Properties

Label 1456.2.s.k.113.1
Level $1456$
Weight $2$
Character 1456.113
Analytic conductor $11.626$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1456,2,Mod(113,1456)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1456, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1456.113"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1456 = 2^{4} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1456.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-1,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6262185343\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 113.1
Root \(1.39564 - 0.228425i\) of defining polynomial
Character \(\chi\) \(=\) 1456.113
Dual form 1456.2.s.k.1121.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.39564 + 2.41733i) q^{3} +0.791288 q^{5} +(0.500000 + 0.866025i) q^{7} +(-2.39564 - 4.14938i) q^{9} +(0.395644 - 0.685275i) q^{11} +(2.50000 - 2.59808i) q^{13} +(-1.10436 + 1.91280i) q^{15} +(-1.50000 - 2.59808i) q^{17} +(-3.18693 - 5.51993i) q^{19} -2.79129 q^{21} +(3.00000 - 5.19615i) q^{23} -4.37386 q^{25} +5.00000 q^{27} +(3.39564 - 5.88143i) q^{29} +1.00000 q^{31} +(1.10436 + 1.91280i) q^{33} +(0.395644 + 0.685275i) q^{35} +(2.00000 - 3.46410i) q^{37} +(2.79129 + 9.66930i) q^{39} +(-3.79129 + 6.56670i) q^{41} +(-4.68693 - 8.11800i) q^{43} +(-1.89564 - 3.28335i) q^{45} -6.16515 q^{47} +(-0.500000 + 0.866025i) q^{49} +8.37386 q^{51} -1.41742 q^{53} +(0.313068 - 0.542250i) q^{55} +17.7913 q^{57} +(-4.50000 - 7.79423i) q^{59} +(-1.00000 - 1.73205i) q^{61} +(2.39564 - 4.14938i) q^{63} +(1.97822 - 2.05583i) q^{65} +(-3.50000 + 6.06218i) q^{67} +(8.37386 + 14.5040i) q^{69} +(-0.791288 - 1.37055i) q^{71} +14.0000 q^{73} +(6.10436 - 10.5731i) q^{75} +0.791288 q^{77} +4.00000 q^{79} +(0.208712 - 0.361500i) q^{81} +9.00000 q^{83} +(-1.18693 - 2.05583i) q^{85} +(9.47822 + 16.4168i) q^{87} +(-4.18693 + 7.25198i) q^{89} +(3.50000 + 0.866025i) q^{91} +(-1.39564 + 2.41733i) q^{93} +(-2.52178 - 4.36785i) q^{95} +(2.31307 + 4.00635i) q^{97} -3.79129 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} - 6 q^{5} + 2 q^{7} - 5 q^{9} - 3 q^{11} + 10 q^{13} - 9 q^{15} - 6 q^{17} + q^{19} - 2 q^{21} + 12 q^{23} + 10 q^{25} + 20 q^{27} + 9 q^{29} + 4 q^{31} + 9 q^{33} - 3 q^{35} + 8 q^{37} + 2 q^{39}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1456\mathbb{Z}\right)^\times\).

\(n\) \(561\) \(911\) \(1093\) \(1249\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.39564 + 2.41733i −0.805775 + 1.39564i 0.109991 + 0.993933i \(0.464918\pi\)
−0.915766 + 0.401711i \(0.868416\pi\)
\(4\) 0 0
\(5\) 0.791288 0.353875 0.176937 0.984222i \(-0.443381\pi\)
0.176937 + 0.984222i \(0.443381\pi\)
\(6\) 0 0
\(7\) 0.500000 + 0.866025i 0.188982 + 0.327327i
\(8\) 0 0
\(9\) −2.39564 4.14938i −0.798548 1.38313i
\(10\) 0 0
\(11\) 0.395644 0.685275i 0.119291 0.206618i −0.800196 0.599739i \(-0.795271\pi\)
0.919487 + 0.393121i \(0.128604\pi\)
\(12\) 0 0
\(13\) 2.50000 2.59808i 0.693375 0.720577i
\(14\) 0 0
\(15\) −1.10436 + 1.91280i −0.285144 + 0.493883i
\(16\) 0 0
\(17\) −1.50000 2.59808i −0.363803 0.630126i 0.624780 0.780801i \(-0.285189\pi\)
−0.988583 + 0.150675i \(0.951855\pi\)
\(18\) 0 0
\(19\) −3.18693 5.51993i −0.731132 1.26636i −0.956400 0.292061i \(-0.905659\pi\)
0.225267 0.974297i \(-0.427674\pi\)
\(20\) 0 0
\(21\) −2.79129 −0.609109
\(22\) 0 0
\(23\) 3.00000 5.19615i 0.625543 1.08347i −0.362892 0.931831i \(-0.618211\pi\)
0.988436 0.151642i \(-0.0484560\pi\)
\(24\) 0 0
\(25\) −4.37386 −0.874773
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) 3.39564 5.88143i 0.630555 1.09215i −0.356883 0.934149i \(-0.616161\pi\)
0.987438 0.158005i \(-0.0505061\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605 0.0898027 0.995960i \(-0.471376\pi\)
0.0898027 + 0.995960i \(0.471376\pi\)
\(32\) 0 0
\(33\) 1.10436 + 1.91280i 0.192244 + 0.332976i
\(34\) 0 0
\(35\) 0.395644 + 0.685275i 0.0668760 + 0.115833i
\(36\) 0 0
\(37\) 2.00000 3.46410i 0.328798 0.569495i −0.653476 0.756948i \(-0.726690\pi\)
0.982274 + 0.187453i \(0.0600231\pi\)
\(38\) 0 0
\(39\) 2.79129 + 9.66930i 0.446964 + 1.54833i
\(40\) 0 0
\(41\) −3.79129 + 6.56670i −0.592100 + 1.02555i 0.401849 + 0.915706i \(0.368368\pi\)
−0.993949 + 0.109841i \(0.964966\pi\)
\(42\) 0 0
\(43\) −4.68693 8.11800i −0.714750 1.23798i −0.963056 0.269302i \(-0.913207\pi\)
0.248305 0.968682i \(-0.420126\pi\)
\(44\) 0 0
\(45\) −1.89564 3.28335i −0.282586 0.489453i
\(46\) 0 0
\(47\) −6.16515 −0.899280 −0.449640 0.893210i \(-0.648448\pi\)
−0.449640 + 0.893210i \(0.648448\pi\)
\(48\) 0 0
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) 0 0
\(51\) 8.37386 1.17258
\(52\) 0 0
\(53\) −1.41742 −0.194698 −0.0973491 0.995250i \(-0.531036\pi\)
−0.0973491 + 0.995250i \(0.531036\pi\)
\(54\) 0 0
\(55\) 0.313068 0.542250i 0.0422141 0.0731170i
\(56\) 0 0
\(57\) 17.7913 2.35651
\(58\) 0 0
\(59\) −4.50000 7.79423i −0.585850 1.01472i −0.994769 0.102151i \(-0.967427\pi\)
0.408919 0.912571i \(-0.365906\pi\)
\(60\) 0 0
\(61\) −1.00000 1.73205i −0.128037 0.221766i 0.794879 0.606768i \(-0.207534\pi\)
−0.922916 + 0.385002i \(0.874201\pi\)
\(62\) 0 0
\(63\) 2.39564 4.14938i 0.301823 0.522772i
\(64\) 0 0
\(65\) 1.97822 2.05583i 0.245368 0.254994i
\(66\) 0 0
\(67\) −3.50000 + 6.06218i −0.427593 + 0.740613i −0.996659 0.0816792i \(-0.973972\pi\)
