0 0
\(358\) 4.68626e8 0.539803
\(359\) 4.47980e8i 0.511008i −0.966808 0.255504i \(-0.917759\pi\)
0.966808 0.255504i \(-0.0822414\pi\)
\(360\) −6.61343e8 + 6.52557e6i −0.747082 + 0.00737157i
\(361\) 7.85574e8 0.878844
\(362\) −2.06523e7 −0.0228817
\(363\) 5.21690e8 + 5.16568e8i 0.572453 + 0.566832i
\(364\) 0 0
\(365\) 5.16509e8i 0.555972i
\(366\) −4.25081e8 4.20907e8i −0.453198 0.448748i
\(367\) 6.90736e8i 0.729425i 0.931120 + 0.364713i \(0.118833\pi\)
−0.931120 + 0.364713i \(0.881167\pi\)
\(368\) 1.34138e8i 0.140309i
\(369\) 7.32567e6 + 7.42430e8i 0.00759023 + 0.769243i
\(370\) 8.57407e8i 0.879997i
\(371\) 0 0
\(372\) −2.35039e8 + 2.37370e8i −0.236723 + 0.239070i
\(373\) 3.63994e8 0.363172 0.181586 0.983375i \(-0.441877\pi\)
0.181586 + 0.983375i \(0.441877\pi\)
\(374\) −1.32911e8 −0.131375
\(375\) 7.76153e8 + 7.68532e8i 0.760043 + 0.752580i
\(376\) 1.14082e9i 1.10677i
\(377\) −1.53638e9 −1.47674
\(378\) 0 0
\(379\) 1.08976e9 1.02823 0.514117 0.857720i \(-0.328120\pi\)
0.514117 + 0.857720i \(0.328120\pi\)
\(380\) 1.54847e8i 0.144764i
\(381\) −5.03003e8 4.98064e8i −0.465943 0.461368i
\(382\) −3.09731e8 −0.284291
\(383\) −1.76221e9 −1.60273 −0.801366 0.598174i \(-0.795893\pi\)
−0.801366 + 0.598174i \(0.795893\pi\)
\(384\) 3.79204e8 3.82964e8i 0.341754 0.345142i
\(385\) 0 0
\(386\) 5.94945e8i 0.526528i
\(387\) −7.68898e6 7.79251e8i −0.00674342 0.683422i
\(388\) 2.46232e8i 0.214009i
\(389\) 7.00976e8i 0.603781i 0.953343 + 0.301890i \(0.0976177\pi\)
−0.953343 + 0.301890i \(0.902382\pi\)
\(390\) 3.93153e8 + 3.89293e8i 0.335611 + 0.332315i
\(391\) 7.55709e8i 0.639346i
\(392\) 0 0
\(393\) 2.74963e8 + 2.72263e8i 0.228508 + 0.226264i
\(394\) 1.82032e8 0.149938
\(395\) −1.51220e8 −0.123458
\(396\) 3.11846e8 3.07703e6i 0.252352 0.00248999i
\(397\) 4.14313e8i 0.332324i −0.986098 0.166162i \(-0.946863\pi\)
0.986098 0.166162i \(-0.0531374\pi\)
\(398\) 2.24079e8 0.178160
\(399\) 0 0
\(400\) 6.04189e7 0.0472023
\(401\) 6.24189e8i 0.483404i 0.970350 + 0.241702i \(0.0777057\pi\)
−0.970350 + 0.241702i \(0.922294\pi\)
\(402\) −5.36826e8 + 5.42149e8i −0.412137 + 0.416224i
\(403\) 7.67675e8 0.584265
\(404\) 9.31149e8 0.702561
\(405\) 9.71206e8 1.91679e7i 0.726472 0.0143378i
\(406\) 0 0
\(407\) 1.11064e9i 0.816567i
\(408\) 4.52241e8 4.56725e8i 0.329655 0.332923i
\(409\) 6.01550e8i 0.434751i 0.976088 + 0.217375i \(0.0697496\pi\)
−0.976088 + 0.217375i \(0.930250\pi\)
\(410\) 5.10105e8i 0.365524i
\(411\) −1.16306e9 + 1.17459e9i −0.826333 + 0.834527i
\(412\) 6.28803e8i 0.442970i
\(413\) 0 0
\(414\) −1.30706e7 1.32466e9i −0.00905302 0.917491i
\(415\) 1.05645e9 0.725573
\(416\) −1.40528e9 −0.957054
\(417\) −1.12404e8 + 1.13519e8i −0.0759114 + 0.0766641i
\(418\) 1.49851e8i 0.100356i
\(419\) −8.13509e8 −0.540273 −0.270136 0.962822i \(-0.587069\pi\)
−0.270136 + 0.962822i \(0.587069\pi\)
\(420\) 0 0
\(421\) −5.73076e8 −0.374304 −0.187152 0.982331i \(-0.559926\pi\)
−0.187152 + 0.982331i \(0.559926\pi\)
\(422\) 4.79042e8i 0.310298i
\(423\) 1.65323e7 + 1.67549e9i 0.0106204 + 1.07634i
\(424\) −2.35913e8 −0.150304
\(425\) −3.40389e8 −0.215087
\(426\) −1.30254e9 1.28975e9i −0.816314 0.808299i
\(427\) 0 0
\(428\) 3.62114e7i 0.0223250i
\(429\) −5.09268e8 5.04268e8i −0.311420 0.308362i
\(430\) 5.35403e8i 0.324744i
\(431\) 2.11789e9i 1.27419i −0.770786 0.637094i \(-0.780136\pi\)
0.770786 0.637094i \(-0.219864\pi\)
\(432\) 1.16720e8 1.20227e8i 0.0696548 0.0717478i
\(433\) 1.49662e9i 0.885938i 0.896537 + 0.442969i \(0.146075\pi\)
−0.896537 + 0.442969i \(0.853925\pi\)
\(434\) 0 0
\(435\) −1.30396e9 + 1.31689e9i −0.759540 + 0.767072i
\(436\) −7.67770e8 −0.443638
\(437\) 8.52024e8 0.488390
