Properties

Label 1458.4.a.i.1.15
Level $1458$
Weight $4$
Character 1458.1
Self dual yes
Analytic conductor $86.025$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1458,4,Mod(1,1458)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1458, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1458.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1458 = 2 \cdot 3^{6} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1458.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-30,0,60,-15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.0247847884\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 339 x^{13} - 1151 x^{12} + 35865 x^{11} + 180141 x^{10} - 1644266 x^{9} - 10786662 x^{8} + \cdots + 33185995624 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{24} \)
Twist minimal: no (minimal twist has level 54)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Root \(-8.61540\) of defining polynomial
Character \(\chi\) \(=\) 1458.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} +18.4078 q^{5} +34.7746 q^{7} -8.00000 q^{8} -36.8156 q^{10} +29.1352 q^{11} -12.2075 q^{13} -69.5493 q^{14} +16.0000 q^{16} +12.2338 q^{17} +77.7365 q^{19} +73.6312 q^{20} -58.2705 q^{22} -6.32515 q^{23} +213.847 q^{25} +24.4151 q^{26} +139.099 q^{28} -133.889 q^{29} -151.052 q^{31} -32.0000 q^{32} -24.4675 q^{34} +640.124 q^{35} -162.050 q^{37} -155.473 q^{38} -147.262 q^{40} +341.655 q^{41} +347.204 q^{43} +116.541 q^{44} +12.6503 q^{46} -151.205 q^{47} +866.275 q^{49} -427.694 q^{50} -48.8302 q^{52} +329.797 q^{53} +536.316 q^{55} -278.197 q^{56} +267.778 q^{58} -229.746 q^{59} +719.548 q^{61} +302.104 q^{62} +64.0000 q^{64} -224.714 q^{65} +385.022 q^{67} +48.9351 q^{68} -1280.25 q^{70} -125.968 q^{71} +369.566 q^{73} +324.100 q^{74} +310.946 q^{76} +1013.17 q^{77} -1009.08 q^{79} +294.525 q^{80} -683.310 q^{82} -1134.08 q^{83} +225.197 q^{85} -694.409 q^{86} -233.082 q^{88} -650.611 q^{89} -424.513 q^{91} -25.3006 q^{92} +302.411 q^{94} +1430.96 q^{95} -720.708 q^{97} -1732.55 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 30 q^{2} + 60 q^{4} - 15 q^{5} + 42 q^{7} - 120 q^{8} + 30 q^{10} - 33 q^{11} + 117 q^{13} - 84 q^{14} + 240 q^{16} - 102 q^{17} + 171 q^{19} - 60 q^{20} + 66 q^{22} - 174 q^{23} + 600 q^{25} - 234 q^{26}+ \cdots - 4002 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 18.4078 1.64644 0.823222 0.567720i \(-0.192174\pi\)
0.823222 + 0.567720i \(0.192174\pi\)
\(6\) 0 0
\(7\) 34.7746 1.87765 0.938827 0.344390i \(-0.111914\pi\)
0.938827 + 0.344390i \(0.111914\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) −36.8156 −1.16421
\(11\) 29.1352 0.798601 0.399300 0.916820i \(-0.369253\pi\)
0.399300 + 0.916820i \(0.369253\pi\)
\(12\) 0 0
\(13\) −12.2075 −0.260443 −0.130222 0.991485i \(-0.541569\pi\)
−0.130222 + 0.991485i \(0.541569\pi\)
\(14\) −69.5493 −1.32770
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 12.2338 0.174537 0.0872684 0.996185i \(-0.472186\pi\)
0.0872684 + 0.996185i \(0.472186\pi\)
\(18\) 0 0
\(19\) 77.7365 0.938631 0.469315 0.883031i \(-0.344501\pi\)
0.469315 + 0.883031i \(0.344501\pi\)
\(20\) 73.6312 0.823222
\(21\) 0 0
\(22\) −58.2705 −0.564696
\(23\) −6.32515 −0.0573428 −0.0286714 0.999589i \(-0.509128\pi\)
−0.0286714 + 0.999589i \(0.509128\pi\)
\(24\) 0 0
\(25\) 213.847 1.71078
\(26\) 24.4151 0.184161
\(27\) 0 0
\(28\) 139.099 0.938827
\(29\) −133.889 −0.857329 −0.428665 0.903464i \(-0.641016\pi\)
−0.428665 + 0.903464i \(0.641016\pi\)
\(30\) 0 0
\(31\) −151.052 −0.875154 −0.437577 0.899181i \(-0.644163\pi\)
−0.437577 + 0.899181i \(0.644163\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) −24.4675 −0.123416
\(35\) 640.124 3.09145
\(36\) 0 0
\(37\) −162.050 −0.720024 −0.360012 0.932948i \(-0.617227\pi\)
−0.360012 + 0.932948i \(0.617227\pi\)
\(38\) −155.473 −0.663712
\(39\) 0 0
\(40\) −147.262 −0.582106
\(41\) 341.655 1.30140 0.650702 0.759333i \(-0.274475\pi\)
0.650702 + 0.759333i \(0.274475\pi\)
\(42\) 0 0
\(43\) 347.204 1.23135 0.615677 0.787999i \(-0.288883\pi\)
0.615677 + 0.787999i \(0.288883\pi\)
\(44\) 116.541 0.399300
\(45\) 0 0
\(46\) 12.6503 0.0405475
\(47\) −151.205 −0.469268 −0.234634 0.972084i \(-0.575389\pi\)
−0.234634 + 0.972084i \(0.575389\pi\)
\(48\) 0 0
\(49\) 866.275 2.52558
\(50\) −427.694 −1.20970
\(51\) 0 0
\(52\) −48.8302 −0.130222
\(53\) 329.797 0.854738 0.427369 0.904077i \(-0.359441\pi\)
0.427369 + 0.904077i \(0.359441\pi\)
\(54\) 0 0
\(55\) 536.316 1.31485
\(56\) −278.197 −0.663851
\(57\) 0 0
\(58\) 267.778 0.606223
\(59\) −229.746 −0.506956 −0.253478 0.967341i \(-0.581574\pi\)