0.569066 + 0.822292i \(0.307305\pi\)
\(68\) 0 0
\(69\) 8.37386 + 14.5040i 1.00809 + 1.74607i
\(70\) 0 0
\(71\) −0.791288 1.37055i −0.0939086 0.162654i 0.815244 0.579118i \(-0.196603\pi\)
−0.909153 + 0.416463i \(0.863269\pi\)
\(72\) 0 0
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) 0 0
\(75\) 6.10436 10.5731i 0.704870 1.22087i
\(76\) 0 0
\(77\) 0.791288 0.0901756
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 0.208712 0.361500i 0.0231902 0.0401667i
\(82\) 0 0
\(83\) 9.00000 0.987878 0.493939 0.869496i \(-0.335557\pi\)
0.493939 + 0.869496i \(0.335557\pi\)
\(84\) 0 0
\(85\) −1.18693 2.05583i −0.128741 0.222986i
\(86\) 0 0
\(87\) 9.47822 + 16.4168i 1.01617 + 1.76006i
\(88\) 0 0
\(89\) −4.18693 + 7.25198i −0.443814 + 0.768708i −0.997969 0.0637054i \(-0.979708\pi\)
0.554155 + 0.832414i \(0.313042\pi\)
\(90\) 0 0
\(91\) 3.50000 + 0.866025i 0.366900 + 0.0907841i
\(92\) 0 0
\(93\) −1.39564 + 2.41733i −0.144722 + 0.250665i
\(94\) 0 0
\(95\) −2.52178 4.36785i −0.258729 0.448132i
\(96\) 0 0
\(97\) 2.31307 + 4.00635i 0.234856 + 0.406783i 0.959231 0.282623i \(-0.0912046\pi\)
−0.724374 + 0.689407i \(0.757871\pi\)
\(98\) 0 0
\(99\) −3.79129 −0.381039
\(100\) 0 0
\(101\) −8.76951 + 15.1892i −0.872599 + 1.51139i −0.0132996 + 0.999912i \(0.504234\pi\)
−0.859299 + 0.511474i \(0.829100\pi\)
\(102\) 0 0
\(103\) 1.00000 0.0985329 0.0492665 0.998786i \(-0.484312\pi\)
0.0492665 + 0.998786i \(0.484312\pi\)
\(104\) 0 0
\(105\) −2.20871 −0.215548
\(106\) 0 0
\(107\) 7.18693 12.4481i 0.694787 1.20341i −0.275466 0.961311i \(-0.588832\pi\)
0.970252 0.242095i \(-0.0778347\pi\)
\(108\) 0 0
\(109\) 9.74773 0.933663 0.466831 0.884346i \(-0.345395\pi\)
0.466831 + 0.884346i \(0.345395\pi\)
\(110\) 0 0
\(111\) 5.58258 + 9.66930i 0.529875 + 0.917770i
\(112\) 0 0
\(113\) −3.08258 5.33918i −0.289984 0.502268i 0.683821 0.729649i \(-0.260317\pi\)
−0.973806 + 0.227382i \(0.926983\pi\)
\(114\) 0 0
\(115\) 2.37386 4.11165i 0.221364 0.383414i
\(116\) 0 0
\(117\) −16.7695 4.14938i −1.55034 0.383610i
\(118\) 0 0
\(119\) 1.50000 2.59808i 0.137505 0.238165i
\(120\) 0 0
\(121\) 5.18693 + 8.98403i 0.471539 + 0.816730i
\(122\) 0 0
\(123\) −10.5826 18.3296i −0.954199 1.65272i
\(124\) 0 0
\(125\) −7.41742 −0.663435
\(126\) 0 0
\(127\) −7.68693 + 13.3142i −0.682105 + 1.18144i 0.292232 + 0.956347i \(0.405602\pi\)
−0.974337 + 0.225093i \(0.927731\pi\)
\(128\) 0 0
\(129\) 26.1652 2.30371
\(130\) 0 0
\(131\) 18.9564 1.65623 0.828116 0.560557i \(-0.189413\pi\)
0.828116 + 0.560557i \(0.189413\pi\)
\(132\) 0 0
\(133\) 3.18693 5.51993i 0.276342 0.478638i
\(134\) 0 0
\(135\) 3.95644 0.340516
\(136\) 0 0
\(137\) 1.18693 + 2.05583i 0.101406 + 0.175641i 0.912264 0.409602i \(-0.134332\pi\)
−0.810858 + 0.585243i \(0.800999\pi\)
\(138\) 0 0
\(139\) 6.68693 + 11.5821i 0.567178 + 0.982381i 0.996843 + 0.0793931i \(0.0252982\pi\)
−0.429665 + 0.902988i \(0.641368\pi\)
\(140\) 0 0
\(141\) 8.60436 14.9032i 0.724617 1.25507i
\(142\) 0 0
\(143\) −0.791288 2.74110i −0.0661708 0.229222i
\(144\) 0 0
\(145\) 2.68693 4.65390i 0.223138 0.386486i
\(146\) 0 0
\(147\) −1.39564 2.41733i −0.115111 0.199378i
\(148\) 0 0
\(149\) −10.9782 19.0148i −0.899371 1.55776i −0.828300 0.560285i \(-0.810692\pi\)
−0.0710706 0.997471i \(-0.522642\pi\)
\(150\) 0 0
\(151\) 7.00000 0.569652 0.284826 0.958579i \(-0.408064\pi\)
0.284826 + 0.958579i \(0.408064\pi\)
\(152\) 0 0
\(153\) −7.18693 + 12.4481i −0.581029 + 1.00637i
\(154\) 0 0
\(155\) 0.791288 0.0635578
\(156\) 0 0
\(157\) −4.62614 −0.369206 −0.184603 0.982813i \(-0.559100\pi\)
−0.184603 + 0.982813i \(0.559100\pi\)
\(158\) 0 0
\(159\) 1.97822 3.42638i 0.156883 0.271729i
\(160\) 0 0
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) −10.3739 17.9681i −0.812544 1.40737i −0.911078 0.412233i \(-0.864749\pi\)
0.0985346 0.995134i \(-0.468584\pi\)
\(164\) 0 0
\(165\) 0.873864 + 1.51358i 0.0680302 + 0.117832i
\(166\) 0 0
\(167\) −9.08258 + 15.7315i −0.702831 + 1.21734i 0.264638 + 0.964348i \(0.414748\pi\)
−0.967469 + 0.252991i \(0.918586\pi\)
\(168\) 0 0
\(169\) −0.500000 12.9904i −0.0384615 0.999260i
\(170\) 0 0
\(171\) −15.2695 + 26.4476i −1.16769 + 2.02250i
\(172\) 0 0
\(173\) −7.66515 13.2764i −0.582771 1.00939i −0.995149 0.0983759i \(-0.968635\pi\)
0.412379 0.911013i \(-0.364698\pi\)
\(174\) 0 0
\(175\) −2.18693 3.78788i −0.165317 0.286337i
\(176\) 0 0
\(177\) 25.1216 1.88825
\(178\) 0 0
\(179\) −2.29129 + 3.96863i −0.171259 + 0.296629i −0.938860 0.344298i \(-0.888117\pi\)
0.767601 + 0.640928i \(0.221450\pi\)
\(180\) 0 0
\(181\) −2.74773 −0.204237 −0.102118 0.994772i \(-0.532562\pi\)
−0.102118 + 0.994772i \(0.532562\pi\)
\(182\) 0 0
\(183\) 5.58258 0.412676
\(184\) 0 0
\(185\) 1.58258 2.74110i 0.116353 0.201530i
\(186\) 0 0
\(187\) −2.37386 −0.173594
\(188\) 0 0
\(189\) 2.50000 + 4.33013i 0.181848 + 0.314970i
\(190\) 0 0
\(191\) −5.76951 9.99308i −0.417467 0.723074i 0.578217 0.815883i \(-0.303749\pi\)
−0.995684 + 0.0928091i \(0.970415\pi\)
\(192\) 0 0
\(193\) 5.00000 8.66025i 0.359908 0.623379i −0.628037 0.778183i \(-0.716141\pi\)
0.987945 + 0.154805i \(0.0494748\pi\)
\(194\) 0 0
\(195\) 2.20871 + 7.65120i 0.158169 + 0.547914i
\(196\) 0 0
\(197\) 0.395644 0.685275i 0.0281885 0.0488238i −0.851587 0.524213i \(-0.824359\pi\)
0.879775 + 0.475389i \(0.157693\pi\)
\(198\) 0 0