\(438\) −6.25250e8 6.19111e8i −0.355545 0.352054i
\(439\) 6.71449e8i 0.378780i −0.981902 0.189390i \(-0.939349\pi\)
0.981902 0.189390i \(-0.0606511\pi\)
\(440\) 5.88594e8 0.329406
\(441\) 0 0
\(442\) −5.37693e8 −0.296181
\(443\) 1.63631e9i 0.894239i −0.894474 0.447119i \(-0.852450\pi\)
0.894474 0.447119i \(-0.147550\pi\)
\(444\) 1.38929e9 + 1.37565e9i 0.753273 + 0.745877i
\(445\) 2.06427e9 1.11047
\(446\) −4.93698e8 −0.263505
\(447\) 6.86810e8 6.93621e8i 0.363714 0.367321i
\(448\) 0 0
\(449\) 1.40788e9i 0.734011i −0.930219 0.367005i \(-0.880383\pi\)
0.930219 0.367005i \(-0.119617\pi\)
\(450\) −5.96656e8 + 5.88729e6i −0.308660 + 0.00304559i
\(451\) 6.60761e8i 0.339177i
\(452\) 4.62791e6i 0.00235722i
\(453\) 2.64987e9 + 2.62385e9i 1.33931 + 1.32616i
\(454\) 1.06133e9i 0.532300i
\(455\) 0 0
\(456\) 5.14934e8 + 5.09878e8i 0.254317 + 0.251820i
\(457\) 1.13325e9 0.555419 0.277710 0.960665i \(-0.410425\pi\)
0.277710 + 0.960665i \(0.410425\pi\)
\(458\) 2.67884e9 1.30292
\(459\) −6.57577e8 + 6.77336e8i −0.317397 + 0.326934i
\(460\) 1.21825e9i 0.583558i
\(461\) −1.36884e9 −0.650726 −0.325363 0.945589i \(-0.605486\pi\)
−0.325363 + 0.945589i \(0.605486\pi\)
\(462\) 0 0
\(463\) 1.03418e9 0.484241 0.242121 0.970246i \(-0.422157\pi\)
0.242121 + 0.970246i \(0.422157\pi\)
\(464\) 3.19682e8i 0.148561i
\(465\) 6.51542e8 6.58003e8i 0.300509 0.303489i
\(466\) 1.45840e9 0.667617
\(467\) 1.77585e9 0.806860 0.403430 0.915010i \(-0.367818\pi\)
0.403430 + 0.915010i \(0.367818\pi\)
\(468\) 1.26157e9 1.24481e7i 0.568921 0.00561362i
\(469\) 0 0
\(470\) 1.15119e9i 0.511450i
\(471\) −2.71752e9 + 2.74446e9i −1.19839 + 1.21028i
\(472\) 3.81533e9i 1.67007i
\(473\) 6.93531e8i 0.301337i
\(474\) 1.81260e8 1.83057e8i 0.0781767 0.0789519i
\(475\) 3.83771e8i 0.164303i
\(476\) 0 0
\(477\) 3.46481e8 3.41878e6i 0.146172 0.00144230i
\(478\) 6.15852e8 0.257916
\(479\) −2.60207e9 −1.08179 −0.540896 0.841089i \(-0.681915\pi\)
−0.540896 + 0.841089i \(0.681915\pi\)
\(480\) −1.19269e9 + 1.20452e9i −0.492248 + 0.497129i
\(481\) 4.49309e9i 1.84093i
\(482\) 1.62093e9 0.659325
\(483\) 0 0
\(484\) 1.15018e9 0.461114
\(485\) 6.82569e8i 0.271675i
\(486\) −1.14093e9 + 1.19865e9i −0.450850 + 0.473659i
\(487\) −3.25977e9 −1.27890 −0.639449 0.768834i \(-0.720837\pi\)
−0.639449 + 0.768834i \(0.720837\pi\)
\(488\) −2.57453e9 −1.00283
\(489\) −1.61700e9 1.60112e9i −0.625358 0.619218i
\(490\) 0 0
\(491\) 9.35676e7i 0.0356730i −0.999841 0.0178365i \(-0.994322\pi\)
0.999841 0.0178365i \(-0.00567784\pi\)
\(492\) 8.26542e8 + 8.18427e8i 0.312887 + 0.309815i
\(493\) 1.80103e9i 0.676951i
\(494\) 6.06221e8i 0.226249i
\(495\) −8.64454e8 + 8.52970e6i −0.320349 + 0.00316093i
\(496\) 1.59734e8i 0.0587776i
\(497\) 0 0
\(498\) −1.26631e9 + 1.27887e9i −0.459450 + 0.464005i
\(499\) 3.57650e9 1.28857 0.644283 0.764788i \(-0.277156\pi\)
0.644283 + 0.764788i \(0.277156\pi\)
\(500\) 1.71120e9 0.612219
\(501\) −1.97382e9 1.95444e9i −0.701256 0.694371i
\(502\) 5.16717e7i 0.0182301i
\(503\) 3.25287e9 1.13967 0.569835 0.821759i \(-0.307007\pi\)
0.569835 + 0.821759i \(0.307007\pi\)
\(504\) 0 0
\(505\) −2.58120e9 −0.891870
\(506\) 1.17894e9i 0.404543i
\(507\) 2.49394e7 + 2.46945e7i 0.00849881 + 0.00841537i
\(508\) −1.10898e9 −0.375320
\(509\) 2.67600e9 0.899443 0.449722 0.893169i \(-0.351523\pi\)
0.449722 + 0.893169i \(0.351523\pi\)
\(510\) −4.56352e8 + 4.60877e8i −0.152337 + 0.153847i
\(511\) 0 0
\(512\) 6.04668e8i 0.199100i
\(513\) −7.63661e8 7.41385e8i −0.249741 0.242456i
\(514\) 1.90953e9i 0.620234i
\(515\) 1.74308e9i 0.562331i
\(516\) −8.67534e8 8.59016e8i −0.277979 0.275250i
\(517\) 1.49118e9i 0.474585i
\(518\) 0 0
\(519\) −3.38298e9 3.34976e9i −1.06222 1.05179i
