Properties

Label 2-1458-1.1-c3-0-55
Degree $2$
Conductor $1458$
Sign $1$
Analytic cond. $86.0247$
Root an. cond. $9.27495$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4·4-s + 18.4·5-s + 34.7·7-s − 8·8-s − 36.8·10-s + 29.1·11-s − 12.2·13-s − 69.5·14-s + 16·16-s + 12.2·17-s + 77.7·19-s + 73.6·20-s − 58.2·22-s − 6.32·23-s + 213.·25-s + 24.4·26-s + 139.·28-s − 133.·29-s − 151.·31-s − 32·32-s − 24.4·34-s + 640.·35-s − 162.·37-s − 155.·38-s − 147.·40-s + 341.·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 1.64·5-s + 1.87·7-s − 0.353·8-s − 1.16·10-s + 0.798·11-s − 0.260·13-s − 1.32·14-s + 0.250·16-s + 0.174·17-s + 0.938·19-s + 0.823·20-s − 0.564·22-s − 0.0573·23-s + 1.71·25-s + 0.184·26-s + 0.938·28-s − 0.857·29-s − 0.875·31-s − 0.176·32-s − 0.123·34-s + 3.09·35-s − 0.720·37-s − 0.663·38-s − 0.582·40-s + 1.30·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1458 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1458 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1458\)    =    \(2 \cdot 3^{6}\)
Sign: $1$
Analytic conductor: \(86.0247\)
Root analytic conductor: \(9.27495\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1458,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.226420643\)
\(L(\frac12)\) \(\approx\) \(3.226420643\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
3 \( 1 \)
good5 \( 1 - 18.4T + 125T^{2} \)
7 \( 1 - 34.7T + 343T^{2} \)
11 \( 1 - 29.1T + 1.33e3T^{2} \)
13 \( 1 + 12.2T + 2.19e3T^{2} \)
17 \( 1 - 12.2T + 4.91e3T^{2} \)
19 \( 1 - 77.7T + 6.85e3T^{2} \)
23 \( 1 + 6.32T + 1.21e4T^{2} \)
29 \( 1 + 133.T + 2.43e4T^{2} \)
31 \( 1 + 151.T + 2.97e4T^{2} \)
37 \( 1 + 162.T + 5.06e4T^{2} \)
41 \( 1 - 341.T + 6.89e4T^{2} \)
43 \( 1 - 347.T + 7.95e4T^{2} \)
47 \( 1 + 151.T + 1.03e5T^{2} \)
53 \( 1 - 329.T + 1.48e5T^{2} \)
59 \( 1 + 229.T + 2.05e5T^{2} \)
61 \( 1 - 719.T + 2.26e5T^{2} \)
67 \( 1 - 385.T + 3.00e5T^{2} \)
71 \( 1 + 125.T + 3.57e5T^{2} \)
73 \( 1 - 369.T + 3.89e5T^{2} \)
79 \( 1 + 1.00e3T + 4.93e5T^{2} \)
83 \( 1 + 1.13e3T + 5.71e5T^{2} \)
89 \( 1 + 650.T + 7.04e5T^{2} \)
97 \( 1 + 720.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.236360630001792221012010580876, −8.502632018993229428879035128190, −7.58571408356975146549079268208, −6.88270765071409552768971373646, −5.63453695833527094537289296256, −5.38369067580926386612164571248, −4.12055253630729154428865553855, −2.53240298264842650501625187245, −1.70760513474148989952168437494, −1.12342295885982334604331834512, 1.12342295885982334604331834512, 1.70760513474148989952168437494, 2.53240298264842650501625187245, 4.12055253630729154428865553855, 5.38369067580926386612164571248, 5.63453695833527094537289296256, 6.88270765071409552768971373646, 7.58571408356975146549079268208, 8.502632018993229428879035128190, 9.236360630001792221012010580876

Graph of the $Z$-function along the critical line