\(199\) 7.87386 + 13.6379i 0.558163 + 0.966767i 0.997650 + 0.0685181i \(0.0218271\pi\)
−0.439486 + 0.898249i \(0.644840\pi\)
\(200\) 0 0
\(201\) −9.76951 16.9213i −0.689088 1.19354i
\(202\) 0 0
\(203\) 6.79129 0.476655
\(204\) 0 0
\(205\) −3.00000 + 5.19615i −0.209529 + 0.362915i
\(206\) 0 0
\(207\) −28.7477 −1.99811
\(208\) 0 0
\(209\) −5.04356 −0.348870
\(210\) 0 0
\(211\) −6.50000 + 11.2583i −0.447478 + 0.775055i −0.998221 0.0596196i \(-0.981011\pi\)
0.550743 + 0.834675i \(0.314345\pi\)
\(212\) 0 0
\(213\) 4.41742 0.302677
\(214\) 0 0
\(215\) −3.70871 6.42368i −0.252932 0.438091i
\(216\) 0 0
\(217\) 0.500000 + 0.866025i 0.0339422 + 0.0587896i
\(218\) 0 0
\(219\) −19.5390 + 33.8426i −1.32032 + 2.28687i
\(220\) 0 0
\(221\) −10.5000 2.59808i −0.706306 0.174766i
\(222\) 0 0
\(223\) 4.31307 7.47045i 0.288824 0.500259i −0.684705 0.728820i \(-0.740069\pi\)
0.973529 + 0.228562i \(0.0734023\pi\)
\(224\) 0 0
\(225\) 10.4782 + 18.1488i 0.698548 + 1.20992i
\(226\) 0 0
\(227\) −6.87386 11.9059i −0.456234 0.790221i 0.542524 0.840040i \(-0.317469\pi\)
−0.998758 + 0.0498193i \(0.984135\pi\)
\(228\) 0 0
\(229\) −26.7477 −1.76754 −0.883770 0.467922i \(-0.845003\pi\)
−0.883770 + 0.467922i \(0.845003\pi\)
\(230\) 0 0
\(231\) −1.10436 + 1.91280i −0.0726613 + 0.125853i
\(232\) 0 0
\(233\) −27.9564 −1.83149 −0.915744 0.401763i \(-0.868398\pi\)
−0.915744 + 0.401763i \(0.868398\pi\)
\(234\) 0 0
\(235\) −4.87841 −0.318232
\(236\) 0 0
\(237\) −5.58258 + 9.66930i −0.362627 + 0.628089i
\(238\) 0 0
\(239\) 24.4955 1.58448 0.792240 0.610210i \(-0.208915\pi\)
0.792240 + 0.610210i \(0.208915\pi\)
\(240\) 0 0
\(241\) 1.68693 + 2.92185i 0.108665 + 0.188213i 0.915230 0.402933i \(-0.132009\pi\)
−0.806565 + 0.591146i \(0.798676\pi\)
\(242\) 0 0
\(243\) 8.08258 + 13.9994i 0.518497 + 0.898064i
\(244\) 0 0
\(245\) −0.395644 + 0.685275i −0.0252768 + 0.0437806i
\(246\) 0 0
\(247\) −22.3085 5.51993i −1.41946 0.351225i
\(248\) 0 0
\(249\) −12.5608 + 21.7559i −0.796008 + 1.37873i
\(250\) 0 0
\(251\) 2.20871 + 3.82560i 0.139413 + 0.241470i 0.927274 0.374382i \(-0.122145\pi\)
−0.787862 + 0.615852i \(0.788812\pi\)
\(252\) 0 0
\(253\) −2.37386 4.11165i −0.149244 0.258497i
\(254\) 0 0
\(255\) 6.62614 0.414945
\(256\) 0 0
\(257\) 0.313068 0.542250i 0.0195287 0.0338246i −0.856096 0.516817i \(-0.827117\pi\)
0.875625 + 0.482992i \(0.160450\pi\)
\(258\) 0 0
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) −32.5390 −2.01411
\(262\) 0 0
\(263\) −5.29129 + 9.16478i −0.326275 + 0.565125i −0.981770 0.190075i \(-0.939127\pi\)
0.655495 + 0.755200i \(0.272460\pi\)
\(264\) 0 0
\(265\) −1.12159 −0.0688988
\(266\) 0 0
\(267\) −11.6869 20.2424i −0.715229 1.23881i
\(268\) 0 0
\(269\) 11.6869 + 20.2424i 0.712565 + 1.23420i 0.963891 + 0.266296i \(0.0857999\pi\)
−0.251326 + 0.967902i \(0.580867\pi\)
\(270\) 0 0
\(271\) 1.87386 3.24563i 0.113829 0.197158i −0.803482 0.595329i \(-0.797022\pi\)
0.917311 + 0.398171i \(0.130355\pi\)
\(272\) 0 0
\(273\) −6.97822 + 7.25198i −0.422341 + 0.438910i
\(274\) 0 0
\(275\) −1.73049 + 2.99730i −0.104353 + 0.180744i
\(276\) 0 0
\(277\) −16.2477 28.1419i −0.976231 1.69088i −0.675810 0.737075i \(-0.736206\pi\)
−0.300421 0.953807i \(-0.597127\pi\)
\(278\) 0 0
\(279\) −2.39564 4.14938i −0.143423 0.248417i
\(280\) 0 0
\(281\) −22.7477 −1.35702 −0.678508 0.734593i \(-0.737373\pi\)
−0.678508 + 0.734593i \(0.737373\pi\)
\(282\) 0 0
\(283\) 13.0000 22.5167i 0.772770 1.33848i −0.163270 0.986581i \(-0.552204\pi\)
0.936039 0.351895i \(-0.114463\pi\)
\(284\) 0 0
\(285\) 14.0780 0.833911
\(286\) 0 0
\(287\) −7.58258 −0.447585
\(288\) 0 0
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) 0 0
\(291\) −12.9129 −0.756966
\(292\) 0 0
\(293\) 6.79129 + 11.7629i 0.396751 + 0.687193i 0.993323 0.115366i \(-0.0368042\pi\)
−0.596572 + 0.802560i \(0.703471\pi\)
\(294\) 0 0
\(295\) −3.56080 6.16748i −0.207318 0.359084i
\(296\) 0 0
\(297\) 1.97822 3.42638i 0.114788 0.198819i
\(298\) 0 0
\(299\) −6.00000 20.7846i −0.346989 1.20201i
\(300\) 0 0
\(301\) 4.68693 8.11800i 0.270150 0.467914i
\(302\) 0 0
\(303\) −24.4782 42.3975i −1.40624 2.43567i
\(304\) 0 0
\(305\) −0.791288 1.37055i −0.0453090 0.0784775i
\(306\) 0 0
\(307\) 14.1216 0.805962 0.402981 0.915208i \(-0.367974\pi\)
0.402981 + 0.915208i \(0.367974\pi\)
\(308\) 0 0
\(309\) −1.39564 + 2.41733i −0.0793954 + 0.137517i
\(310\) 0 0
\(311\) −18.9564 −1.07492 −0.537461 0.843289i \(-0.680616\pi\)
−0.537461 + 0.843289i \(0.680616\pi\)
\(312\) 0 0
\(313\) 6.74773 0.381404 0.190702 0.981648i \(-0.438924\pi\)
0.190702 + 0.981648i \(0.438924\pi\)
\(314\) 0 0
\(315\) 1.89564 3.28335i 0.106807 0.184996i
\(316\) 0 0
\(317\) −16.5826 −0.931370 −0.465685 0.884950i \(-0.654192\pi\)
−0.465685 + 0.884950i \(0.654192\pi\)
\(318\) 0 0
\(319\) −2.68693 4.65390i −0.150439 0.260569i
\(320\) 0 0
\(321\) 20.0608 + 34.7463i 1.11968 + 1.93935i
\(322\) 0 0
\(323\) −9.56080 + 16.5598i −0.531977 + 0.921411i
\(324\) 0 0
\(325\) −10.9347 + 11.3636i −0.606546 + 0.630341i
\(326\) 0 0
\(327\) −13.6044 + 23.5634i −0.752323 + 1.30306i
\(328\) 0 0
\(329\) −3.08258 5.33918i −0.169948 0.294358i
\(330\) 0 0
\(331\) 13.5608 + 23.4880i 0.745369 + 1.29102i 0.950022 + 0.312182i \(0.101060\pi\)
−0.204654 + 0.978834i \(0.565607\pi\)
\(332\) 0 0
\(333\) −19.1652 −1.05024
\(334\) 0 0
\(335\) −2.76951 + 4.79693i −0.151314 + 0.262084i