\(520\) 2.38116e9 0.742637
\(521\) −2.20727e9 −0.683792 −0.341896 0.939738i \(-0.611069\pi\)
−0.341896 + 0.939738i \(0.611069\pi\)
\(522\) −3.11502e7 3.15696e9i −0.00958549 0.971456i
\(523\) 2.88210e9i 0.880955i −0.897764 0.440477i \(-0.854809\pi\)
0.897764 0.440477i \(-0.145191\pi\)
\(524\) 6.06218e8 0.184064
\(525\) 0 0
\(526\) −9.79966e8 −0.293603
\(527\) 8.99913e8i 0.267833i
\(528\) −1.04926e8 + 1.05966e8i −0.0310216 + 0.0313292i
\(529\) −3.29842e9 −0.968747
\(530\) 2.38058e8 0.0694572
\(531\) 5.52904e7 + 5.60348e9i 0.0160258 + 1.62415i
\(532\) 0 0
\(533\) 2.67311e9i 0.764666i
\(534\) −2.47433e9 + 2.49887e9i −0.703176 + 0.710148i
\(535\) 1.00380e8i 0.0283406i
\(536\) 3.28356e9i 0.921018i
\(537\) −2.08425e9 + 2.10491e9i −0.580817 + 0.586576i
\(538\) 3.36793e9i 0.932450i
\(539\) 0 0
\(540\) 1.06005e9 1.09191e9i 0.289701 0.298406i
\(541\) 1.79049e9 0.486161 0.243081 0.970006i \(-0.421842\pi\)
0.243081 + 0.970006i \(0.421842\pi\)
\(542\) 4.08719e9 1.10262
\(543\) 9.18526e7 9.27634e7i 0.0246202 0.0248644i
\(544\) 1.64735e9i 0.438723i
\(545\) 2.12830e9 0.563178
\(546\) 0 0
\(547\) 6.81952e9 1.78155 0.890776 0.454443i \(-0.150162\pi\)
0.890776 + 0.454443i \(0.150162\pi\)
\(548\) 2.58965e9i 0.672216i
\(549\) 3.78116e9 3.73092e7i 0.975263 0.00962306i
\(550\) 5.31022e8 0.136095
\(551\) 2.03057e9 0.517115
\(552\) −4.05121e9 4.01144e9i −1.02518 1.01511i
\(553\) 0 0
\(554\) 3.88897e9i 0.971741i
\(555\) −3.85119e9 3.81338e9i −0.956247 0.946858i
\(556\) 2.50278e8i 0.0617534i
\(557\) 5.28664e9i 1.29624i −0.761537 0.648121i \(-0.775555\pi\)
0.761537 0.648121i \(-0.224445\pi\)
\(558\) 1.55647e7 + 1.57743e9i 0.00379246 + 0.384352i
\(559\) 2.80568e9i 0.679355i
\(560\) 0 0
\(561\) 5.91133e8 5.96994e8i 0.141356 0.142758i
\(562\) −2.26547e9 −0.538371
\(563\) 6.69389e9 1.58088 0.790441 0.612538i \(-0.209852\pi\)
0.790441 + 0.612538i \(0.209852\pi\)
\(564\) 1.86531e9 + 1.84700e9i 0.437799 + 0.433500i
\(565\) 1.28288e7i 0.00299239i
\(566\) −4.11807e9 −0.954632
\(567\) 0 0
\(568\) −7.88891e9 −1.80633
\(569\) 1.65712e9i 0.377103i −0.982063 0.188552i \(-0.939621\pi\)
0.982063 0.188552i \(-0.0603793\pi\)
\(570\) −5.19615e8 5.14514e8i −0.117522 0.116368i
\(571\) −3.51892e7 −0.00791012 −0.00395506 0.999992i \(-0.501259\pi\)
−0.00395506 + 0.999992i \(0.501259\pi\)
\(572\) −1.12280e9 −0.250850
\(573\) 1.37755e9 1.39121e9i 0.305891 0.308924i
\(574\) 0 0
\(575\) 3.01929e9i 0.662320i
\(576\) −3.30174e7 3.34620e9i −0.00719888 0.729581i
\(577\) 6.83968e9i 1.48225i −0.671369 0.741123i \(-0.734293\pi\)
0.671369 0.741123i \(-0.265707\pi\)
\(578\) 2.40550e9i 0.518153i
\(579\) −2.67230e9 2.64606e9i −0.572150 0.566533i
\(580\) 2.90337e9i 0.617881i
\(581\) 0 0
\(582\) −8.26272e8 8.18159e8i −0.173737 0.172031i
\(583\) −3.08367e8 −0.0644507
\(584\) −3.78687e9 −0.786748
\(585\) −3.49715e9 + 3.45069e7i −0.722220 + 0.00712625i
\(586\) 1.18995e9i 0.244279i
\(587\) −3.21879e9 −0.656839 −0.328420 0.944532i \(-0.606516\pi\)
−0.328420 + 0.944532i \(0.606516\pi\)
\(588\) 0 0
\(589\) −1.01461e9 −0.204594
\(590\) 3.85001e9i 0.771756i
\(591\) −8.09602e8 + 8.17630e8i −0.161330 + 0.162930i
\(592\) −9.34901e8 −0.185199
\(593\) 1.53639e9 0.302560 0.151280 0.988491i \(-0.451661\pi\)
0.151280 + 0.988491i \(0.451661\pi\)
\(594\) 1.02585e9 1.05667e9i 0.200831 0.206866i
\(595\) 0 0
\(596\) 1.52924e9i 0.295879i
\(597\) −9.96610e8 + 1.00649e9i −0.191697 + 0.193598i
\(598\) 4.76941e9i 0.912033i
\(599\) 1.13949e9i 0.216629i 0.994117 + 0.108315i \(0.0345454\pi\)
−0.994117 + 0.108315i \(0.965455\pi\)
\(600\) −1.80684e9 + 1.82476e9i −0.341500 + 0.344886i
\(601\) 4.72513e9i 0.887878i −0.896057 0.443939i \(-0.853581\pi\)