−0.253478 + 0.967341i \(0.581574\pi\)
\(60\) 0 0
\(61\) 719.548 1.51031 0.755153 0.655549i \(-0.227563\pi\)
0.755153 + 0.655549i \(0.227563\pi\)
\(62\) 302.104 0.618828
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −224.714 −0.428805
\(66\) 0 0
\(67\) 385.022 0.702058 0.351029 0.936365i \(-0.385832\pi\)
0.351029 + 0.936365i \(0.385832\pi\)
\(68\) 48.9351 0.0872684
\(69\) 0 0
\(70\) −1280.25 −2.18599
\(71\) −125.968 −0.210559 −0.105280 0.994443i \(-0.533574\pi\)
−0.105280 + 0.994443i \(0.533574\pi\)
\(72\) 0 0
\(73\) 369.566 0.592526 0.296263 0.955106i \(-0.404260\pi\)
0.296263 + 0.955106i \(0.404260\pi\)
\(74\) 324.100 0.509134
\(75\) 0 0
\(76\) 310.946 0.469315
\(77\) 1013.17 1.49950
\(78\) 0 0
\(79\) −1009.08 −1.43709 −0.718547 0.695478i \(-0.755192\pi\)
−0.718547 + 0.695478i \(0.755192\pi\)
\(80\) 294.525 0.411611
\(81\) 0 0
\(82\) −683.310 −0.920232
\(83\) −1134.08 −1.49977 −0.749887 0.661566i \(-0.769892\pi\)
−0.749887 + 0.661566i \(0.769892\pi\)
\(84\) 0 0
\(85\) 225.197 0.287365
\(86\) −694.409 −0.870698
\(87\) 0 0
\(88\) −233.082 −0.282348
\(89\) −650.611 −0.774884 −0.387442 0.921894i \(-0.626641\pi\)
−0.387442 + 0.921894i \(0.626641\pi\)
\(90\) 0 0
\(91\) −424.513 −0.489022
\(92\) −25.3006 −0.0286714
\(93\) 0 0
\(94\) 302.411 0.331822
\(95\) 1430.96 1.54540
\(96\) 0 0
\(97\) −720.708 −0.754401 −0.377200 0.926132i \(-0.623113\pi\)
−0.377200 + 0.926132i \(0.623113\pi\)
\(98\) −1732.55 −1.78586
\(99\) 0 0
\(100\) 855.388 0.855388
\(101\) −655.539 −0.645828 −0.322914 0.946428i \(-0.604662\pi\)
−0.322914 + 0.946428i \(0.604662\pi\)
\(102\) 0 0
\(103\) 548.083 0.524313 0.262157 0.965025i \(-0.415566\pi\)
0.262157 + 0.965025i \(0.415566\pi\)
\(104\) 97.6604 0.0920807
\(105\) 0 0
\(106\) −659.594 −0.604391
\(107\) −1872.22 −1.69154 −0.845769 0.533549i \(-0.820858\pi\)
−0.845769 + 0.533549i \(0.820858\pi\)
\(108\) 0 0
\(109\) −360.413 −0.316709 −0.158354 0.987382i \(-0.550619\pi\)
−0.158354 + 0.987382i \(0.550619\pi\)
\(110\) −1072.63 −0.929740
\(111\) 0 0
\(112\) 556.394 0.469413
\(113\) −1134.20 −0.944219 −0.472109 0.881540i \(-0.656507\pi\)
−0.472109 + 0.881540i \(0.656507\pi\)
\(114\) 0 0
\(115\) −116.432 −0.0944118
\(116\) −535.556 −0.428665
\(117\) 0 0
\(118\) 459.492 0.358472
\(119\) 425.425 0.327720
\(120\) 0 0
\(121\) −482.138 −0.362237
\(122\) −1439.10 −1.06795
\(123\) 0 0
\(124\) −604.209 −0.437577
\(125\) 1635.48 1.17025
\(126\) 0 0
\(127\) −299.617 −0.209344 −0.104672 0.994507i \(-0.533379\pi\)
−0.104672 + 0.994507i \(0.533379\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) 449.428 0.303211
\(131\) −1738.16 −1.15927 −0.579634 0.814877i \(-0.696804\pi\)
−0.579634 + 0.814877i \(0.696804\pi\)
\(132\) 0 0
\(133\) 2703.26 1.76242
\(134\) −770.043 −0.496430
\(135\) 0 0
\(136\) −97.8702 −0.0617081
\(137\) 1456.70 0.908425 0.454212 0.890893i \(-0.349921\pi\)
0.454212 + 0.890893i \(0.349921\pi\)
\(138\) 0 0
\(139\) 1254.74 0.765654 0.382827 0.923820i \(-0.374951\pi\)
0.382827 + 0.923820i \(0.374951\pi\)
\(140\) 2560.50 1.54573
\(141\) 0 0
\(142\) 251.937 0.148888
\(143\) −355.670 −0.207990
\(144\) 0 0
\(145\) −2464.60 −1.41154
\(146\) −739.131 −0.418979
\(147\) 0 0
\(148\) −648.201 −0.360012
\(149\) −200.384 −0.110175 −0.0550875 0.998482i \(-0.517544\pi\)
−0.0550875 + 0.998482i \(0.517544\pi\)
\(150\) 0 0
\(151\) 1632.11 0.879597 0.439798 0.898097i \(-0.355050\pi\)
0.439798 + 0.898097i \(0.355050\pi\)
\(152\) −621.892 −0.331856
\(153\) 0 0
\(154\) −2026.33 −1.06030
\(155\) −2780.54 −1.44089
\(156\) 0 0
\(157\) 650.872 0.330861 0.165431 0.986221i \(-0.447099\pi\)
0.165431 + 0.986221i \(0.447099\pi\)
\(158\) 2018.16 1.01618
\(159\) 0 0
\(160\) −589.050 −0.291053
\(161\) −219.955 −0.107670
\(162\) 0 0
\(163\) 2696.10 1.29555 0.647776 0.761831i \(-0.275699\pi\)
0.647776 + 0.761831i \(0.275699\pi\)
\(164\) 1366.62 0.650702
\(165\) 0 0
\(166\) 2268.16 1.06050
\(167\) −356.685 −0.165276 −0.0826381 0.996580i \(-0.526335\pi\)
−0.0826381 + 0.996580i \(0.526335\pi\)
\(168\) 0 0
\(169\) −2047.98 −0.932169
\(170\) −450.394 −0.203198
\(171\) 0 0
\(172\) 1388.82 0.615677
\(173\) 323.810 0.142305 0.0711526 0.997465i \(-0.477332\pi\)
0.0711526 + 0.997465i \(0.477332\pi\)
\(174\) 0 0
\(175\) 7436.45 3.21224
\(176\) 466.164 0.199650
\(177\) 0 0
\(178\) 1301.22 0.547926
\(179\) −82.1470 −0.0343014 −0.0171507 0.999853i \(-0.505460\pi\)
−0.0171507 + 0.999853i \(0.505460\pi\)
\(180\) 0 0
\(181\) −354.725 −0.145671 −0.0728356 0.997344i \(-0.523205\pi\)
−0.0728356 + 0.997344i \(0.523205\pi\)
\(182\) 849.026 0.345791
\(183\) 0 0