\(336\) 0 0
\(337\) −6.37386 −0.347206 −0.173603 0.984816i \(-0.555541\pi\)
−0.173603 + 0.984816i \(0.555541\pi\)
\(338\) 0 0
\(339\) 17.2087 0.934649
\(340\) 0 0
\(341\) 0.395644 0.685275i 0.0214253 0.0371097i
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 6.62614 + 11.4768i 0.356739 + 0.617890i
\(346\) 0 0
\(347\) 2.37386 + 4.11165i 0.127436 + 0.220725i 0.922682 0.385561i \(-0.125992\pi\)
−0.795247 + 0.606286i \(0.792659\pi\)
\(348\) 0 0
\(349\) 14.8739 25.7623i 0.796180 1.37902i −0.125908 0.992042i \(-0.540184\pi\)
0.922087 0.386982i \(-0.126482\pi\)
\(350\) 0 0
\(351\) 12.5000 12.9904i 0.667201 0.693375i
\(352\) 0 0
\(353\) 7.35208 12.7342i 0.391312 0.677772i −0.601311 0.799015i \(-0.705355\pi\)
0.992623 + 0.121243i \(0.0386880\pi\)
\(354\) 0 0
\(355\) −0.626136 1.08450i −0.0332319 0.0575593i
\(356\) 0 0
\(357\) 4.18693 + 7.25198i 0.221596 + 0.383815i
\(358\) 0 0
\(359\) 24.9564 1.31715 0.658575 0.752515i \(-0.271159\pi\)
0.658575 + 0.752515i \(0.271159\pi\)
\(360\) 0 0
\(361\) −10.8131 + 18.7288i −0.569109 + 0.985725i
\(362\) 0 0
\(363\) −28.9564 −1.51982
\(364\) 0 0
\(365\) 11.0780 0.579851
\(366\) 0 0
\(367\) 1.00000 1.73205i 0.0521996 0.0904123i −0.838745 0.544524i \(-0.816710\pi\)
0.890945 + 0.454112i \(0.150043\pi\)
\(368\) 0 0
\(369\) 36.3303 1.89128
\(370\) 0 0
\(371\) −0.708712 1.22753i −0.0367945 0.0637299i
\(372\) 0 0
\(373\) 7.68693 + 13.3142i 0.398014 + 0.689381i 0.993481 0.113999i \(-0.0363661\pi\)
−0.595467 + 0.803380i \(0.703033\pi\)
\(374\) 0 0
\(375\) 10.3521 17.9303i 0.534579 0.925918i
\(376\) 0 0
\(377\) −6.79129 23.5257i −0.349769 1.21164i
\(378\) 0 0
\(379\) 2.81307 4.87238i 0.144498 0.250277i −0.784688 0.619891i \(-0.787177\pi\)
0.929185 + 0.369614i \(0.120510\pi\)
\(380\) 0 0
\(381\) −21.4564 37.1636i −1.09925 1.90395i
\(382\) 0 0
\(383\) −19.2695 33.3758i −0.984626 1.70542i −0.643587 0.765373i \(-0.722555\pi\)
−0.341038 0.940049i \(-0.610779\pi\)
\(384\) 0 0
\(385\) 0.626136 0.0319109
\(386\) 0 0
\(387\) −22.4564 + 38.8957i −1.14152 + 1.97718i
\(388\) 0 0
\(389\) 24.3303 1.23360 0.616798 0.787122i \(-0.288430\pi\)
0.616798 + 0.787122i \(0.288430\pi\)
\(390\) 0 0
\(391\) −18.0000 −0.910299
\(392\) 0 0
\(393\) −26.4564 + 45.8239i −1.33455 + 2.31151i
\(394\) 0 0
\(395\) 3.16515 0.159256
\(396\) 0 0
\(397\) 15.7477 + 27.2759i 0.790356 + 1.36894i 0.925747 + 0.378144i \(0.123438\pi\)
−0.135391 + 0.990792i \(0.543229\pi\)
\(398\) 0 0
\(399\) 8.89564 + 15.4077i 0.445339 + 0.771350i
\(400\) 0 0
\(401\) 12.5608 21.7559i 0.627256 1.08644i −0.360844 0.932626i \(-0.617511\pi\)
0.988100 0.153813i \(-0.0491554\pi\)
\(402\) 0 0
\(403\) 2.50000 2.59808i 0.124534 0.129419i
\(404\) 0 0
\(405\) 0.165151 0.286051i 0.00820644 0.0142140i
\(406\) 0 0
\(407\) −1.58258 2.74110i −0.0784454 0.135871i
\(408\) 0 0
\(409\) 14.5608 + 25.2200i 0.719985 + 1.24705i 0.961005 + 0.276530i \(0.0891847\pi\)
−0.241020 + 0.970520i \(0.577482\pi\)
\(410\) 0 0
\(411\) −6.62614 −0.326843
\(412\) 0 0
\(413\) 4.50000 7.79423i 0.221431 0.383529i
\(414\) 0 0
\(415\) 7.12159 0.349585
\(416\) 0 0
\(417\) −37.3303 −1.82807
\(418\) 0 0
\(419\) −0.708712 + 1.22753i −0.0346229 + 0.0599685i −0.882818 0.469716i \(-0.844356\pi\)
0.848195 + 0.529684i \(0.177690\pi\)
\(420\) 0 0
\(421\) 23.4955 1.14510 0.572549 0.819870i \(-0.305955\pi\)
0.572549 + 0.819870i \(0.305955\pi\)
\(422\) 0 0
\(423\) 14.7695 + 25.5815i 0.718118 + 1.24382i
\(424\) 0 0
\(425\) 6.56080 + 11.3636i 0.318245 + 0.551217i
\(426\) 0 0
\(427\) 1.00000 1.73205i 0.0483934 0.0838198i
\(428\) 0 0
\(429\) 7.73049 + 1.91280i 0.373232 + 0.0923509i
\(430\) 0 0
\(431\) 4.26951 7.39500i 0.205655 0.356205i −0.744686 0.667415i \(-0.767401\pi\)
0.950341 + 0.311210i \(0.100734\pi\)
\(432\) 0 0
\(433\) 11.2477 + 19.4816i 0.540531 + 0.936228i 0.998874 + 0.0474518i \(0.0151101\pi\)
−0.458342 + 0.888776i \(0.651557\pi\)
\(434\) 0 0
\(435\) 7.50000 + 12.9904i 0.359597 + 0.622841i
\(436\) 0 0
\(437\) −38.2432 −1.82942
\(438\) 0 0
\(439\) −4.68693 + 8.11800i −0.223695 + 0.387451i −0.955927 0.293604i \(-0.905145\pi\)
0.732232 + 0.681055i \(0.238479\pi\)
\(440\) 0 0
\(441\) 4.79129 0.228157
\(442\) 0 0
\(443\) 13.5826 0.645328 0.322664 0.946514i \(-0.395422\pi\)
0.322664 + 0.946514i \(0.395422\pi\)
\(444\) 0 0
\(445\) −3.31307 + 5.73840i −0.157054 + 0.272026i
\(446\) 0 0
\(447\) 61.2867 2.89876
\(448\) 0 0
\(449\) 1.41742 + 2.45505i 0.0668924 + 0.115861i 0.897532 0.440950i \(-0.145358\pi\)
−0.830639 + 0.556811i \(0.812025\pi\)
\(450\) 0 0
\(451\) 3.00000 + 5.19615i 0.141264 + 0.244677i
\(452\) 0 0
\(453\) −9.76951 + 16.9213i −0.459012 + 0.795031i
\(454\) 0 0
\(455\) 2.76951 + 0.685275i 0.129837 + 0.0321262i
\(456\) 0 0
\(457\) −8.74773 + 15.1515i −0.409201 + 0.708758i −0.994800 0.101843i \(-0.967526\pi\)
0.585599 + 0.810601i \(0.300859\pi\)
\(458\) 0 0
\(459\) −7.50000 12.9904i −0.350070 0.606339i
\(460\) 0 0
\(461\) −12.3956 21.4699i −0.577323 0.999952i −0.995785 0.0917181i \(-0.970764\pi\)
0.418462 0.908234i \(-0.362569\pi\)
\(462\) 0 0
\(463\) −5.00000 −0.232370 −0.116185 0.993228i \(-0.537067\pi\)
−0.116185 + 0.993228i \(0.537067\pi\)
\(464\) 0 0
\(465\) −1.10436 + 1.91280i −0.0512133 + 0.0887040i
\(466\) 0 0
\(467\) −42.1652 −1.95117 −0.975585 0.219621i \(-0.929518\pi\)
−0.975585 + 0.219621i \(0.929518\pi\)
\(468\) 0 0