0.896057 0.443939i \(-0.146419\pi\)
\(602\) 0 0
\(603\) −4.75842e7 4.82249e9i −0.00883797 0.895696i
\(604\) 5.84224e9 1.07882
\(605\) −3.18838e9 −0.585363
\(606\) 3.09395e9 3.12463e9i 0.564753 0.570353i
\(607\) 6.37886e8i 0.115766i −0.998323 0.0578832i \(-0.981565\pi\)
0.998323 0.0578832i \(-0.0184351\pi\)
\(608\) 1.85731e9 0.335136
\(609\) 0 0
\(610\) 2.59794e9 0.463419
\(611\) 6.03258e9i 1.06994i
\(612\) 1.45924e7 + 1.47889e9i 0.00257334 + 0.260799i
\(613\) 5.36259e9 0.940293 0.470147 0.882588i \(-0.344201\pi\)
0.470147 + 0.882588i \(0.344201\pi\)
\(614\) −1.30550e9 −0.227607
\(615\) −2.29122e9 2.26873e9i −0.397196 0.393296i
\(616\) 0 0
\(617\) 9.68182e9i 1.65943i 0.558187 + 0.829715i \(0.311497\pi\)
−0.558187 + 0.829715i \(0.688503\pi\)
\(618\) 2.11005e9 + 2.08934e9i 0.359612 + 0.356081i
\(619\) 2.98416e8i 0.0505714i 0.999680 + 0.0252857i \(0.00804954\pi\)
−0.999680 + 0.0252857i \(0.991950\pi\)
\(620\) 1.45071e9i 0.244462i
\(621\) 6.00806e9 + 5.83280e9i 1.00673 + 0.977364i
\(622\) 5.23184e9i 0.871743i
\(623\) 0 0
\(624\) −4.24478e8 + 4.28687e8i −0.0699373 + 0.0706308i
\(625\) −1.86249e9 −0.305151
\(626\) −3.80772e9 −0.620376
\(627\) 6.73080e8 + 6.66472e8i 0.109051 + 0.107981i
\(628\) 6.05079e9i 0.974884i
\(629\) 5.26706e9 0.843900
\(630\) 0 0
\(631\) 3.70007e9 0.586282 0.293141 0.956069i \(-0.405299\pi\)
0.293141 + 0.956069i \(0.405299\pi\)
\(632\) 1.10870e9i 0.174704i
\(633\) 2.15170e9 + 2.13057e9i 0.337185 + 0.333875i
\(634\) 6.00375e9 0.935643
\(635\) 3.07416e9 0.476452
\(636\) 3.81947e8 3.85734e8i 0.0588713 0.0594550i
\(637\) 0 0
\(638\) 2.80969e9i 0.428337i
\(639\) 1.15863e10 1.14323e8i 1.75667 0.0173333i
\(640\) 2.34053e9i 0.352927i
\(641\) 1.07467e9i 0.161165i −0.996748 0.0805826i \(-0.974322\pi\)
0.996748 0.0805826i \(-0.0256781\pi\)
\(642\) 1.21513e8 + 1.20320e8i 0.0181239 + 0.0179459i
\(643\) 5.89391e9i 0.874309i 0.899386 + 0.437155i \(0.144014\pi\)
−0.899386 + 0.437155i \(0.855986\pi\)
\(644\) 0 0
\(645\) 2.40486e9 + 2.38124e9i 0.352882 + 0.349418i
\(646\) 7.10648e8 0.103715
\(647\) −6.85020e9 −0.994348 −0.497174 0.867651i \(-0.665629\pi\)
−0.497174 + 0.867651i \(0.665629\pi\)
\(648\) 1.40533e8 + 7.12056e9i 0.0202892 + 1.02802i
\(649\) 4.98709e9i 0.716128i
\(650\) 2.14825e9 0.306823
\(651\) 0 0
\(652\) −3.56504e9 −0.503730
\(653\) 2.68881e9i 0.377889i −0.981988 0.188944i \(-0.939493\pi\)
0.981988 0.188944i \(-0.0605066\pi\)
\(654\) −2.55108e9 + 2.57638e9i −0.356618 + 0.360154i
\(655\) −1.68047e9 −0.233661
\(656\) −5.56209e8 −0.0769262
\(657\) 5.56169e9 5.48780e7i 0.765118 0.00754953i
\(658\) 0 0
\(659\) 7.57949e9i 1.03167i 0.856688 + 0.515835i \(0.172518\pi\)
−0.856688 + 0.515835i \(0.827482\pi\)
\(660\) −9.52942e8 + 9.62391e8i −0.129022 + 0.130301i
\(661\) 1.21582e10i 1.63744i 0.574194 + 0.818720i \(0.305316\pi\)
−0.574194 + 0.818720i \(0.694684\pi\)
\(662\) 5.30767e8i 0.0711052i
\(663\) 2.39143e9 2.41514e9i 0.318684 0.321844i
\(664\) 7.74555e9i 1.02675i
\(665\) 0 0
\(666\) 9.23244e9 9.10979e7i 1.21104 0.0119495i
\(667\) −1.59754e10 −2.08454
\(668\) −4.35174e9 −0.564866
\(669\) 2.19576e9 2.21753e9i 0.283526 0.286337i
\(670\) 3.31341e9i 0.425611i
\(671\) −3.36522e9 −0.430016
\(672\) 0 0
\(673\) 1.01796e10 1.28729 0.643647 0.765323i \(-0.277421\pi\)
0.643647 + 0.765323i \(0.277421\pi\)
\(674\) 6.08500e8i 0.0765511i
\(675\) 2.62723e9 2.70617e9i 0.328802 0.338681i
\(676\) 5.49845e7 0.00684584
\(677\) −5.08427e9 −0.629750 −0.314875 0.949133i \(-0.601963\pi\)
−0.314875 + 0.949133i \(0.601963\pi\)
\(678\) −1.55297e7 1.53773e7i −0.00191364 0.00189485i
\(679\) 0 0
\(680\) 2.79133e9i 0.340432i
\(681\) −4.76717e9 4.72036e9i −0.578423 0.572744i