\(184\) 50.6012 0.0202738
\(185\) −2982.99 −1.18548
\(186\) 0 0
\(187\) 356.434 0.139385
\(188\) −604.822 −0.234634
\(189\) 0 0
\(190\) −2861.92 −1.09276
\(191\) −5233.55 −1.98265 −0.991326 0.131424i \(-0.958045\pi\)
−0.991326 + 0.131424i \(0.958045\pi\)
\(192\) 0 0
\(193\) 2029.38 0.756879 0.378440 0.925626i \(-0.376461\pi\)
0.378440 + 0.925626i \(0.376461\pi\)
\(194\) 1441.42 0.533442
\(195\) 0 0
\(196\) 3465.10 1.26279
\(197\) −564.442 −0.204136 −0.102068 0.994777i \(-0.532546\pi\)
−0.102068 + 0.994777i \(0.532546\pi\)
\(198\) 0 0
\(199\) 2977.44 1.06063 0.530314 0.847801i \(-0.322074\pi\)
0.530314 + 0.847801i \(0.322074\pi\)
\(200\) −1710.78 −0.604851
\(201\) 0 0
\(202\) 1311.08 0.456669
\(203\) −4655.94 −1.60977
\(204\) 0 0
\(205\) 6289.12 2.14269
\(206\) −1096.17 −0.370745
\(207\) 0 0
\(208\) −195.321 −0.0651109
\(209\) 2264.87 0.749591
\(210\) 0 0
\(211\) 2954.68 0.964020 0.482010 0.876166i \(-0.339907\pi\)
0.482010 + 0.876166i \(0.339907\pi\)
\(212\) 1319.19 0.427369
\(213\) 0 0
\(214\) 3744.45 1.19610
\(215\) 6391.27 2.02735
\(216\) 0 0
\(217\) −5252.79 −1.64324
\(218\) 720.825 0.223947
\(219\) 0 0
\(220\) 2145.26 0.657425
\(221\) −149.344 −0.0454570
\(222\) 0 0
\(223\) −1479.31 −0.444225 −0.222113 0.975021i \(-0.571295\pi\)
−0.222113 + 0.975021i \(0.571295\pi\)
\(224\) −1112.79 −0.331925
\(225\) 0 0
\(226\) 2268.40 0.667664
\(227\) −4932.53 −1.44222 −0.721109 0.692821i \(-0.756367\pi\)
−0.721109 + 0.692821i \(0.756367\pi\)
\(228\) 0 0
\(229\) 4794.27 1.38347 0.691735 0.722152i \(-0.256847\pi\)
0.691735 + 0.722152i \(0.256847\pi\)
\(230\) 232.864 0.0667592
\(231\) 0 0
\(232\) 1071.11 0.303112
\(233\) 3744.93 1.05296 0.526478 0.850189i \(-0.323512\pi\)
0.526478 + 0.850189i \(0.323512\pi\)
\(234\) 0 0
\(235\) −2783.36 −0.772623
\(236\) −918.984 −0.253478
\(237\) 0 0
\(238\) −850.850 −0.231733
\(239\) 5341.60 1.44569 0.722844 0.691011i \(-0.242835\pi\)
0.722844 + 0.691011i \(0.242835\pi\)
\(240\) 0 0
\(241\) −6828.24 −1.82509 −0.912543 0.408981i \(-0.865884\pi\)
−0.912543 + 0.408981i \(0.865884\pi\)
\(242\) 964.275 0.256140
\(243\) 0 0
\(244\) 2878.19 0.755153
\(245\) 15946.2 4.15823
\(246\) 0 0
\(247\) −948.973 −0.244460
\(248\) 1208.42 0.309414
\(249\) 0 0
\(250\) −3270.96 −0.827494
\(251\) 571.003 0.143591 0.0717956 0.997419i \(-0.477127\pi\)
0.0717956 + 0.997419i \(0.477127\pi\)
\(252\) 0 0
\(253\) −184.285 −0.0457940
\(254\) 599.234 0.148029
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 2498.43 0.606411 0.303206 0.952925i \(-0.401943\pi\)
0.303206 + 0.952925i \(0.401943\pi\)
\(258\) 0 0
\(259\) −5635.24 −1.35196
\(260\) −898.856 −0.214403
\(261\) 0 0
\(262\) 3476.33 0.819726
\(263\) −3141.25 −0.736494 −0.368247 0.929728i \(-0.620042\pi\)
−0.368247 + 0.929728i \(0.620042\pi\)
\(264\) 0 0
\(265\) 6070.84 1.40728
\(266\) −5406.52 −1.24622
\(267\) 0 0
\(268\) 1540.09 0.351029
\(269\) 1573.50 0.356647 0.178324 0.983972i \(-0.442933\pi\)
0.178324 + 0.983972i \(0.442933\pi\)
\(270\) 0 0
\(271\) 5646.06 1.26558 0.632792 0.774322i \(-0.281909\pi\)
0.632792 + 0.774322i \(0.281909\pi\)
\(272\) 195.740 0.0436342
\(273\) 0 0
\(274\) −2913.40 −0.642353
\(275\) 6230.49 1.36623
\(276\) 0 0
\(277\) −6015.60 −1.30485 −0.652423 0.757855i \(-0.726247\pi\)
−0.652423 + 0.757855i \(0.726247\pi\)
\(278\) −2509.49 −0.541399
\(279\) 0 0
\(280\) −5120.99 −1.09299
\(281\) 5354.52 1.13674 0.568369 0.822773i \(-0.307574\pi\)
0.568369 + 0.822773i \(0.307574\pi\)
\(282\) 0 0
\(283\) −2927.15 −0.614845 −0.307422 0.951573i \(-0.599466\pi\)
−0.307422 + 0.951573i \(0.599466\pi\)
\(284\) −503.874 −0.105280
\(285\) 0 0
\(286\) 711.340 0.147071
\(287\) 11880.9 2.44359
\(288\) 0 0
\(289\) −4763.33 −0.969537
\(290\) 4929.20 0.998113
\(291\) 0 0
\(292\) 1478.26 0.296263
\(293\) −3799.54 −0.757583 −0.378791 0.925482i \(-0.623660\pi\)
−0.378791 + 0.925482i \(0.623660\pi\)
\(294\) 0 0
\(295\) −4229.12 −0.834674
\(296\) 1296.40 0.254567
\(297\) 0 0
\(298\) 400.768 0.0779055
\(299\) 77.2146 0.0149346
\(300\) 0 0
\(301\) 12073.9 2.31205
\(302\) −3264.22 −0.621969
\(303\) 0 0
\(304\) 1243.78 0.234658
\(305\) 13245.3 2.48663
\(306\) 0 0
\(307\) 8454.09 1.57166 0.785831 0.618441i \(-0.212236\pi\)
0.785831 + 0.618441i \(0.212236\pi\)
\(308\) 4052.67 0.749748
\(309\) 0 0
\(310\) 5561.08 1.01886
\(311\) −4214.21 −0.768380 −0.384190 0.923254i \(-0.625519\pi\)
−0.384190 + 0.923254i \(0.625519\pi\)
\(312\) 0 0
\(313\) −8532.69 −1.54088 −0.770441 0.637511i \(-0.779964\pi\)
−0.770441 + 0.637511i \(0.779964\pi\)
\(314\) −1301.74 −0.233954
\(315\) 0 0
\(316\) −4036.32 −0.718547