\(469\) −7.00000 −0.323230
\(470\) 0 0
\(471\) 6.45644 11.1829i 0.297497 0.515280i
\(472\) 0 0
\(473\) −7.41742 −0.341054
\(474\) 0 0
\(475\) 13.9392 + 24.1434i 0.639575 + 1.10778i
\(476\) 0 0
\(477\) 3.39564 + 5.88143i 0.155476 + 0.269292i
\(478\) 0 0
\(479\) 11.1434 19.3009i 0.509154 0.881880i −0.490790 0.871278i \(-0.663292\pi\)
0.999944 0.0106021i \(-0.00337483\pi\)
\(480\) 0 0
\(481\) −4.00000 13.8564i −0.182384 0.631798i
\(482\) 0 0
\(483\) −8.37386 + 14.5040i −0.381024 + 0.659953i
\(484\) 0 0
\(485\) 1.83030 + 3.17018i 0.0831098 + 0.143950i
\(486\) 0 0
\(487\) 9.06080 + 15.6938i 0.410584 + 0.711152i 0.994954 0.100335i \(-0.0319916\pi\)
−0.584370 + 0.811487i \(0.698658\pi\)
\(488\) 0 0
\(489\) 57.9129 2.61891
\(490\) 0 0
\(491\) −4.89564 + 8.47950i −0.220937 + 0.382675i −0.955093 0.296307i \(-0.904245\pi\)
0.734156 + 0.678981i \(0.237578\pi\)
\(492\) 0 0
\(493\) −20.3739 −0.917593
\(494\) 0 0
\(495\) −3.00000 −0.134840
\(496\) 0 0
\(497\) 0.791288 1.37055i 0.0354941 0.0614776i
\(498\) 0 0
\(499\) 20.1216 0.900766 0.450383 0.892835i \(-0.351287\pi\)
0.450383 + 0.892835i \(0.351287\pi\)
\(500\) 0 0
\(501\) −25.3521 43.9111i −1.13265 1.96180i
\(502\) 0 0
\(503\) −8.60436 14.9032i −0.383649 0.664500i 0.607932 0.793989i \(-0.292000\pi\)
−0.991581 + 0.129489i \(0.958666\pi\)
\(504\) 0 0
\(505\) −6.93920 + 12.0191i −0.308791 + 0.534841i
\(506\) 0 0
\(507\) 32.0998 + 16.9213i 1.42560 + 0.751501i
\(508\) 0 0
\(509\) −0.873864 + 1.51358i −0.0387333 + 0.0670881i −0.884742 0.466081i \(-0.845666\pi\)
0.846009 + 0.533169i \(0.178999\pi\)
\(510\) 0 0
\(511\) 7.00000 + 12.1244i 0.309662 + 0.536350i
\(512\) 0 0
\(513\) −15.9347 27.5996i −0.703532 1.21855i
\(514\) 0 0
\(515\) 0.791288 0.0348683
\(516\) 0 0
\(517\) −2.43920 + 4.22483i −0.107276 + 0.185808i
\(518\) 0 0
\(519\) 42.7913 1.87833
\(520\) 0 0
\(521\) 31.5826 1.38366 0.691829 0.722061i \(-0.256805\pi\)
0.691829 + 0.722061i \(0.256805\pi\)
\(522\) 0 0
\(523\) −13.3739 + 23.1642i −0.584798 + 1.01290i 0.410102 + 0.912040i \(0.365493\pi\)
−0.994901 + 0.100861i \(0.967840\pi\)
\(524\) 0 0
\(525\) 12.2087 0.532832
\(526\) 0 0
\(527\) −1.50000 2.59808i −0.0653410 0.113174i
\(528\) 0 0
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 0 0
\(531\) −21.5608 + 37.3444i −0.935659 + 1.62061i
\(532\) 0 0
\(533\) 7.58258 + 26.2668i 0.328438 + 1.13774i
\(534\) 0 0
\(535\) 5.68693 9.85005i 0.245868 0.425855i
\(536\) 0 0
\(537\) −6.39564 11.0776i −0.275992 0.478033i
\(538\) 0 0
\(539\) 0.395644 + 0.685275i 0.0170416 + 0.0295169i
\(540\) 0 0
\(541\) 39.1216 1.68197 0.840984 0.541060i \(-0.181977\pi\)
0.840984 + 0.541060i \(0.181977\pi\)
\(542\) 0 0
\(543\) 3.83485 6.64215i 0.164569 0.285042i
\(544\) 0 0
\(545\) 7.71326 0.330400
\(546\) 0 0
\(547\) 41.7477 1.78500 0.892502 0.451044i \(-0.148948\pi\)
0.892502 + 0.451044i \(0.148948\pi\)
\(548\) 0 0
\(549\) −4.79129 + 8.29875i −0.204487 + 0.354182i
\(550\) 0 0
\(551\) −43.2867 −1.84408
\(552\) 0 0
\(553\) 2.00000 + 3.46410i 0.0850487 + 0.147309i
\(554\) 0 0
\(555\) 4.41742 + 7.65120i 0.187509 + 0.324775i
\(556\) 0 0
\(557\) 10.1044 17.5013i 0.428135 0.741552i −0.568572 0.822633i \(-0.692504\pi\)
0.996707 + 0.0810813i \(0.0258373\pi\)
\(558\) 0 0
\(559\) −32.8085 8.11800i −1.38765 0.343355i
\(560\) 0 0
\(561\) 3.31307 5.73840i 0.139878 0.242276i
\(562\) 0 0
\(563\) −19.7477 34.2041i −0.832267 1.44153i −0.896236 0.443578i \(-0.853709\pi\)
0.0639685 0.997952i \(-0.479624\pi\)
\(564\) 0 0
\(565\) −2.43920 4.22483i −0.102618 0.177740i
\(566\) 0 0
\(567\) 0.417424 0.0175302
\(568\) 0 0
\(569\) 21.0000 36.3731i 0.880366 1.52484i 0.0294311 0.999567i \(-0.490630\pi\)
0.850935 0.525271i \(-0.176036\pi\)
\(570\) 0 0
\(571\) −15.1216 −0.632819 −0.316409 0.948623i \(-0.602477\pi\)
−0.316409 + 0.948623i \(0.602477\pi\)
\(572\) 0 0
\(573\) 32.2087 1.34554
\(574\) 0 0
\(575\) −13.1216 + 22.7273i −0.547208 + 0.947792i
\(576\) 0 0
\(577\) 26.4955 1.10302 0.551510 0.834168i \(-0.314052\pi\)
0.551510 + 0.834168i \(0.314052\pi\)
\(578\) 0 0
\(579\) 13.9564 + 24.1733i 0.580010 + 1.00461i
\(580\) 0 0
\(581\) 4.50000 + 7.79423i 0.186691 + 0.323359i
\(582\) 0 0
\(583\) −0.560795 + 0.971326i −0.0232258 + 0.0402282i
\(584\) 0 0
\(585\) −13.2695 3.28335i −0.548627 0.135750i
\(586\) 0 0
\(587\) 8.85208 15.3323i 0.365365 0.632830i −0.623470 0.781847i \(-0.714278\pi\)
0.988835 + 0.149017i \(0.0476110\pi\)
\(588\) 0 0
\(589\) −3.18693 5.51993i −0.131315 0.227445i
\(590\) 0 0
\(591\) 1.10436 + 1.91280i 0.0454271 + 0.0786821i
\(592\) 0 0
\(593\) −6.95644 −0.285667 −0.142833 0.989747i \(-0.545621\pi\)
−0.142833 + 0.989747i \(0.545621\pi\)
\(594\) 0 0
\(595\) 1.18693 2.05583i 0.0486595 0.0842807i
\(596\) 0 0
\(597\) −43.9564 −1.79902
\(598\) 0 0
\(599\) −36.9564 −1.51000 −0.755000 0.655725i \(-0.772363\pi\)
−0.755000 + 0.655725i \(0.772363\pi\)
\(600\) 0 0
\(601\) 6.18693 10.7161i 0.252370 0.437118i −0.711808 0.702374i \(-0.752123\pi\)
0.964178 + 0.265256i \(0.0854566\pi\)
\(602\) 0 0
\(603\) 33.5390 1.36581
\(604\) 0 0
\(605\) 4.10436 + 7.10895i 0.166866 + 0.289020i
\(606\) 0 0
\(607\) 10.8739 + 18.8341i 0.441357 + 0.764452i 0.997790 0.0664400i \(-0.0211641\pi\)
−0.556434 + 0.830892i \(0.687831\pi\)
\(608\) 0 0
\(609\) −9.47822 + 16.4168i −0.384077 + 0.665241i
\(610\) 0 0
\(611\) −15.4129 + 16.0175i −0.623538 + 0.648000i
\(612\) 0 0
