Properties

Label 1456.2.s
Level $1456$
Weight $2$
Character orbit 1456.s
Rep. character $\chi_{1456}(113,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $84$
Newform subspaces $19$
Sturm bound $448$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1456 = 2^{4} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1456.s (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 19 \)
Sturm bound: \(448\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1456, [\chi])\).

Total New Old
Modular forms 472 84 388
Cusp forms 424 84 340
Eisenstein series 48 0 48

Trace form

\( 84 q + 4 q^{5} - 42 q^{9} + 2 q^{13} + 2 q^{17} + 12 q^{23} + 80 q^{25} + 24 q^{27} - 2 q^{29} - 12 q^{35} - 10 q^{37} - 36 q^{39} + 2 q^{41} + 4 q^{43} - 10 q^{45} + 48 q^{47} - 42 q^{49} + 24 q^{51} + 4 q^{53}+ \cdots - 152 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1456, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1456.2.s.a 1456.s 13.c $2$ $11.626$ \(\Q(\sqrt{-3}) \) None 182.2.g.c \(0\) \(-2\) \(-6\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2+2\zeta_{6})q^{3}-3q^{5}+\zeta_{6}q^{7}-\zeta_{6}q^{9}+\cdots\)
1456.2.s.b 1456.s 13.c $2$ $11.626$ \(\Q(\sqrt{-3}) \) None 182.2.g.d \(0\) \(-2\) \(2\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2+2\zeta_{6})q^{3}+q^{5}-\zeta_{6}q^{7}-\zeta_{6}q^{9}+\cdots\)
1456.2.s.c 1456.s 13.c $2$ $11.626$ \(\Q(\sqrt{-3}) \) None 364.2.k.a \(0\) \(0\) \(-2\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{5}-\zeta_{6}q^{7}+3\zeta_{6}q^{9}+(-2+2\zeta_{6})q^{11}+\cdots\)
1456.2.s.d 1456.s 13.c $2$ $11.626$ \(\Q(\sqrt{-3}) \) None 364.2.k.b \(0\) \(0\) \(6\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+3q^{5}+\zeta_{6}q^{7}+3\zeta_{6}q^{9}+(-2+2\zeta_{6})q^{11}+\cdots\)
1456.2.s.e 1456.s 13.c $2$ $11.626$ \(\Q(\sqrt{-3}) \) None 182.2.g.b \(0\) \(1\) \(6\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{3}+3q^{5}+\zeta_{6}q^{7}+2\zeta_{6}q^{9}+\cdots\)
1456.2.s.f 1456.s 13.c $2$ $11.626$ \(\Q(\sqrt{-3}) \) None 728.2.s.a \(0\) \(2\) \(2\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-2\zeta_{6})q^{3}+q^{5}+\zeta_{6}q^{7}-\zeta_{6}q^{9}+\cdots\)
1456.2.s.g 1456.s 13.c $2$ $11.626$ \(\Q(\sqrt{-3}) \) None 182.2.g.a \(0\) \(3\) \(-6\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(3-3\zeta_{6})q^{3}-3q^{5}+\zeta_{6}q^{7}-6\zeta_{6}q^{9}+\cdots\)
1456.2.s.h 1456.s 13.c $4$ $11.626$ \(\Q(\sqrt{-3}, \sqrt{5})\) None 91.2.f.a \(0\) \(-3\) \(6\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{1}-\beta _{3})q^{3}+(1-\beta _{2})q^{5}+\cdots\)
1456.2.s.i 1456.s 13.c $4$ $11.626$ \(\Q(\zeta_{12})\) None 728.2.s.c \(0\) \(-2\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta_{2}-\beta_1)q^{3}-\beta_{3} q^{5}+(\beta_1-1)q^{7}+\cdots\)
1456.2.s.j 1456.s 13.c $4$ $11.626$ \(\Q(\zeta_{12})\) None 728.2.s.d \(0\) \(-2\) \(8\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{3}+(2+2\zeta_{12}+\cdots)q^{5}+\cdots\)
1456.2.s.k 1456.s 13.c $4$ $11.626$ \(\Q(\sqrt{-3}, \sqrt{-7})\) None 364.2.k.d \(0\) \(-1\) \(-6\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{3}q^{3}+(-2+\beta _{2})q^{5}-\beta _{1}q^{7}+(2\beta _{1}+\cdots)q^{9}+\cdots\)
1456.2.s.l 1456.s 13.c $4$ $11.626$ \(\Q(\zeta_{12})\) None 182.2.g.e \(0\) \(0\) \(8\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta_{2} q^{3}+(-\beta_{3}+2)q^{5}+(\beta_1-1)q^{7}+\cdots\)
1456.2.s.m 1456.s 13.c $4$ $11.626$ \(\Q(\sqrt{-3}, \sqrt{13})\) None 364.2.k.c \(0\) \(1\) \(6\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{3}+(1+\beta _{3})q^{5}+\beta _{2}q^{7}+(-1+\cdots)q^{9}+\cdots\)
1456.2.s.n 1456.s 13.c $4$ $11.626$ \(\Q(\sqrt{-3}, \sqrt{5})\) None 728.2.s.b \(0\) \(1\) \(10\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{3}+(2-\beta _{2})q^{5}+\beta _{3}q^{7}+(\beta _{1}+\cdots)q^{9}+\cdots\)
1456.2.s.o 1456.s 13.c $4$ $11.626$ \(\Q(\zeta_{12})\) None 91.2.f.b \(0\) \(2\) \(0\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta_{2}+\beta_1)q^{3}-\beta_{3} q^{5}+(-\beta_1+1)q^{7}+\cdots\)
1456.2.s.p 1456.s 13.c $8$ $11.626$ 8.0.\(\cdots\).1 None 728.2.s.f \(0\) \(-3\) \(-10\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}+\beta _{4})q^{3}+(-1-\beta _{6})q^{5}+(1+\beta _{4}+\cdots)q^{7}+\cdots\)
1456.2.s.q 1456.s 13.c $8$ $11.626$ 8.0.\(\cdots\).1 None 91.2.f.c \(0\) \(1\) \(-14\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{5}+\beta _{6})q^{3}+(-2-\beta _{3})q^{5}+\beta _{4}q^{7}+\cdots\)
1456.2.s.r 1456.s 13.c $8$ $11.626$ 8.0.4277552409.3 None 728.2.s.e \(0\) \(3\) \(-10\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}+\beta _{3})q^{3}+(-1+\beta _{1}+\beta _{7})q^{5}+\cdots\)
1456.2.s.s 1456.s 13.c $14$ $11.626$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 728.2.s.g \(0\) \(1\) \(4\) \(-7\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}+\beta _{2})q^{3}+\beta _{4}q^{5}-\beta _{7}q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1456, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1456, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(182, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(364, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(728, [\chi])\)\(^{\oplus 2}\)