\(317\) 1971.11 0.349238 0.174619 0.984636i \(-0.444131\pi\)
0.174619 + 0.984636i \(0.444131\pi\)
\(318\) 0 0
\(319\) −3900.89 −0.684664
\(320\) 1178.10 0.205805
\(321\) 0 0
\(322\) 439.910 0.0761342
\(323\) 951.011 0.163826
\(324\) 0 0
\(325\) −2610.55 −0.445560
\(326\) −5392.21 −0.916094
\(327\) 0 0
\(328\) −2733.24 −0.460116
\(329\) −5258.11 −0.881122
\(330\) 0 0
\(331\) −2273.39 −0.377513 −0.188757 0.982024i \(-0.560446\pi\)
−0.188757 + 0.982024i \(0.560446\pi\)
\(332\) −4536.31 −0.749887
\(333\) 0 0
\(334\) 713.370 0.116868
\(335\) 7087.40 1.15590
\(336\) 0 0
\(337\) −1411.81 −0.228208 −0.114104 0.993469i \(-0.536400\pi\)
−0.114104 + 0.993469i \(0.536400\pi\)
\(338\) 4095.95 0.659143
\(339\) 0 0
\(340\) 900.787 0.143683
\(341\) −4400.94 −0.698899
\(342\) 0 0
\(343\) 18196.7 2.86451
\(344\) −2777.64 −0.435349
\(345\) 0 0
\(346\) −647.620 −0.100625
\(347\) 9661.46 1.49468 0.747340 0.664441i \(-0.231330\pi\)
0.747340 + 0.664441i \(0.231330\pi\)
\(348\) 0 0
\(349\) 4702.60 0.721273 0.360636 0.932707i \(-0.382560\pi\)
0.360636 + 0.932707i \(0.382560\pi\)
\(350\) −14872.9 −2.27140
\(351\) 0 0
\(352\) −932.328 −0.141174
\(353\) −13070.5 −1.97074 −0.985368 0.170439i \(-0.945482\pi\)
−0.985368 + 0.170439i \(0.945482\pi\)
\(354\) 0 0
\(355\) −2318.80 −0.346674
\(356\) −2602.45 −0.387442
\(357\) 0 0
\(358\) 164.294 0.0242548
\(359\) −1858.18 −0.273179 −0.136589 0.990628i \(-0.543614\pi\)
−0.136589 + 0.990628i \(0.543614\pi\)
\(360\) 0 0
\(361\) −816.029 −0.118972
\(362\) 709.450 0.103005
\(363\) 0 0
\(364\) −1698.05 −0.244511
\(365\) 6802.89 0.975560
\(366\) 0 0
\(367\) 1632.08 0.232136 0.116068 0.993241i \(-0.462971\pi\)
0.116068 + 0.993241i \(0.462971\pi\)
\(368\) −101.202 −0.0143357
\(369\) 0 0
\(370\) 5965.98 0.838260
\(371\) 11468.6 1.60490
\(372\) 0 0
\(373\) −10567.7 −1.46695 −0.733475 0.679716i \(-0.762103\pi\)
−0.733475 + 0.679716i \(0.762103\pi\)
\(374\) −712.868 −0.0985602
\(375\) 0 0
\(376\) 1209.64 0.165911
\(377\) 1634.46 0.223286
\(378\) 0 0
\(379\) −4209.91 −0.570576 −0.285288 0.958442i \(-0.592089\pi\)
−0.285288 + 0.958442i \(0.592089\pi\)
\(380\) 5723.83 0.772701
\(381\) 0 0
\(382\) 10467.1 1.40195
\(383\) 3237.54 0.431934 0.215967 0.976401i \(-0.430710\pi\)
0.215967 + 0.976401i \(0.430710\pi\)
\(384\) 0 0
\(385\) 18650.2 2.46883
\(386\) −4058.75 −0.535195
\(387\) 0 0
\(388\) −2882.83 −0.377200
\(389\) 3500.44 0.456245 0.228123 0.973632i \(-0.426741\pi\)
0.228123 + 0.973632i \(0.426741\pi\)
\(390\) 0 0
\(391\) −77.3805 −0.0100084
\(392\) −6930.20 −0.892928
\(393\) 0 0
\(394\) 1128.88 0.144346
\(395\) −18574.9 −2.36609
\(396\) 0 0
\(397\) −8960.80 −1.13282 −0.566410 0.824124i \(-0.691668\pi\)
−0.566410 + 0.824124i \(0.691668\pi\)
\(398\) −5954.88 −0.749978
\(399\) 0 0
\(400\) 3421.55 0.427694
\(401\) −1051.51 −0.130948 −0.0654740 0.997854i \(-0.520856\pi\)
−0.0654740 + 0.997854i \(0.520856\pi\)
\(402\) 0 0
\(403\) 1843.98 0.227928
\(404\) −2622.16 −0.322914
\(405\) 0 0
\(406\) 9311.88 1.13828
\(407\) −4721.37 −0.575012
\(408\) 0 0
\(409\) −88.3827 −0.0106852 −0.00534260 0.999986i \(-0.501701\pi\)
−0.00534260 + 0.999986i \(0.501701\pi\)
\(410\) −12578.2 −1.51511
\(411\) 0 0
\(412\) 2192.33 0.262157
\(413\) −7989.33 −0.951887
\(414\) 0 0
\(415\) −20875.9 −2.46929
\(416\) 390.642 0.0460403
\(417\) 0 0
\(418\) −4529.75 −0.530041
\(419\) 2783.18 0.324504 0.162252 0.986749i \(-0.448124\pi\)
0.162252 + 0.986749i \(0.448124\pi\)
\(420\) 0 0
\(421\) −9579.62 −1.10898 −0.554492 0.832189i \(-0.687087\pi\)
−0.554492 + 0.832189i \(0.687087\pi\)
\(422\) −5909.35 −0.681665
\(423\) 0 0
\(424\) −2638.38 −0.302195
\(425\) 2616.16 0.298593
\(426\) 0 0
\(427\) 25022.0 2.83583
\(428\) −7488.89 −0.845769
\(429\) 0 0
\(430\) −12782.5 −1.43356
\(431\) 6818.04 0.761980 0.380990 0.924579i \(-0.375583\pi\)
0.380990 + 0.924579i \(0.375583\pi\)
\(432\) 0 0
\(433\) −4810.43 −0.533891 −0.266945 0.963712i \(-0.586014\pi\)
−0.266945 + 0.963712i \(0.586014\pi\)
\(434\) 10505.6 1.16194
\(435\) 0 0
\(436\) −1441.65 −0.158354
\(437\) −491.696 −0.0538238
\(438\) 0 0
\(439\) 12187.0 1.32495 0.662476 0.749083i \(-0.269505\pi\)
0.662476 + 0.749083i \(0.269505\pi\)
\(440\) −4290.53 −0.464870
\(441\) 0 0
\(442\) 298.689 0.0321429
\(443\) −9661.34 −1.03617 −0.518086 0.855328i \(-0.673355\pi\)
−0.518086 + 0.855328i \(0.673355\pi\)
\(444\) 0 0
\(445\) −11976.3 −1.27580
\(446\) 2958.63 0.314115
\(447\) 0 0
\(448\) 2225.58 0.234707
\(449\) −506.871 −0.0532756 −0.0266378 0.999645i \(-0.508480\pi\)
−0.0266378 + 0.999645i \(0.508480\pi\)
\(450\) 0 0
\(451\) 9954.21 1.03930
\(452\) −4536.81 −0.472109