\(613\) 10.0608 17.4258i 0.406352 0.703822i −0.588126 0.808769i \(-0.700134\pi\)
0.994478 + 0.104947i \(0.0334674\pi\)
\(614\) 0 0
\(615\) −8.37386 14.5040i −0.337667 0.584856i
\(616\) 0 0
\(617\) −1.33485 2.31203i −0.0537390 0.0930786i 0.837905 0.545817i \(-0.183781\pi\)
−0.891644 + 0.452738i \(0.850447\pi\)
\(618\) 0 0
\(619\) 34.0000 1.36658 0.683288 0.730149i \(-0.260549\pi\)
0.683288 + 0.730149i \(0.260549\pi\)
\(620\) 0 0
\(621\) 15.0000 25.9808i 0.601929 1.04257i
\(622\) 0 0
\(623\) −8.37386 −0.335492
\(624\) 0 0
\(625\) 16.0000 0.640000
\(626\) 0 0
\(627\) 7.03901 12.1919i 0.281111 0.486899i
\(628\) 0 0
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −14.5608 25.2200i −0.579656 1.00399i −0.995519 0.0945663i \(-0.969854\pi\)
0.415862 0.909428i \(-0.363480\pi\)
\(632\) 0 0
\(633\) −18.1434 31.4252i −0.721134 1.24904i
\(634\) 0 0
\(635\) −6.08258 + 10.5353i −0.241380 + 0.418082i
\(636\) 0 0
\(637\) 1.00000 + 3.46410i 0.0396214 + 0.137253i
\(638\) 0 0
\(639\) −3.79129 + 6.56670i −0.149981 + 0.259775i
\(640\) 0 0
\(641\) −20.0608 34.7463i −0.792354 1.37240i −0.924506 0.381168i \(-0.875522\pi\)
0.132152 0.991229i \(-0.457811\pi\)
\(642\) 0 0
\(643\) −11.8739 20.5661i −0.468259 0.811049i 0.531083 0.847320i \(-0.321785\pi\)
−0.999342 + 0.0362709i \(0.988452\pi\)
\(644\) 0 0
\(645\) 20.7042 0.815226
\(646\) 0 0
\(647\) −9.79129 + 16.9590i −0.384935 + 0.666727i −0.991760 0.128108i \(-0.959110\pi\)
0.606825 + 0.794835i \(0.292443\pi\)
\(648\) 0 0
\(649\) −7.12159 −0.279547
\(650\) 0 0
\(651\) −2.79129 −0.109399
\(652\) 0 0
\(653\) 0.313068 0.542250i 0.0122513 0.0212199i −0.859835 0.510572i \(-0.829434\pi\)
0.872086 + 0.489353i \(0.162767\pi\)
\(654\) 0 0
\(655\) 15.0000 0.586098
\(656\) 0 0
\(657\) −33.5390 58.0913i −1.30848 2.26636i
\(658\) 0 0
\(659\) 10.5826 + 18.3296i 0.412239 + 0.714018i 0.995134 0.0985288i \(-0.0314137\pi\)
−0.582896 + 0.812547i \(0.698080\pi\)
\(660\) 0 0
\(661\) −9.37386 + 16.2360i −0.364601 + 0.631508i −0.988712 0.149828i \(-0.952128\pi\)
0.624111 + 0.781336i \(0.285461\pi\)
\(662\) 0 0
\(663\) 20.9347 21.7559i 0.813035 0.844931i
\(664\) 0 0
\(665\) 2.52178 4.36785i 0.0977904 0.169378i
\(666\) 0 0
\(667\) −20.3739 35.2886i −0.788879 1.36638i
\(668\) 0 0
\(669\) 12.0390 + 20.8522i 0.465455 + 0.806192i
\(670\) 0 0
\(671\) −1.58258 −0.0610947
\(672\) 0 0
\(673\) −10.2477 + 17.7496i −0.395021 + 0.684196i −0.993104 0.117238i \(-0.962596\pi\)
0.598083 + 0.801434i \(0.295929\pi\)
\(674\) 0 0
\(675\) −21.8693 −0.841750
\(676\) 0 0
\(677\) 14.0436 0.539738 0.269869 0.962897i \(-0.413020\pi\)
0.269869 + 0.962897i \(0.413020\pi\)
\(678\) 0 0
\(679\) −2.31307 + 4.00635i −0.0887674 + 0.153750i
\(680\) 0 0
\(681\) 38.3739 1.47049
\(682\) 0 0
\(683\) −15.8739 27.4943i −0.607397 1.05204i −0.991668 0.128821i \(-0.958881\pi\)
0.384271 0.923220i \(-0.374453\pi\)
\(684\) 0 0
\(685\) 0.939205 + 1.62675i 0.0358852 + 0.0621549i
\(686\) 0 0
\(687\) 37.3303 64.6580i 1.42424 2.46686i
\(688\) 0 0
\(689\) −3.54356 + 3.68258i −0.134999 + 0.140295i
\(690\) 0 0
\(691\) 2.81307 4.87238i 0.107014 0.185354i −0.807545 0.589806i \(-0.799204\pi\)
0.914559 + 0.404452i \(0.132538\pi\)
\(692\) 0 0
\(693\) −1.89564 3.28335i −0.0720096 0.124724i
\(694\) 0 0
\(695\) 5.29129 + 9.16478i 0.200710 + 0.347640i
\(696\) 0 0
\(697\) 22.7477 0.861632
\(698\) 0 0
\(699\) 39.0172 67.5798i 1.47577 2.55610i
\(700\) 0 0
\(701\) −34.7477 −1.31240 −0.656202 0.754585i \(-0.727838\pi\)
−0.656202 + 0.754585i \(0.727838\pi\)
\(702\) 0 0
\(703\) −25.4955 −0.961579
\(704\) 0 0
\(705\) 6.80852 11.7927i 0.256424 0.444139i
\(706\) 0 0
\(707\) −17.5390 −0.659623
\(708\) 0 0
\(709\) 12.8131 + 22.1929i 0.481205 + 0.833471i 0.999767 0.0215684i \(-0.00686598\pi\)
−0.518562 + 0.855040i \(0.673533\pi\)
\(710\) 0 0
\(711\) −9.58258 16.5975i −0.359375 0.622455i
\(712\) 0 0
\(713\) 3.00000 5.19615i 0.112351 0.194597i
\(714\) 0 0
\(715\) −0.626136 2.16900i −0.0234162 0.0811160i
\(716\) 0 0
\(717\) −34.1869 + 59.2135i −1.27673 + 2.21137i
\(718\) 0 0
\(719\) 24.4129 + 42.2843i 0.910447 + 1.57694i 0.813434 + 0.581657i \(0.197595\pi\)
0.0970125 + 0.995283i \(0.469071\pi\)
\(720\) 0 0
\(721\) 0.500000 + 0.866025i 0.0186210 + 0.0322525i
\(722\) 0 0
\(723\) −9.41742 −0.350238
\(724\) 0 0
\(725\) −14.8521 + 25.7246i −0.551593 + 0.955386i
\(726\) 0 0
\(727\) 28.4955 1.05684 0.528419 0.848984i \(-0.322785\pi\)
0.528419 + 0.848984i \(0.322785\pi\)
\(728\) 0 0
\(729\) −43.8693 −1.62479
\(730\) 0 0
\(731\) −14.0608 + 24.3540i −0.520057 + 0.900766i
\(732\) 0 0
\(733\) −30.8693 −1.14018 −0.570092 0.821581i \(-0.693093\pi\)
−0.570092 + 0.821581i \(0.693093\pi\)
\(734\) 0 0
\(735\) −1.10436 1.91280i −0.0407348 0.0705547i
\(736\) 0 0
\(737\) 2.76951 + 4.79693i 0.102016 + 0.176697i
\(738\) 0 0
\(739\) 21.3739 37.0206i 0.786250 1.36183i −0.141999 0.989867i \(-0.545353\pi\)
0.928249 0.371959i \(-0.121314\pi\)
\(740\) 0 0
\(741\) 44.4782 46.2231i 1.63395 1.69805i
\(742\) 0 0
\(743\) −13.8956 + 24.0680i −0.509782 + 0.882968i 0.490154 + 0.871636i \(0.336941\pi\)
−0.999936 + 0.0113320i \(0.996393\pi\)
\(744\) 0 0
\(745\) −8.68693 15.0462i −0.318265 0.551250i
\(746\) 0 0
\(747\) −21.5608 37.3444i −0.788868 1.36636i
\(748\) 0 0
\(749\) 14.3739 0.525210
\(750\) 0 0
\(751\) 2.50000 4.33013i 0.0912263 0.158009i −0.816801 0.576919i \(-0.804255\pi\)