\(682\) 1.40391e9i 0.169470i
\(683\) 1.31072e10i 1.57412i 0.616875 + 0.787061i \(0.288398\pi\)
−0.616875 + 0.787061i \(0.711602\pi\)
\(684\) −1.66737e9 + 1.64522e7i −0.199221 + 0.00196575i
\(685\) 7.17866e9i 0.853348i
\(686\) 0 0
\(687\) −1.19143e10 + 1.20325e10i −1.40191 + 1.41581i
\(688\) 5.83794e8 0.0683439
\(689\) −1.24750e9 −0.145302
\(690\) 4.08804e9 + 4.04790e9i 0.473744 + 0.469092i
\(691\) 4.92137e9i 0.567430i 0.958909 + 0.283715i \(0.0915670\pi\)
−0.958909 + 0.283715i \(0.908433\pi\)
\(692\) −7.45854e9 −0.855623
\(693\) 0 0
\(694\) 6.57067e8 0.0746194
\(695\) 6.93785e8i 0.0783932i
\(696\) −9.65498e9 9.56018e9i −1.08547 1.07482i
\(697\) 3.13358e9 0.350530
\(698\) 9.79598e8 0.109032
\(699\) −6.48636e9 + 6.55068e9i −0.718341 + 0.725464i
\(700\) 0 0
\(701\) 7.59763e9i 0.833039i −0.909127 0.416519i \(-0.863250\pi\)
0.909127 0.416519i \(-0.136750\pi\)
\(702\) 4.15008e9 4.27478e9i 0.452769 0.466373i
\(703\) 5.93834e9i 0.644646i
\(704\) 2.97811e9i 0.321689i
\(705\) −5.17075e9 5.11998e9i −0.555766 0.550309i
\(706\) 2.12671e9i 0.227453i
\(707\) 0 0
\(708\) 6.23832e9 + 6.17707e9i 0.660619 + 0.654133i
\(709\) −7.88873e9 −0.831276 −0.415638 0.909530i \(-0.636442\pi\)
−0.415638 + 0.909530i \(0.636442\pi\)
\(710\) 7.96063e9 0.834725
\(711\) 1.60669e7 + 1.62832e9i 0.00167644 + 0.169901i
\(712\) 1.51346e10i 1.57141i
\(713\) 7.98235e9 0.824740
\(714\) 0 0
\(715\) 3.11246e9 0.318443
\(716\) 4.64075e9i 0.472490i
\(717\) −2.73905e9 + 2.76621e9i −0.277513 + 0.280264i
\(718\) −3.31430e9 −0.334161
\(719\) 3.50177e9 0.351347 0.175674 0.984448i \(-0.443790\pi\)
0.175674 + 0.984448i \(0.443790\pi\)
\(720\) 7.18004e6 + 7.27672e8i 0.000716908 + 0.0726561i
\(721\) 0 0
\(722\) 5.81193e9i 0.574699i
\(723\) −7.20920e9 + 7.28068e9i −0.709419 + 0.716454i
\(724\) 2.04518e8i 0.0200284i
\(725\) 7.19568e9i 0.701276i
\(726\) 3.82174e9 3.85963e9i 0.370666 0.374341i
\(727\) 2.03022e10i 1.95962i −0.199923 0.979812i \(-0.564069\pi\)
0.199923 0.979812i \(-0.435931\pi\)
\(728\) 0 0
\(729\) −3.09586e8 1.04558e10i −0.0295962 0.999562i
\(730\) 3.82130e9 0.363564
\(731\) −3.28899e9 −0.311423
\(732\) 4.16820e9 4.20954e9i 0.392790 0.396685i
\(733\) 3.53965e9i 0.331968i −0.986128 0.165984i \(-0.946920\pi\)
0.986128 0.165984i \(-0.0530800\pi\)
\(734\) 5.11028e9 0.476990
\(735\) 0 0
\(736\) −1.46122e10 −1.35097
\(737\) 4.29200e9i 0.394933i
\(738\) 5.49274e9 5.41976e7i 0.503027 0.00496344i
\(739\) 1.32681e9 0.120935 0.0604677 0.998170i \(-0.480741\pi\)
0.0604677 + 0.998170i \(0.480741\pi\)
\(740\) −8.49082e9 −0.770262
\(741\) 2.72295e9 + 2.69621e9i 0.245853 + 0.243439i
\(742\) 0 0
\(743\) 5.32031e9i 0.475857i −0.971283 0.237928i \(-0.923532\pi\)
0.971283 0.237928i \(-0.0764683\pi\)
\(744\) 4.82426e9 + 4.77689e9i 0.429463 + 0.425246i
\(745\) 4.23915e9i 0.375605i
\(746\) 2.69294e9i 0.237488i
\(747\) −1.12246e8 1.13757e10i −0.00985254 0.998520i
\(748\) 1.31621e9i 0.114992i
\(749\) 0 0
\(750\) 5.68585e9 5.74223e9i 0.492131 0.497011i
\(751\) 6.16154e9 0.530823 0.265411 0.964135i \(-0.414492\pi\)
0.265411 + 0.964135i \(0.414492\pi\)
\(752\) −1.25523e9 −0.107637
\(753\) −2.32092e8 2.29814e8i −0.0198097 0.0196152i
\(754\) 1.13666e10i 0.965676i
\(755\) −1.61950e10 −1.36952
\(756\) 0 0
\(757\) −4.11040e9 −0.344388 −0.172194 0.985063i \(-0.555086\pi\)
−0.172194 + 0.985063i \(0.555086\pi\)
\(758\) 8.06236e9i 0.672388i
\(759\) −5.29542e9 5.24342e9i −0.439596 0.435280i
\(760\) −3.14709e9 −0.260052
\(761\) −4.48555e9 −0.368951 −0.184476 0.982837i \(-0.559059\pi\)
−0.184476 + 0.982837i \(0.559059\pi\)
\(762\) −3.68484e9 + 3.72137e9i −0.301700 + 0.304692i
\(763\) 0 0
\(764\) 3.06724e9i 0.248840i
\(765\) −4.04510e7 4.09957e9i −0.00326674 0.331073i