\(453\) 0 0
\(454\) 9865.06 1.01980
\(455\) −7814.35 −0.805148
\(456\) 0 0
\(457\) 16622.2 1.70143 0.850715 0.525627i \(-0.176169\pi\)
0.850715 + 0.525627i \(0.176169\pi\)
\(458\) −9588.54 −0.978260
\(459\) 0 0
\(460\) −465.729 −0.0472059
\(461\) −2121.25 −0.214309 −0.107155 0.994242i \(-0.534174\pi\)
−0.107155 + 0.994242i \(0.534174\pi\)
\(462\) 0 0
\(463\) −8307.85 −0.833906 −0.416953 0.908928i \(-0.636902\pi\)
−0.416953 + 0.908928i \(0.636902\pi\)
\(464\) −2142.22 −0.214332
\(465\) 0 0
\(466\) −7489.87 −0.744553
\(467\) 13797.5 1.36718 0.683591 0.729865i \(-0.260417\pi\)
0.683591 + 0.729865i \(0.260417\pi\)
\(468\) 0 0
\(469\) 13389.0 1.31822
\(470\) 5566.72 0.546327
\(471\) 0 0
\(472\) 1837.97 0.179236
\(473\) 10115.9 0.983359
\(474\) 0 0
\(475\) 16623.7 1.60579
\(476\) 1701.70 0.163860
\(477\) 0 0
\(478\) −10683.2 −1.02226
\(479\) 15032.8 1.43396 0.716980 0.697094i \(-0.245524\pi\)
0.716980 + 0.697094i \(0.245524\pi\)
\(480\) 0 0
\(481\) 1978.24 0.187526
\(482\) 13656.5 1.29053
\(483\) 0 0
\(484\) −1928.55 −0.181119
\(485\) −13266.7 −1.24208
\(486\) 0 0
\(487\) 17512.1 1.62946 0.814732 0.579838i \(-0.196884\pi\)
0.814732 + 0.579838i \(0.196884\pi\)
\(488\) −5756.38 −0.533974
\(489\) 0 0
\(490\) −31892.4 −2.94031
\(491\) 4085.95 0.375553 0.187777 0.982212i \(-0.439872\pi\)
0.187777 + 0.982212i \(0.439872\pi\)
\(492\) 0 0
\(493\) −1637.97 −0.149636
\(494\) 1897.95 0.172860
\(495\) 0 0
\(496\) −2416.84 −0.218789
\(497\) −4380.51 −0.395357
\(498\) 0 0
\(499\) 9986.63 0.895918 0.447959 0.894054i \(-0.352151\pi\)
0.447959 + 0.894054i \(0.352151\pi\)
\(500\) 6541.91 0.585126
\(501\) 0 0
\(502\) −1142.01 −0.101534
\(503\) 6434.50 0.570378 0.285189 0.958471i \(-0.407944\pi\)
0.285189 + 0.958471i \(0.407944\pi\)
\(504\) 0 0
\(505\) −12067.0 −1.06332
\(506\) 368.570 0.0323813
\(507\) 0 0
\(508\) −1198.47 −0.104672
\(509\) −3596.29 −0.313168 −0.156584 0.987665i \(-0.550048\pi\)
−0.156584 + 0.987665i \(0.550048\pi\)
\(510\) 0 0
\(511\) 12851.5 1.11256
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) −4996.86 −0.428797
\(515\) 10089.0 0.863252
\(516\) 0 0
\(517\) −4405.41 −0.374757
\(518\) 11270.5 0.955977
\(519\) 0 0
\(520\) 1797.71 0.151606
\(521\) 20052.9 1.68625 0.843123 0.537721i \(-0.180715\pi\)
0.843123 + 0.537721i \(0.180715\pi\)
\(522\) 0 0
\(523\) 395.675 0.0330816 0.0165408 0.999863i \(-0.494735\pi\)
0.0165408 + 0.999863i \(0.494735\pi\)
\(524\) −6952.65 −0.579634
\(525\) 0 0
\(526\) 6282.50 0.520780
\(527\) −1847.94 −0.152747
\(528\) 0 0
\(529\) −12127.0 −0.996712
\(530\) −12141.7 −0.995096
\(531\) 0 0
\(532\) 10813.0 0.881212
\(533\) −4170.77 −0.338942
\(534\) 0 0
\(535\) −34463.5 −2.78502
\(536\) −3080.17 −0.248215
\(537\) 0 0
\(538\) −3147.01 −0.252188
\(539\) 25239.1 2.01693
\(540\) 0 0
\(541\) −19391.5 −1.54105 −0.770525 0.637410i \(-0.780006\pi\)
−0.770525 + 0.637410i \(0.780006\pi\)
\(542\) −11292.1 −0.894904
\(543\) 0 0
\(544\) −391.481 −0.0308540
\(545\) −6634.40 −0.521443
\(546\) 0 0
\(547\) 1400.29 0.109455 0.0547275 0.998501i \(-0.482571\pi\)
0.0547275 + 0.998501i \(0.482571\pi\)
\(548\) 5826.80 0.454212
\(549\) 0 0
\(550\) −12461.0 −0.966068
\(551\) −10408.1 −0.804716
\(552\) 0 0
\(553\) −35090.4 −2.69836
\(554\) 12031.2 0.922665
\(555\) 0 0
\(556\) 5018.97 0.382827
\(557\) 14991.5 1.14041 0.570205 0.821502i \(-0.306864\pi\)
0.570205 + 0.821502i \(0.306864\pi\)
\(558\) 0 0
\(559\) −4238.52 −0.320698
\(560\) 10242.0 0.772863
\(561\) 0 0
\(562\) −10709.0 −0.803796
\(563\) −989.723 −0.0740885 −0.0370443 0.999314i \(-0.511794\pi\)
−0.0370443 + 0.999314i \(0.511794\pi\)
\(564\) 0 0
\(565\) −20878.2 −1.55460
\(566\) 5854.30 0.434761
\(567\) 0 0
\(568\) 1007.75 0.0744439
\(569\) −4215.26 −0.310567 −0.155284 0.987870i \(-0.549629\pi\)
−0.155284 + 0.987870i \(0.549629\pi\)
\(570\) 0 0
\(571\) 3101.72 0.227326 0.113663 0.993519i \(-0.463742\pi\)
0.113663 + 0.993519i \(0.463742\pi\)
\(572\) −1422.68 −0.103995
\(573\) 0 0
\(574\) −23761.9 −1.72788
\(575\) −1352.62 −0.0981008
\(576\) 0 0
\(577\) −6727.12 −0.485362 −0.242681 0.970106i \(-0.578027\pi\)
−0.242681 + 0.970106i \(0.578027\pi\)
\(578\) 9526.67 0.685566
\(579\) 0 0
\(580\) −9858.40 −0.705772
\(581\) −39437.2 −2.81606
\(582\) 0 0
\(583\) 9608.72 0.682594
\(584\) −2956.52 −0.209490
\(585\) 0 0
\(586\) 7599.09 0.535692
\(587\) −16448.8 −1.15658 −0.578292 0.815830i \(-0.696281\pi\)
−0.578292 + 0.815830i \(0.696281\pi\)
\(588\) 0 0
\(589\) −11742.3 −0.821447
\(590\) 8458.23 0.590203
\(591\) 0 0
\(592\) −2592.80 −0.180006
\(593\) 18525.6 1.28289 0.641446 0.767168i \(-0.278335\pi\)