0.908027 + 0.418911i \(0.137588\pi\)
\(752\) 0 0
\(753\) −12.3303 −0.449341
\(754\) 0 0
\(755\) 5.53901 0.201585
\(756\) 0 0
\(757\) 2.00000 3.46410i 0.0726912 0.125905i −0.827389 0.561630i \(-0.810175\pi\)
0.900080 + 0.435725i \(0.143508\pi\)
\(758\) 0 0
\(759\) 13.2523 0.481027
\(760\) 0 0
\(761\) 10.2695 + 17.7873i 0.372269 + 0.644789i 0.989914 0.141668i \(-0.0452464\pi\)
−0.617645 + 0.786457i \(0.711913\pi\)
\(762\) 0 0
\(763\) 4.87386 + 8.44178i 0.176446 + 0.305613i
\(764\) 0 0
\(765\) −5.68693 + 9.85005i −0.205611 + 0.356129i
\(766\) 0 0
\(767\) −31.5000 7.79423i −1.13740 0.281433i
\(768\) 0 0
\(769\) −17.5000 + 30.3109i −0.631066 + 1.09304i 0.356268 + 0.934384i \(0.384049\pi\)
−0.987334 + 0.158655i \(0.949284\pi\)
\(770\) 0 0
\(771\) 0.873864 + 1.51358i 0.0314714 + 0.0545101i
\(772\) 0 0
\(773\) 21.2477 + 36.8021i 0.764228 + 1.32368i 0.940654 + 0.339367i \(0.110213\pi\)
−0.176426 + 0.984314i \(0.556454\pi\)
\(774\) 0 0
\(775\) −4.37386 −0.157114
\(776\) 0 0
\(777\) −5.58258 + 9.66930i −0.200274 + 0.346884i
\(778\) 0 0
\(779\) 48.3303 1.73161
\(780\) 0 0
\(781\) −1.25227 −0.0448098
\(782\) 0 0
\(783\) 16.9782 29.4071i 0.606752 1.05093i
\(784\) 0 0
\(785\) −3.66061 −0.130653
\(786\) 0 0
\(787\) 7.00000 + 12.1244i 0.249523 + 0.432187i 0.963394 0.268091i \(-0.0863928\pi\)
−0.713871 + 0.700278i \(0.753059\pi\)
\(788\) 0 0
\(789\) −14.7695 25.5815i −0.525808 0.910727i
\(790\) 0 0
\(791\) 3.08258 5.33918i 0.109604 0.189839i
\(792\) 0 0
\(793\) −7.00000 1.73205i −0.248577 0.0615069i
\(794\) 0 0
\(795\) 1.56534 2.71125i 0.0555169 0.0961581i
\(796\) 0 0
\(797\) −24.9564 43.2258i −0.884002 1.53114i −0.846853 0.531827i \(-0.821506\pi\)
−0.0371497 0.999310i \(-0.511828\pi\)
\(798\) 0 0
\(799\) 9.24773 + 16.0175i 0.327161 + 0.566660i
\(800\) 0 0
\(801\) 40.1216 1.41763
\(802\) 0 0
\(803\) 5.53901 9.59386i 0.195468 0.338560i
\(804\) 0 0
\(805\) 4.74773 0.167335
\(806\) 0 0
\(807\) −65.2432 −2.29667
\(808\) 0 0
\(809\) −3.08258 + 5.33918i −0.108378 + 0.187715i −0.915113 0.403197i \(-0.867899\pi\)
0.806736 + 0.590913i \(0.201232\pi\)
\(810\) 0 0
\(811\) −25.8693 −0.908395 −0.454197 0.890901i \(-0.650074\pi\)
−0.454197 + 0.890901i \(0.650074\pi\)
\(812\) 0 0
\(813\) 5.23049 + 9.05948i 0.183441 + 0.317730i
\(814\) 0 0
\(815\) −8.20871 14.2179i −0.287539 0.498032i
\(816\) 0 0
\(817\) −29.8739 + 51.7430i −1.04515 + 1.81026i
\(818\) 0 0
\(819\) −4.79129 16.5975i −0.167421 0.579964i
\(820\) 0 0
\(821\) −16.5000 + 28.5788i −0.575854 + 0.997408i 0.420094 + 0.907480i \(0.361997\pi\)
−0.995948 + 0.0899279i \(0.971336\pi\)
\(822\) 0 0
\(823\) 9.12614 + 15.8069i 0.318117 + 0.550995i 0.980095 0.198528i \(-0.0636161\pi\)
−0.661978 + 0.749523i \(0.730283\pi\)
\(824\) 0 0
\(825\) −4.83030 8.36633i −0.168170 0.291278i
\(826\) 0 0
\(827\) −4.12159 −0.143322 −0.0716609 0.997429i \(-0.522830\pi\)
−0.0716609 + 0.997429i \(0.522830\pi\)
\(828\) 0 0
\(829\) 21.1869 36.6968i 0.735853 1.27453i −0.218496 0.975838i \(-0.570115\pi\)
0.954348 0.298696i \(-0.0965517\pi\)
\(830\) 0 0
\(831\) 90.7042 3.14649
\(832\) 0 0
\(833\) 3.00000 0.103944
\(834\) 0 0
\(835\) −7.18693 + 12.4481i −0.248714 + 0.430785i
\(836\) 0 0
\(837\) 5.00000 0.172825
\(838\) 0 0
\(839\) 13.0218 + 22.5544i 0.449562 + 0.778664i 0.998357 0.0572927i \(-0.0182468\pi\)
−0.548796 + 0.835957i \(0.684913\pi\)
\(840\) 0 0
\(841\) −8.56080 14.8277i −0.295200 0.511301i
\(842\) 0 0
\(843\) 31.7477 54.9887i 1.09345 1.89391i
\(844\) 0 0
\(845\) −0.395644 10.2791i −0.0136106 0.353613i
\(846\) 0 0
\(847\) −5.18693 + 8.98403i −0.178225 + 0.308695i
\(848\) 0 0
\(849\) 36.2867 + 62.8505i 1.24536 + 2.15702i
\(850\) 0 0
\(851\) −12.0000 20.7846i −0.411355 0.712487i
\(852\) 0 0
\(853\) 9.74773 0.333756 0.166878 0.985978i \(-0.446631\pi\)
0.166878 + 0.985978i \(0.446631\pi\)
\(854\) 0 0
\(855\) −12.0826 + 20.9276i −0.413215 + 0.715710i
\(856\) 0 0
\(857\) 20.2087 0.690316 0.345158 0.938545i \(-0.387825\pi\)
0.345158 + 0.938545i \(0.387825\pi\)
\(858\) 0 0
\(859\) −14.0000 −0.477674 −0.238837 0.971060i \(-0.576766\pi\)
−0.238837 + 0.971060i \(0.576766\pi\)
\(860\) 0 0
\(861\) 10.5826 18.3296i 0.360653 0.624670i
\(862\) 0 0
\(863\) 2.83485 0.0964994 0.0482497 0.998835i \(-0.484636\pi\)
0.0482497 + 0.998835i \(0.484636\pi\)
\(864\) 0 0
\(865\) −6.06534 10.5055i −0.206228 0.357197i
\(866\) 0 0
\(867\) 11.1652 + 19.3386i 0.379188 + 0.656774i
\(868\) 0 0
\(869\) 1.58258 2.74110i 0.0536852 0.0929855i
\(870\) 0 0
\(871\) 7.00000 + 24.2487i 0.237186 + 0.821636i
\(872\) 0 0
\(873\) 11.0826 19.1956i 0.375088 0.649672i
\(874\) 0 0
\(875\) −3.70871 6.42368i −0.125377 0.217160i
\(876\) 0 0
\(877\) 11.8739 + 20.5661i 0.400952 + 0.694469i 0.993841 0.110815i \(-0.0353461\pi\)
−0.592889 + 0.805284i \(0.702013\pi\)
\(878\) 0 0
\(879\) −37.9129 −1.27877
\(880\) 0 0
\(881\) 3.70871 6.42368i 0.124950 0.216419i −0.796764 0.604291i \(-0.793456\pi\)
0.921713 + 0.387872i \(0.126790\pi\)
\(882\) 0 0
\(883\) 29.7477 1.00109 0.500545 0.865710i \(-0.333133\pi\)
0.500545 + 0.865710i \(0.333133\pi\)
\(884\) 0 0
\(885\) 19.8784 0.668205
\(886\) 0 0
\(887\) −12.6261 + 21.8691i −0.423944 + 0.734293i −0.996321 0.0856977i \(-0.972688\pi\)
0.572377 + 0.819991i \(0.306021\pi\)
\(888\) 0 0
\(889\) −15.3739 −0.515623
\(890\) 0 0
\(891\) −0.165151 0.286051i −0.00553278 0.00958306i
