Defining parameters
Level: | \( N \) | \(=\) | \( 1456 = 2^{4} \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1456.r (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 18 \) | ||
Sturm bound: | \(448\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1456, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 472 | 96 | 376 |
Cusp forms | 424 | 96 | 328 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1456, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1456, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1456, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(182, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(364, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(728, [\chi])\)\(^{\oplus 2}\)