0.641446 + 0.767168i \(0.278335\pi\)
\(594\) 0 0
\(595\) 7831.14 0.539572
\(596\) −801.535 −0.0550875
\(597\) 0 0
\(598\) −154.429 −0.0105603
\(599\) −4533.51 −0.309239 −0.154620 0.987974i \(-0.549415\pi\)
−0.154620 + 0.987974i \(0.549415\pi\)
\(600\) 0 0
\(601\) −2891.36 −0.196241 −0.0981207 0.995175i \(-0.531283\pi\)
−0.0981207 + 0.995175i \(0.531283\pi\)
\(602\) −24147.8 −1.63487
\(603\) 0 0
\(604\) 6528.43 0.439798
\(605\) −8875.09 −0.596403
\(606\) 0 0
\(607\) −11543.4 −0.771883 −0.385942 0.922523i \(-0.626123\pi\)
−0.385942 + 0.922523i \(0.626123\pi\)
\(608\) −2487.57 −0.165928
\(609\) 0 0
\(610\) −26490.6 −1.75831
\(611\) 1845.85 0.122218
\(612\) 0 0
\(613\) −3626.32 −0.238933 −0.119466 0.992838i \(-0.538118\pi\)
−0.119466 + 0.992838i \(0.538118\pi\)
\(614\) −16908.2 −1.11133
\(615\) 0 0
\(616\) −8105.34 −0.530152
\(617\) −5203.72 −0.339536 −0.169768 0.985484i \(-0.554302\pi\)
−0.169768 + 0.985484i \(0.554302\pi\)
\(618\) 0 0
\(619\) −25335.9 −1.64513 −0.822564 0.568673i \(-0.807457\pi\)
−0.822564 + 0.568673i \(0.807457\pi\)
\(620\) −11122.2 −0.720446
\(621\) 0 0
\(622\) 8428.43 0.543327
\(623\) −22624.8 −1.45496
\(624\) 0 0
\(625\) 3374.67 0.215979
\(626\) 17065.4 1.08957
\(627\) 0 0
\(628\) 2603.49 0.165431
\(629\) −1982.49 −0.125671
\(630\) 0 0
\(631\) −1962.66 −0.123823 −0.0619113 0.998082i \(-0.519720\pi\)
−0.0619113 + 0.998082i \(0.519720\pi\)
\(632\) 8072.64 0.508089
\(633\) 0 0
\(634\) −3942.22 −0.246949
\(635\) −5515.29 −0.344673
\(636\) 0 0
\(637\) −10575.1 −0.657771
\(638\) 7801.77 0.484130
\(639\) 0 0
\(640\) −2356.20 −0.145526
\(641\) −26185.1 −1.61349 −0.806746 0.590898i \(-0.798773\pi\)
−0.806746 + 0.590898i \(0.798773\pi\)
\(642\) 0 0
\(643\) −15312.1 −0.939111 −0.469556 0.882903i \(-0.655586\pi\)
−0.469556 + 0.882903i \(0.655586\pi\)
\(644\) −879.819 −0.0538350
\(645\) 0 0
\(646\) −1902.02 −0.115842
\(647\) 2663.26 0.161829 0.0809146 0.996721i \(-0.474216\pi\)
0.0809146 + 0.996721i \(0.474216\pi\)
\(648\) 0 0
\(649\) −6693.70 −0.404855
\(650\) 5221.10 0.315059
\(651\) 0 0
\(652\) 10784.4 0.647776
\(653\) 28453.8 1.70518 0.852592 0.522578i \(-0.175030\pi\)
0.852592 + 0.522578i \(0.175030\pi\)
\(654\) 0 0
\(655\) −31995.7 −1.90867
\(656\) 5466.48 0.325351
\(657\) 0 0
\(658\) 10516.2 0.623047
\(659\) 14067.7 0.831562 0.415781 0.909465i \(-0.363508\pi\)
0.415781 + 0.909465i \(0.363508\pi\)
\(660\) 0 0
\(661\) 30493.5 1.79434 0.897171 0.441684i \(-0.145619\pi\)
0.897171 + 0.441684i \(0.145619\pi\)
\(662\) 4546.78 0.266942
\(663\) 0 0
\(664\) 9072.63 0.530250
\(665\) 49761.1 2.90173
\(666\) 0 0
\(667\) 846.868 0.0491617
\(668\) −1426.74 −0.0826381
\(669\) 0 0
\(670\) −14174.8 −0.817344
\(671\) 20964.2 1.20613
\(672\) 0 0
\(673\) 26508.3 1.51830 0.759152 0.650913i \(-0.225614\pi\)
0.759152 + 0.650913i \(0.225614\pi\)
\(674\) 2823.62 0.161367
\(675\) 0 0
\(676\) −8191.90 −0.466085
\(677\) 19639.0 1.11490 0.557451 0.830210i \(-0.311780\pi\)
0.557451 + 0.830210i \(0.311780\pi\)
\(678\) 0 0
\(679\) −25062.4 −1.41650
\(680\) −1801.57 −0.101599
\(681\) 0 0
\(682\) 8801.89 0.494196
\(683\) −5352.51 −0.299865 −0.149933 0.988696i \(-0.547906\pi\)
−0.149933 + 0.988696i \(0.547906\pi\)
\(684\) 0 0
\(685\) 26814.6 1.49567
\(686\) −36393.4 −2.02552
\(687\) 0 0
\(688\) 5555.27 0.307838
\(689\) −4026.01 −0.222611
\(690\) 0 0
\(691\) 28496.8 1.56884 0.784421 0.620229i \(-0.212960\pi\)
0.784421 + 0.620229i \(0.212960\pi\)
\(692\) 1295.24 0.0711526
\(693\) 0 0
\(694\) −19322.9 −1.05690
\(695\) 23097.1 1.26061
\(696\) 0 0
\(697\) 4179.73 0.227143
\(698\) −9405.19 −0.510017
\(699\) 0 0
\(700\) 29745.8 1.60612
\(701\) −32930.0 −1.77425 −0.887125 0.461530i \(-0.847301\pi\)
−0.887125 + 0.461530i \(0.847301\pi\)
\(702\) 0 0
\(703\) −12597.2 −0.675837
\(704\) 1864.66 0.0998251
\(705\) 0 0
\(706\) 26140.9 1.39352
\(707\) −22796.1 −1.21264
\(708\) 0 0
\(709\) 4396.02 0.232858 0.116429 0.993199i \(-0.462855\pi\)
0.116429 + 0.993199i \(0.462855\pi\)
\(710\) 4637.60 0.245135
\(711\) 0 0
\(712\) 5204.89 0.273963
\(713\) 955.429 0.0501838
\(714\) 0 0
\(715\) −6547.10 −0.342444
\(716\) −328.588 −0.0171507
\(717\) 0 0
\(718\) 3716.37 0.193167
\(719\) −24851.1 −1.28900 −0.644499 0.764605i \(-0.722934\pi\)
−0.644499 + 0.764605i \(0.722934\pi\)
\(720\) 0 0
\(721\) 19059.4 0.984478
\(722\) 1632.06 0.0841259
\(723\) 0 0
\(724\) −1418.90 −0.0728356
\(725\) −28631.8 −1.46670
\(726\) 0 0
\(727\) −3542.45 −0.180718 −0.0903592 0.995909i \(-0.528802\pi\)
−0.0903592 + 0.995909i \(0.528802\pi\)
\(728\) 3396.10 0.172896
\(729\) 0 0
\(730\) −13605.8 −0.689825