\(892\) 0 0
\(893\) 19.6479 + 34.0312i 0.657492 + 1.13881i
\(894\) 0 0
\(895\) −1.81307 + 3.14033i −0.0606042 + 0.104970i
\(896\) 0 0
\(897\) 58.6170 + 14.5040i 1.95717 + 0.484273i
\(898\) 0 0
\(899\) 3.39564 5.88143i 0.113251 0.196157i
\(900\) 0 0
\(901\) 2.12614 + 3.68258i 0.0708319 + 0.122684i
\(902\) 0 0
\(903\) 13.0826 + 22.6597i 0.435361 + 0.754067i
\(904\) 0 0
\(905\) −2.17424 −0.0722743
\(906\) 0 0
\(907\) 25.4955 44.1594i 0.846563 1.46629i −0.0376945 0.999289i \(-0.512001\pi\)
0.884257 0.467000i \(-0.154665\pi\)
\(908\) 0 0
\(909\) 84.0345 2.78725
\(910\) 0 0
\(911\) −32.3739 −1.07259 −0.536297 0.844029i \(-0.680177\pi\)
−0.536297 + 0.844029i \(0.680177\pi\)
\(912\) 0 0
\(913\) 3.56080 6.16748i 0.117845 0.204114i
\(914\) 0 0
\(915\) 4.41742 0.146036
\(916\) 0 0
\(917\) 9.47822 + 16.4168i 0.312998 + 0.542129i
\(918\) 0 0
\(919\) 5.74773 + 9.95536i 0.189600 + 0.328397i 0.945117 0.326732i \(-0.105948\pi\)
−0.755517 + 0.655129i \(0.772614\pi\)
\(920\) 0 0
\(921\) −19.7087 + 34.1365i −0.649424 + 1.12484i
\(922\) 0 0
\(923\) −5.53901 1.37055i −0.182319 0.0451122i
\(924\) 0 0
\(925\) −8.74773 + 15.1515i −0.287623 + 0.498179i
\(926\) 0 0
\(927\) −2.39564 4.14938i −0.0786833 0.136283i
\(928\) 0 0
\(929\) −23.2913 40.3417i −0.764162 1.32357i −0.940688 0.339272i \(-0.889819\pi\)
0.176526 0.984296i \(-0.443514\pi\)
\(930\) 0 0
\(931\) 6.37386 0.208895
\(932\) 0 0
\(933\) 26.4564 45.8239i 0.866145 1.50021i
\(934\) 0 0
\(935\) −1.87841 −0.0614306
\(936\) 0 0
\(937\) −17.7477 −0.579793 −0.289896 0.957058i \(-0.593621\pi\)
−0.289896 + 0.957058i \(0.593621\pi\)
\(938\) 0 0
\(939\) −9.41742 + 16.3115i −0.307326 + 0.532304i
\(940\) 0 0
\(941\) 38.0780 1.24131 0.620654 0.784084i \(-0.286867\pi\)
0.620654 + 0.784084i \(0.286867\pi\)
\(942\) 0 0
\(943\) 22.7477 + 39.4002i 0.740768 + 1.28305i
\(944\) 0 0
\(945\) 1.97822 + 3.42638i 0.0643515 + 0.111460i
\(946\) 0 0
\(947\) −16.1869 + 28.0366i −0.526005 + 0.911067i 0.473536 + 0.880774i \(0.342977\pi\)
−0.999541 + 0.0302925i \(0.990356\pi\)
\(948\) 0 0
\(949\) 35.0000 36.3731i 1.13615 1.18072i
\(950\) 0 0
\(951\) 23.1434 40.0855i 0.750475 1.29986i
\(952\) 0 0
\(953\) −4.33485 7.50818i −0.140420 0.243214i 0.787235 0.616653i \(-0.211512\pi\)
−0.927655 + 0.373439i \(0.878178\pi\)
\(954\) 0 0
\(955\) −4.56534 7.90740i −0.147731 0.255878i
\(956\) 0 0
\(957\) 15.0000 0.484881
\(958\) 0 0
\(959\) −1.18693 + 2.05583i −0.0383280 + 0.0663861i
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) 0 0
\(963\) −68.8693 −2.21928
\(964\) 0 0
\(965\) 3.95644 6.85275i 0.127362 0.220598i
\(966\) 0 0
\(967\) −3.74773 −0.120519 −0.0602594 0.998183i \(-0.519193\pi\)
−0.0602594 + 0.998183i \(0.519193\pi\)
\(968\) 0 0
\(969\) −26.6869 46.2231i −0.857308 1.48490i
\(970\) 0 0
\(971\) −15.7087 27.2083i −0.504117 0.873156i −0.999989 0.00475994i \(-0.998485\pi\)
0.495872 0.868396i \(-0.334848\pi\)
\(972\) 0 0
\(973\) −6.68693 + 11.5821i −0.214373 + 0.371305i
\(974\) 0 0
\(975\) −12.2087 42.2922i −0.390992 1.35444i
\(976\) 0 0
\(977\) 24.4129 42.2843i 0.781037 1.35280i −0.150301 0.988640i \(-0.548024\pi\)
0.931338 0.364156i \(-0.118642\pi\)
\(978\) 0 0
\(979\) 3.31307 + 5.73840i 0.105886 + 0.183400i
\(980\) 0 0
\(981\) −23.3521 40.4470i −0.745575 1.29137i
\(982\) 0 0
\(983\) 14.5390 0.463723 0.231861 0.972749i \(-0.425518\pi\)
0.231861 + 0.972749i \(0.425518\pi\)
\(984\) 0 0
\(985\) 0.313068 0.542250i 0.00997518 0.0172775i
\(986\) 0 0
\(987\) 17.2087 0.547759
\(988\) 0 0
\(989\) −56.2432 −1.78843
\(990\) 0 0
\(991\) 11.8131 20.4608i 0.375254 0.649960i −0.615111 0.788441i \(-0.710889\pi\)
0.990365 + 0.138481i \(0.0442220\pi\)
\(992\) 0 0
\(993\) −75.7042 −2.40240
\(994\) 0 0
\(995\) 6.23049 + 10.7915i 0.197520 + 0.342114i
\(996\) 0 0
\(997\) −17.5000 30.3109i −0.554231 0.959955i −0.997963 0.0637961i \(-0.979679\pi\)
0.443732 0.896159i \(-0.353654\pi\)
\(998\) 0 0
\(999\) 10.0000 17.3205i 0.316386 0.547997i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1456.2.s.k.113.1 4
4.3 odd 2 364.2.k.d.113.2 yes 4
12.11 even 2 3276.2.z.e.3025.1 4
13.3 even 3 inner 1456.2.s.k.1121.1 4
28.3 even 6 2548.2.l.l.373.2 4
28.11 odd 6 2548.2.l.j.373.1 4
28.19 even 6 2548.2.i.i.165.1 4
28.23 odd 6 2548.2.i.k.165.2 4
28.27 even 2 2548.2.k.e.1569.1 4
52.3 odd 6 364.2.k.d.29.2 4
52.7 even 12 4732.2.g.e.337.2 4
52.19 even 12 4732.2.g.e.337.1 4
52.35 odd 6 4732.2.a.g.1.1 2
52.43 odd 6 4732.2.a.h.1.1 2
156.107 even 6 3276.2.z.e.757.1 4
364.3 even 6 2548.2.i.i.1745.1 4
364.55 even 6 2548.2.k.e.393.1 4
364.107 odd 6 2548.2.l.j.1537.1 4
364.159 even 6 2548.2.l.l.1537.2 4
364.263 odd 6 2548.2.i.k.1745.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.k.d.29.2 4 52.3 odd 6
364.2.k.d.113.2 yes 4 4.3 odd 2
1456.2.s.k.113.1 4 1.1 even 1 trivial
1456.2.s.k.1121.1 4 13.3 even 3 inner
2548.2.i.i.165.1 4 28.19 even 6
2548.2.i.i.1745.1 4 364.3 even 6
2548.2.i.k.165.2 4 28.23 odd 6
2548.2.i.k.1745.2 4 364.263 odd 6
2548.2.k.e.393.1 4 364.55 even 6
2548.2.k.e.1569.1 4 28.27 even 2
2548.2.l.j.373.1 4 28.11 odd 6
2548.2.l.j.1537.1 4 364.107 odd 6
2548.2.l.l.373.2 4 28.3 even 6
2548.2.l.l.1537.2 4 364.159 even 6
3276.2.z.e.757.1 4 156.107 even 6
3276.2.z.e.3025.1 4 12.11 even 2
4732.2.a.g.1.1 2 52.35 odd 6
4732.2.a.h.1.1 2 52.43 odd 6
4732.2.g.e.337.1 4 52.19 even 12
4732.2.g.e.337.2 4 52.7 even 12