\(766\) 1.30374e10i 1.04807i
\(767\) 2.01753e10i 1.61449i
\(768\) −9.34171e9 9.24999e9i −0.744153 0.736846i
\(769\) 1.62822e9i 0.129114i −0.997914 0.0645568i \(-0.979437\pi\)
0.997914 0.0645568i \(-0.0205634\pi\)
\(770\) 0 0
\(771\) 8.57698e9 + 8.49277e9i 0.673975 + 0.667358i
\(772\) −5.89168e9 −0.460870
\(773\) 1.90021e10 1.47970 0.739849 0.672773i \(-0.234897\pi\)
0.739849 + 0.672773i \(0.234897\pi\)
\(774\) −5.76515e9 + 5.68855e7i −0.446907 + 0.00440969i
\(775\) 3.59543e9i 0.277457i
\(776\) −5.00437e9 −0.384444
\(777\) 0 0
\(778\) 5.18604e9 0.394828
\(779\) 3.53295e9i 0.267766i
\(780\) −3.85513e9 + 3.89336e9i −0.290876 + 0.293760i
\(781\) −1.03118e10 −0.774558
\(782\) −5.59098e9 −0.418085
\(783\) 1.43186e10 + 1.39009e10i 1.06594 + 1.03485i
\(784\) 0 0
\(785\) 1.67731e10i 1.23757i
\(786\) 2.01429e9 2.03427e9i 0.147960 0.149427i
\(787\) 6.43494e9i 0.470580i −0.971925 0.235290i \(-0.924396\pi\)
0.971925 0.235290i \(-0.0756039\pi\)
\(788\) 1.80265e9i 0.131241i
\(789\) 4.35847e9 4.40169e9i 0.315911 0.319043i
\(790\) 1.11878e9i 0.0807326i
\(791\) 0 0
\(792\) −6.25369e7 6.33790e9i −0.00447300 0.453322i
\(793\) −1.36140e10 −0.969460
\(794\) −3.06522e9 −0.217315
\(795\) −1.05878e9 + 1.06928e9i −0.0747344 + 0.0754755i
\(796\) 2.21904e9i 0.155944i
\(797\) −1.31128e10 −0.917468 −0.458734 0.888574i \(-0.651697\pi\)
−0.458734 + 0.888574i \(0.651697\pi\)
\(798\) 0 0
\(799\) 7.07175e9 0.490470
\(800\) 6.58168e9i 0.454488i
\(801\) −2.19325e8 2.22278e10i −0.0150791 1.52821i
\(802\) 4.61795e9 0.316110
\(803\) −4.94989e9 −0.337358
\(804\) −5.36884e9 5.31613e9i −0.364321 0.360744i
\(805\) 0 0
\(806\) 5.67950e9i 0.382065i
\(807\) 1.51277e10 + 1.49791e10i 1.01324 + 1.00330i
\(808\) 1.89245e10i 1.26207i
\(809\) 1.15552e10i 0.767287i 0.923481 + 0.383643i \(0.125331\pi\)
−0.923481 + 0.383643i \(0.874669\pi\)
\(810\) −1.41810e8 7.18529e9i −0.00937585 0.475058i
\(811\) 1.69436e9i 0.111541i 0.998444 + 0.0557703i \(0.0177615\pi\)
−0.998444 + 0.0557703i \(0.982239\pi\)
\(812\) 0 0
\(813\) −1.81781e10 + 1.83583e10i −1.18640 + 1.19816i
\(814\) −8.21685e9 −0.533974
\(815\) 9.88249e9 0.639462
\(816\) −5.02532e8 4.97598e8i −0.0323779 0.0320600i
\(817\) 3.70816e9i 0.237893i
\(818\) 4.45046e9 0.284295
\(819\) 0 0
\(820\) −5.05152e9 −0.319943
\(821\) 2.40857e10i 1.51900i −0.650508 0.759500i \(-0.725444\pi\)
0.650508 0.759500i \(-0.274556\pi\)
\(822\) 8.69000e9 + 8.60468e9i 0.545718 + 0.540360i
\(823\) −1.87468e10 −1.17227 −0.586136 0.810213i \(-0.699352\pi\)
−0.586136 + 0.810213i \(0.699352\pi\)
\(824\) 1.27797e10 0.795747
\(825\) −2.36176e9 + 2.38518e9i −0.146436 + 0.147888i
\(826\) 0 0
\(827\) 1.55760e10i 0.957605i 0.877923 + 0.478803i \(0.158929\pi\)
−0.877923 + 0.478803i \(0.841071\pi\)
\(828\) 1.31179e10 1.29437e8i 0.803081 0.00792412i
\(829\) 8.16621e9i 0.497828i −0.968526 0.248914i \(-0.919926\pi\)
0.968526 0.248914i \(-0.0800737\pi\)
\(830\) 7.81596e9i 0.474471i
\(831\) 1.74680e10 + 1.72965e10i 1.05594 + 1.04557i
\(832\) 1.20480e10i 0.725240i
\(833\) 0 0
\(834\) 8.39849e8 + 8.31603e8i 0.0501326 + 0.0496404i
\(835\) 1.20633e10 0.717072
\(836\) 1.48396e9 0.0878414
\(837\) −7.15451e9 6.94581e9i −0.421736 0.409434i
\(838\) 6.01860e9i 0.353298i
\(839\) 1.89484e10 1.10766 0.553830 0.832630i \(-0.313166\pi\)
0.553830 + 0.832630i \(0.313166\pi\)
\(840\) 0 0
\(841\) −2.08232e10 −1.20715
\(842\) 4.23980e9i 0.244767i
\(843\) 1.00759e10 1.01758e10i 0.579276 0.585020i
\(844\) 4.74390e9 0.271605
\(845\) −1.52420e8 −0.00869049
\(846\) 1.23958e10 1.22311e8i 0.703848 0.00694497i
\(847\) 0 0
\(848\) 2.59574e8i 0.0146176i
\(849\) 1.83154e10 1.84970e10i 1.02716 1.03735i
\(850\) 2.51831e9i 0.140651i