\(731\) 4247.62 0.214916
\(732\) 0 0
\(733\) −32250.5 −1.62510 −0.812550 0.582892i \(-0.801921\pi\)
−0.812550 + 0.582892i \(0.801921\pi\)
\(734\) −3264.16 −0.164145
\(735\) 0 0
\(736\) 202.405 0.0101369
\(737\) 11217.7 0.560664
\(738\) 0 0
\(739\) 23798.5 1.18463 0.592316 0.805706i \(-0.298214\pi\)
0.592316 + 0.805706i \(0.298214\pi\)
\(740\) −11932.0 −0.592739
\(741\) 0 0
\(742\) −22937.1 −1.13484
\(743\) 15745.4 0.777449 0.388724 0.921354i \(-0.372916\pi\)
0.388724 + 0.921354i \(0.372916\pi\)
\(744\) 0 0
\(745\) −3688.62 −0.181397
\(746\) 21135.3 1.03729
\(747\) 0 0
\(748\) 1425.74 0.0696926
\(749\) −65105.8 −3.17612
\(750\) 0 0
\(751\) −16089.7 −0.781788 −0.390894 0.920436i \(-0.627834\pi\)
−0.390894 + 0.920436i \(0.627834\pi\)
\(752\) −2419.29 −0.117317
\(753\) 0 0
\(754\) −3268.91 −0.157887
\(755\) 30043.5 1.44821
\(756\) 0 0
\(757\) 28643.2 1.37524 0.687620 0.726071i \(-0.258656\pi\)
0.687620 + 0.726071i \(0.258656\pi\)
\(758\) 8419.82 0.403458
\(759\) 0 0
\(760\) −11447.7 −0.546382
\(761\) −27884.4 −1.32827 −0.664133 0.747615i \(-0.731199\pi\)
−0.664133 + 0.747615i \(0.731199\pi\)
\(762\) 0 0
\(763\) −12533.2 −0.594670
\(764\) −20934.2 −0.991326
\(765\) 0 0
\(766\) −6475.09 −0.305424
\(767\) 2804.63 0.132033
\(768\) 0 0
\(769\) 8287.73 0.388639 0.194319 0.980938i \(-0.437750\pi\)
0.194319 + 0.980938i \(0.437750\pi\)
\(770\) −37300.4 −1.74573
\(771\) 0 0
\(772\) 8117.51 0.378440
\(773\) −13027.0 −0.606143 −0.303072 0.952968i \(-0.598012\pi\)
−0.303072 + 0.952968i \(0.598012\pi\)
\(774\) 0 0
\(775\) −32302.1 −1.49719
\(776\) 5765.67 0.266721
\(777\) 0 0
\(778\) −7000.88 −0.322614
\(779\) 26559.1 1.22154
\(780\) 0 0
\(781\) −3670.12 −0.168153
\(782\) 154.761 0.00707703
\(783\) 0 0
\(784\) 13860.4 0.631395
\(785\) 11981.1 0.544745
\(786\) 0 0
\(787\) −3445.44 −0.156057 −0.0780283 0.996951i \(-0.524862\pi\)
−0.0780283 + 0.996951i \(0.524862\pi\)
\(788\) −2257.77 −0.102068
\(789\) 0 0
\(790\) 37149.9 1.67308
\(791\) −39441.4 −1.77292
\(792\) 0 0
\(793\) −8783.91 −0.393349
\(794\) 17921.6 0.801025
\(795\) 0 0
\(796\) 11909.8 0.530314
\(797\) 34926.9 1.55229 0.776144 0.630555i \(-0.217173\pi\)
0.776144 + 0.630555i \(0.217173\pi\)
\(798\) 0 0
\(799\) −1849.81 −0.0819045
\(800\) −6843.11 −0.302425
\(801\) 0 0
\(802\) 2103.03 0.0925942
\(803\) 10767.4 0.473191
\(804\) 0 0
\(805\) −4048.88 −0.177273
\(806\) −3687.96 −0.161170
\(807\) 0 0
\(808\) 5244.31 0.228335
\(809\) −2065.17 −0.0897498 −0.0448749 0.998993i \(-0.514289\pi\)
−0.0448749 + 0.998993i \(0.514289\pi\)
\(810\) 0 0
\(811\) −26833.1 −1.16182 −0.580911 0.813967i \(-0.697304\pi\)
−0.580911 + 0.813967i \(0.697304\pi\)
\(812\) −18623.8 −0.804884
\(813\) 0 0
\(814\) 9442.75 0.406595
\(815\) 49629.3 2.13305
\(816\) 0 0
\(817\) 26990.5 1.15579
\(818\) 176.765 0.00755557
\(819\) 0 0
\(820\) 25156.5 1.07134
\(821\) −33959.2 −1.44359 −0.721794 0.692108i \(-0.756682\pi\)
−0.721794 + 0.692108i \(0.756682\pi\)
\(822\) 0 0
\(823\) −33850.0 −1.43370 −0.716852 0.697225i \(-0.754418\pi\)
−0.716852 + 0.697225i \(0.754418\pi\)
\(824\) −4384.67 −0.185373
\(825\) 0 0
\(826\) 15978.7 0.673086
\(827\) 16913.3 0.711165 0.355583 0.934645i \(-0.384283\pi\)
0.355583 + 0.934645i \(0.384283\pi\)
\(828\) 0 0
\(829\) 27078.5 1.13447 0.567235 0.823556i \(-0.308013\pi\)
0.567235 + 0.823556i \(0.308013\pi\)
\(830\) 41751.8 1.74605
\(831\) 0 0
\(832\) −781.283 −0.0325554
\(833\) 10597.8 0.440807
\(834\) 0 0
\(835\) −6565.79 −0.272118
\(836\) 9059.49 0.374796
\(837\) 0 0
\(838\) −5566.35 −0.229459
\(839\) 23089.4 0.950099 0.475050 0.879959i \(-0.342430\pi\)
0.475050 + 0.879959i \(0.342430\pi\)
\(840\) 0 0
\(841\) −6462.75 −0.264986
\(842\) 19159.2 0.784170
\(843\) 0 0
\(844\) 11818.7 0.482010
\(845\) −37698.7 −1.53476
\(846\) 0 0
\(847\) −16766.2 −0.680156
\(848\) 5276.75 0.213684
\(849\) 0 0
\(850\) −5232.31 −0.211137
\(851\) 1024.99 0.0412882
\(852\) 0 0
\(853\) 17261.4 0.692871 0.346435 0.938074i \(-0.387392\pi\)
0.346435 + 0.938074i \(0.387392\pi\)
\(854\) −50044.0 −2.00523
\(855\) 0 0
\(856\) 14977.8 0.598049
\(857\) 8581.99 0.342071 0.171036 0.985265i \(-0.445289\pi\)
0.171036 + 0.985265i \(0.445289\pi\)
\(858\) 0 0
\(859\) 2306.93 0.0916316 0.0458158 0.998950i \(-0.485411\pi\)
0.0458158 + 0.998950i \(0.485411\pi\)
\(860\) 25565.1 1.01368
\(861\) 0 0
\(862\) −13636.1 −0.538801
\(863\) −23551.9 −0.928988 −0.464494 0.885576i \(-0.653764\pi\)
−0.464494 + 0.885576i \(0.653764\pi\)
\(864\) 0 0
\(865\) 5960.63 0.234298
\(866\) 9620.87 0.377518
\(867\) 0 0
\(868\) −21011.1 −0.821618
\(869\) −29399.8 −1.14766
\(870\) 0 0
