Properties

Label 1456.2.r.k
Level $1456$
Weight $2$
Character orbit 1456.r
Analytic conductor $11.626$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1456,2,Mod(417,1456)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1456.417"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1456, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1456 = 2^{4} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1456.r (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6262185343\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (2 \beta_{2} + 2) q^{3} + (\beta_{3} + \beta_1) q^{7} + \beta_{2} q^{9} + ( - 2 \beta_{2} + \beta_1 - 2) q^{11} - q^{13} + ( - \beta_{2} - 1) q^{17} + (\beta_{3} + 2 \beta_{2} + \beta_1) q^{19} + 2 \beta_{3} q^{21}+ \cdots + (\beta_{3} + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 2 q^{9} - 4 q^{11} - 4 q^{13} - 2 q^{17} - 4 q^{19} + 4 q^{23} + 10 q^{25} + 16 q^{27} - 4 q^{29} - 8 q^{31} + 8 q^{33} + 8 q^{37} - 4 q^{39} - 16 q^{41} - 8 q^{43} - 16 q^{47} - 14 q^{49}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 7x^{2} + 49 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 7 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 7\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 7\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1456\mathbb{Z}\right)^\times\).

\(n\) \(561\) \(911\) \(1093\) \(1249\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
417.1
1.32288 2.29129i
−1.32288 + 2.29129i
1.32288 + 2.29129i
−1.32288 2.29129i
0 1.00000 1.73205i 0 0 0 −1.32288 2.29129i 0 −0.500000 0.866025i 0
417.2 0 1.00000 1.73205i 0 0 0 1.32288 + 2.29129i 0 −0.500000 0.866025i 0
625.1 0 1.00000 + 1.73205i 0 0 0 −1.32288 + 2.29129i 0 −0.500000 + 0.866025i 0
625.2 0 1.00000 + 1.73205i 0 0 0 1.32288 2.29129i 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1456.2.r.k 4
4.b odd 2 1 728.2.r.d 4
7.c even 3 1 inner 1456.2.r.k 4
28.f even 6 1 5096.2.a.l 2
28.g odd 6 1 728.2.r.d 4
28.g odd 6 1 5096.2.a.p 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
728.2.r.d 4 4.b odd 2 1
728.2.r.d 4 28.g odd 6 1
1456.2.r.k 4 1.a even 1 1 trivial
1456.2.r.k 4 7.c even 3 1 inner
5096.2.a.l 2 28.f even 6 1
5096.2.a.p 2 28.g odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1456, [\chi])\):

\( T_{3}^{2} - 2T_{3} + 4 \) Copy content Toggle raw display
\( T_{5} \) Copy content Toggle raw display
\( T_{11}^{4} + 4T_{11}^{3} + 19T_{11}^{2} - 12T_{11} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 7T^{2} + 49 \) Copy content Toggle raw display
$11$ \( T^{4} + 4 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$13$ \( (T + 1)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 4 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$23$ \( T^{4} - 4 T^{3} + \cdots + 576 \) Copy content Toggle raw display
$29$ \( (T^{2} + 2 T - 27)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 8 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$37$ \( T^{4} - 8 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$41$ \( (T^{2} + 8 T - 12)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 4 T - 24)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 16 T^{3} + \cdots + 3249 \) Copy content Toggle raw display
$53$ \( T^{4} - 10 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$59$ \( T^{4} - 4 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$61$ \( T^{4} + 6 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$67$ \( T^{4} + 4 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$71$ \( (T^{2} - 8 T - 47)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} - 16 T^{3} + \cdots + 1296 \) Copy content Toggle raw display
$83$ \( (T^{2} - 28)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 28T^{2} + 784 \) Copy content Toggle raw display
$97$ \( (T^{2} - 4 T - 248)^{2} \) Copy content Toggle raw display
show more
show less