\(851\) 4.67195e10i 2.59863i
\(852\) 1.27723e10 1.28989e10i 0.707505 0.714520i
\(853\) 9.10063e9i 0.502053i −0.967980 0.251027i \(-0.919232\pi\)
0.967980 0.251027i \(-0.0807682\pi\)
\(854\) 0 0
\(855\) 4.62205e9 4.56065e7i 0.252903 0.00249543i
\(856\) 7.35954e8 0.0401044
\(857\) −1.30628e10 −0.708928 −0.354464 0.935070i \(-0.615337\pi\)
−0.354464 + 0.935070i \(0.615337\pi\)
\(858\) −3.73074e9 + 3.76773e9i −0.201646 + 0.203645i
\(859\) 1.92933e10i 1.03856i 0.854604 + 0.519280i \(0.173800\pi\)
−0.854604 + 0.519280i \(0.826200\pi\)
\(860\) 5.30204e9 0.284249
\(861\) 0 0
\(862\) −1.56688e10 −0.833224
\(863\) 3.14459e10i 1.66543i 0.553701 + 0.832716i \(0.313215\pi\)
−0.553701 + 0.832716i \(0.686785\pi\)
\(864\) 1.30968e10 + 1.27148e10i 0.690824 + 0.670673i
\(865\) 2.06755e10 1.08618
\(866\) 1.10725e10 0.579337
\(867\) −1.08047e10 1.06986e10i −0.563050 0.557522i
\(868\) 0 0
\(869\) 1.44920e9i 0.0749134i
\(870\) 9.74275e9 + 9.64709e9i 0.501608 + 0.496683i
\(871\) 1.73633e10i 0.890367i
\(872\) 1.56040e10i 0.796946i
\(873\) 7.34981e9 7.25216e7i 0.373875 0.00368908i
\(874\) 6.30354e9i 0.319370i
\(875\) 0 0
\(876\) 6.13100e9 6.19179e9i 0.308153 0.311209i
\(877\) −1.84424e10 −0.923248 −0.461624 0.887076i \(-0.652733\pi\)
−0.461624 + 0.887076i \(0.652733\pi\)
\(878\) −4.96760e9 −0.247694
\(879\) −5.34485e9 5.29237e9i −0.265445 0.262839i
\(880\) 6.47626e8i 0.0320358i
\(881\) 2.28663e10 1.12663 0.563314 0.826243i \(-0.309526\pi\)
0.563314 + 0.826243i \(0.309526\pi\)
\(882\) 0 0
\(883\) 9.87721e9 0.482805 0.241402 0.970425i \(-0.422393\pi\)
0.241402 + 0.970425i \(0.422393\pi\)
\(884\) 5.32472e9i 0.259247i
\(885\) −1.72930e10 1.71232e10i −0.838627 0.830393i
\(886\) −1.21060e10 −0.584765
\(887\) 2.76055e10 1.32820 0.664099 0.747644i \(-0.268815\pi\)
0.664099 + 0.747644i \(0.268815\pi\)
\(888\) 2.79585e10 2.82357e10i 1.33989 1.35317i
\(889\) 0 0
\(890\) 1.52722e10i 0.726165i
\(891\) 1.83693e8 + 9.30742e9i 0.00870004 + 0.440816i
\(892\) 4.88904e9i 0.230646i
\(893\) 7.97303e9i 0.374665i
\(894\) −5.13163e9 5.08124e9i −0.240200 0.237842i
\(895\) 1.28644e10i 0.599805i
\(896\) 0 0
\(897\) −2.14226e10 2.12123e10i −0.991058 0.981328i
\(898\) −1.04159e10 −0.479988
\(899\) 1.90238e10 0.873249
\(900\) −5.83012e7 5.90862e9i −0.00266581 0.270170i
\(901\) 1.46239e9i 0.0666081i
\(902\) −4.88852e9 −0.221796
\(903\) 0 0
\(904\) −9.40569e7 −0.00423449
\(905\) 5.66935e8i 0.0254252i
\(906\) 1.94121e10 1.96046e10i 0.867210 0.875809i
\(907\) 1.45634e10 0.648094 0.324047 0.946041i \(-0.394956\pi\)
0.324047 + 0.946041i \(0.394956\pi\)
\(908\) −1.05103e10 −0.465923
\(909\) 2.74247e8 + 2.77940e10i 0.0121107 + 1.22738i
\(910\) 0 0
\(911\) 1.79017e10i 0.784478i 0.919863 + 0.392239i \(0.128299\pi\)
−0.919863 + 0.392239i \(0.871701\pi\)
\(912\) 5.61016e8 5.66579e8i 0.0244903 0.0247331i
\(913\) 1.01244e10i 0.440271i
\(914\) 8.38418e9i 0.363203i
\(915\) −1.15545e10 + 1.16691e10i −0.498629 + 0.503573i
\(916\) 2.65283e10i 1.14045i
\(917\) 0 0
\(918\) 5.01115e9 + 4.86497e9i 0.213790 + 0.207554i
\(919\) 1.97477e10 0.839292 0.419646 0.907688i \(-0.362154\pi\)
0.419646 + 0.907688i \(0.362154\pi\)
\(920\) 2.47595e10 1.04830
\(921\) 5.80629e9 5.86386e9i 0.244901 0.247329i
\(922\) 1.01271e10i 0.425526i
\(923\) −4.17162e10 −1.74622
\(924\) 0 0
\(925\) −2.10435e10 −0.874224
\(926\) 7.65118e9i 0.316657i
\(927\) −1.87692e10 + 1.85199e8i −0.773869 + 0.00763588i
\(928\) −3.48244e10 −1.43043
\(929\) −2.77242e10 −1.13450 −0.567249 0.823546i \(-0.691992\pi\)
−0.567249 + 0.823546i \(0.691992\pi\)
\(930\) −4.86812e9 4.82032e9i −0.198459 0.196510i
\(931\) 0 0
\(932\) 1.44424e10i 0.584366i
\(933\) −2.34997e10 2.32690e10i −0.947278 0.937977i