\(871\) −4700.17 −0.182846
\(872\) 2883.30 0.111974
\(873\) 0 0
\(874\) 983.391 0.0380592
\(875\) 56873.1 2.19733
\(876\) 0 0
\(877\) −34079.9 −1.31220 −0.656099 0.754675i \(-0.727794\pi\)
−0.656099 + 0.754675i \(0.727794\pi\)
\(878\) −24374.0 −0.936883
\(879\) 0 0
\(880\) 8581.05 0.328713
\(881\) −36804.0 −1.40744 −0.703721 0.710476i \(-0.748480\pi\)
−0.703721 + 0.710476i \(0.748480\pi\)
\(882\) 0 0
\(883\) 9104.30 0.346981 0.173490 0.984836i \(-0.444495\pi\)
0.173490 + 0.984836i \(0.444495\pi\)
\(884\) −597.378 −0.0227285
\(885\) 0 0
\(886\) 19322.7 0.732684
\(887\) 6618.40 0.250535 0.125267 0.992123i \(-0.460021\pi\)
0.125267 + 0.992123i \(0.460021\pi\)
\(888\) 0 0
\(889\) −10419.1 −0.393076
\(890\) 23952.6 0.902129
\(891\) 0 0
\(892\) −5917.26 −0.222113
\(893\) −11754.2 −0.440469
\(894\) 0 0
\(895\) −1512.15 −0.0564754
\(896\) −4451.15 −0.165963
\(897\) 0 0
\(898\) 1013.74 0.0376715
\(899\) 20224.2 0.750296
\(900\) 0 0
\(901\) 4034.66 0.149183
\(902\) −19908.4 −0.734898
\(903\) 0 0
\(904\) 9073.61 0.333832
\(905\) −6529.70 −0.239839
\(906\) 0 0
\(907\) −3247.61 −0.118892 −0.0594461 0.998232i \(-0.518933\pi\)
−0.0594461 + 0.998232i \(0.518933\pi\)
\(908\) −19730.1 −0.721109
\(909\) 0 0
\(910\) 15628.7 0.569326
\(911\) 34500.0 1.25470 0.627352 0.778736i \(-0.284139\pi\)
0.627352 + 0.778736i \(0.284139\pi\)
\(912\) 0 0
\(913\) −33041.7 −1.19772
\(914\) −33244.4 −1.20309
\(915\) 0 0
\(916\) 19177.1 0.691735
\(917\) −60444.0 −2.17670
\(918\) 0 0
\(919\) 42888.3 1.53945 0.769724 0.638376i \(-0.220394\pi\)
0.769724 + 0.638376i \(0.220394\pi\)
\(920\) 931.457 0.0333796
\(921\) 0 0
\(922\) 4242.50 0.151540
\(923\) 1537.77 0.0548388
\(924\) 0 0
\(925\) −34654.0 −1.23180
\(926\) 16615.7 0.589661
\(927\) 0 0
\(928\) 4284.45 0.151556
\(929\) −14809.4 −0.523015 −0.261508 0.965201i \(-0.584220\pi\)
−0.261508 + 0.965201i \(0.584220\pi\)
\(930\) 0 0
\(931\) 67341.2 2.37059
\(932\) 14979.7 0.526478
\(933\) 0 0
\(934\) −27595.1 −0.966744
\(935\) 6561.17 0.229490
\(936\) 0 0
\(937\) −23513.5 −0.819800 −0.409900 0.912130i \(-0.634436\pi\)
−0.409900 + 0.912130i \(0.634436\pi\)
\(938\) −26778.0 −0.932123
\(939\) 0 0
\(940\) −11133.4 −0.386311
\(941\) −56563.8 −1.95954 −0.979770 0.200126i \(-0.935865\pi\)
−0.979770 + 0.200126i \(0.935865\pi\)
\(942\) 0 0
\(943\) −2161.02 −0.0746262
\(944\) −3675.94 −0.126739
\(945\) 0 0
\(946\) −20231.8 −0.695340
\(947\) −36813.0 −1.26321 −0.631606 0.775290i \(-0.717604\pi\)
−0.631606 + 0.775290i \(0.717604\pi\)
\(948\) 0 0
\(949\) −4511.49 −0.154319
\(950\) −33247.5 −1.13546
\(951\) 0 0
\(952\) −3403.40 −0.115866
\(953\) 5800.77 0.197173 0.0985863 0.995129i \(-0.468568\pi\)
0.0985863 + 0.995129i \(0.468568\pi\)
\(954\) 0 0
\(955\) −96338.2 −3.26433
\(956\) 21366.4 0.722844
\(957\) 0 0
\(958\) −30065.6 −1.01396
\(959\) 50656.2 1.70571
\(960\) 0 0
\(961\) −6974.22 −0.234105
\(962\) −3956.47 −0.132601
\(963\) 0 0
\(964\) −27313.0 −0.912543
\(965\) 37356.4 1.24616
\(966\) 0 0
\(967\) 47543.7 1.58108 0.790539 0.612411i \(-0.209800\pi\)
0.790539 + 0.612411i \(0.209800\pi\)
\(968\) 3857.10 0.128070
\(969\) 0 0
\(970\) 26533.3 0.878282
\(971\) −51826.6 −1.71287 −0.856434 0.516257i \(-0.827325\pi\)
−0.856434 + 0.516257i \(0.827325\pi\)
\(972\) 0 0
\(973\) 43633.2 1.43763
\(974\) −35024.2 −1.15221
\(975\) 0 0
\(976\) 11512.8 0.377576
\(977\) 10438.4 0.341816 0.170908 0.985287i \(-0.445330\pi\)
0.170908 + 0.985287i \(0.445330\pi\)
\(978\) 0 0
\(979\) −18955.7 −0.618823
\(980\) 63784.8 2.07911
\(981\) 0 0
\(982\) −8171.91 −0.265556
\(983\) 3126.83 0.101455 0.0507275 0.998713i \(-0.483846\pi\)
0.0507275 + 0.998713i \(0.483846\pi\)
\(984\) 0 0
\(985\) −10390.1 −0.336099
\(986\) 3275.93 0.105808
\(987\) 0 0
\(988\) −3795.89 −0.122230
\(989\) −2196.12 −0.0706093
\(990\) 0 0
\(991\) −26631.4 −0.853657 −0.426829 0.904332i \(-0.640369\pi\)
−0.426829 + 0.904332i \(0.640369\pi\)
\(992\) 4833.67 0.154707
\(993\) 0 0
\(994\) 8761.01 0.279560
\(995\) 54808.1 1.74627
\(996\) 0 0
\(997\) −1948.30 −0.0618889 −0.0309445 0.999521i \(-0.509851\pi\)
−0.0309445 + 0.999521i \(0.509851\pi\)
\(998\) −19973.3 −0.633509
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1458.4.a.i.1.15 15
3.2 odd 2 1458.4.a.j.1.1 15
27.4 even 9 54.4.e.b.43.3 30
27.7 even 9 54.4.e.b.49.3 yes 30
27.20 odd 18 162.4.e.b.37.5 30
27.23 odd 18 162.4.e.b.127.5 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.4.e.b.43.3 30 27.4 even 9
54.4.e.b.49.3 yes 30 27.7 even 9
162.4.e.b.37.5 30 27.20 odd 18
162.4.e.b.127.5 30 27.23 odd 18
1458.4.a.i.1.15 15 1.1 even 1 trivial
1458.4.a.j.1.1 15 3.2 odd 2