\(934\) 1.31383e10i 0.527626i
\(935\) 3.64861e9i 0.145978i
\(936\) −2.52993e8 2.56400e10i −0.0100843 1.02200i
\(937\) 2.09195e10i 0.830736i −0.909654 0.415368i \(-0.863653\pi\)
0.909654 0.415368i \(-0.136347\pi\)
\(938\) 0 0
\(939\) 1.69351e10 1.71031e10i 0.667512 0.674131i
\(940\) −1.14001e10 −0.447673
\(941\) 3.59853e9 0.140787 0.0703934 0.997519i \(-0.477575\pi\)
0.0703934 + 0.997519i \(0.477575\pi\)
\(942\) 2.03044e10 + 2.01051e10i 0.791430 + 0.783660i
\(943\) 2.77952e10i 1.07939i
\(944\) −4.19798e9 −0.162420
\(945\) 0 0
\(946\) 5.13096e9 0.197052
\(947\) 6.32978e9i 0.242194i −0.992641 0.121097i \(-0.961359\pi\)
0.992641 0.121097i \(-0.0386413\pi\)
\(948\) 1.81280e9 + 1.79500e9i 0.0691067 + 0.0684282i
\(949\) −2.00248e10 −0.760565
\(950\) −2.83926e9 −0.107442
\(951\) −2.67021e10 + 2.69669e10i −1.00673 + 1.01671i
\(952\) 0 0
\(953\) 2.82104e10i 1.05581i −0.849304 0.527904i \(-0.822978\pi\)
0.849304 0.527904i \(-0.177022\pi\)
\(954\) −2.52932e7 2.56338e9i −0.000943158 0.0955857i
\(955\) 8.50256e9i 0.315891i
\(956\) 6.09872e9i 0.225754i
\(957\) −1.26202e10 1.24963e10i −0.465452 0.460882i
\(958\) 1.92509e10i 0.707412i
\(959\) 0 0
\(960\) 1.03268e10 + 1.02254e10i 0.376716 + 0.373018i
\(961\) 1.80071e10 0.654503
\(962\) −3.32413e10 −1.20383
\(963\) −1.08088e9 + 1.06652e7i −0.0390018 + 0.000384837i
\(964\) 1.60519e10i 0.577108i
\(965\) 1.63321e10 0.585054
\(966\) 0 0
\(967\) 2.10247e10 0.747718 0.373859 0.927486i \(-0.378034\pi\)
0.373859 + 0.927486i \(0.378034\pi\)
\(968\) 2.33761e10i 0.828340i
\(969\) −3.16066e9 + 3.19200e9i −0.111595 + 0.112702i
\(970\) 5.04986e9 0.177655
\(971\) −1.08425e10 −0.380068 −0.190034 0.981778i \(-0.560860\pi\)
−0.190034 + 0.981778i \(0.560860\pi\)
\(972\) −1.18701e10 1.12985e10i −0.414594 0.394629i
\(973\) 0 0
\(974\) 2.41168e10i 0.836304i
\(975\) −9.55450e9 + 9.64924e9i −0.330135 + 0.333409i
\(976\) 2.83274e9i 0.0975287i
\(977\) 2.45894e10i 0.843562i 0.906698 + 0.421781i \(0.138595\pi\)
−0.906698 + 0.421781i \(0.861405\pi\)
\(978\) −1.18456e10 + 1.19631e10i −0.404922 + 0.408938i
\(979\) 1.97827e10i 0.673823i
\(980\) 0 0
\(981\) −2.26128e8 2.29173e10i −0.00764739 0.775035i
\(982\) −6.92243e8 −0.0233275
\(983\) −2.06353e10 −0.692905 −0.346452 0.938068i \(-0.612614\pi\)
−0.346452 + 0.938068i \(0.612614\pi\)
\(984\) 1.66336e10 1.67985e10i 0.556548 0.562066i
\(985\) 4.99705e9i 0.166604i
\(986\) −1.33246e10 −0.442675
\(987\) 0 0
\(988\) 6.00335e9 0.198036
\(989\) 2.91737e10i 0.958970i
\(990\) 6.31054e7 + 6.39551e9i 0.00206702 + 0.209485i
\(991\) 8.42393e9 0.274952 0.137476 0.990505i \(-0.456101\pi\)
0.137476 + 0.990505i \(0.456101\pi\)
\(992\) 1.74005e10 0.565942
\(993\) 2.38403e9 + 2.36063e9i 0.0772663 + 0.0765077i
\(994\) 0 0
\(995\) 6.15130e9i 0.197964i
\(996\) −1.26645e10 1.25402e10i −0.406145 0.402157i
\(997\) 3.50078e10i 1.11875i 0.828916 + 0.559373i \(0.188958\pi\)
−0.828916 + 0.559373i \(0.811042\pi\)
\(998\) 2.64601e10i 0.842625i
\(999\) −4.06528e10 + 4.18743e10i −1.29006 + 1.32883i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 147.8.c.b.146.13 32
3.2 odd 2 inner 147.8.c.b.146.20 32
7.2 even 3 21.8.g.b.17.7 yes 32
7.3 odd 6 21.8.g.b.5.10 yes 32
7.6 odd 2 inner 147.8.c.b.146.19 32
21.2 odd 6 21.8.g.b.17.10 yes 32
21.17 even 6 21.8.g.b.5.7 32
21.20 even 2 inner 147.8.c.b.146.14 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.8.g.b.5.7 32 21.17 even 6
21.8.g.b.5.10 yes 32 7.3 odd 6
21.8.g.b.17.7 yes 32 7.2 even 3
21.8.g.b.17.10 yes 32 21.2 odd 6
147.8.c.b.146.13 32 1.1 even 1 trivial
147.8.c.b.146.14 32 21.20 even 2 inner
147.8.c.b.146.19 32 7.6 odd 2 inner
147.8.c.b.146.20 32 3.2 odd 2 inner