Properties

Label 1456.2.r.e.417.1
Level $1456$
Weight $2$
Character 1456.417
Analytic conductor $11.626$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1456,2,Mod(417,1456)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1456, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1456.417"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1456 = 2^{4} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1456.r (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-1,0,3,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6262185343\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 417.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1456.417
Dual form 1456.2.r.e.625.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} +(1.50000 + 2.59808i) q^{5} +(2.00000 - 1.73205i) q^{7} +(1.00000 + 1.73205i) q^{9} +(-1.50000 + 2.59808i) q^{11} -1.00000 q^{13} -3.00000 q^{15} +(-3.50000 + 6.06218i) q^{17} +(-0.500000 - 0.866025i) q^{19} +(0.500000 + 2.59808i) q^{21} +(0.500000 + 0.866025i) q^{23} +(-2.00000 + 3.46410i) q^{25} -5.00000 q^{27} -2.00000 q^{29} +(4.50000 - 7.79423i) q^{31} +(-1.50000 - 2.59808i) q^{33} +(7.50000 + 2.59808i) q^{35} +(1.50000 + 2.59808i) q^{37} +(0.500000 - 0.866025i) q^{39} +10.0000 q^{41} -4.00000 q^{43} +(-3.00000 + 5.19615i) q^{45} +(1.50000 + 2.59808i) q^{47} +(1.00000 - 6.92820i) q^{49} +(-3.50000 - 6.06218i) q^{51} +(0.500000 - 0.866025i) q^{53} -9.00000 q^{55} +1.00000 q^{57} +(-5.50000 + 9.52628i) q^{59} +(0.500000 + 0.866025i) q^{61} +(5.00000 + 1.73205i) q^{63} +(-1.50000 - 2.59808i) q^{65} +(-3.50000 + 6.06218i) q^{67} -1.00000 q^{69} -8.00000 q^{71} +(3.50000 - 6.06218i) q^{73} +(-2.00000 - 3.46410i) q^{75} +(1.50000 + 7.79423i) q^{77} +(-5.50000 - 9.52628i) q^{79} +(-0.500000 + 0.866025i) q^{81} +4.00000 q^{83} -21.0000 q^{85} +(1.00000 - 1.73205i) q^{87} +(-0.500000 - 0.866025i) q^{89} +(-2.00000 + 1.73205i) q^{91} +(4.50000 + 7.79423i) q^{93} +(1.50000 - 2.59808i) q^{95} +2.00000 q^{97} -6.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + 3 q^{5} + 4 q^{7} + 2 q^{9} - 3 q^{11} - 2 q^{13} - 6 q^{15} - 7 q^{17} - q^{19} + q^{21} + q^{23} - 4 q^{25} - 10 q^{27} - 4 q^{29} + 9 q^{31} - 3 q^{33} + 15 q^{35} + 3 q^{37} + q^{39}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1456\mathbb{Z}\right)^\times\).

\(n\) \(561\) \(911\) \(1093\) \(1249\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i −0.973494 0.228714i \(-0.926548\pi\)
0.684819 + 0.728714i \(0.259881\pi\)
\(4\) 0 0
\(5\) 1.50000 + 2.59808i 0.670820 + 1.16190i 0.977672 + 0.210138i \(0.0673912\pi\)
−0.306851 + 0.951757i \(0.599275\pi\)
\(6\) 0 0
\(7\) 2.00000 1.73205i 0.755929 0.654654i
\(8\) 0 0
\(9\) 1.00000 + 1.73205i 0.333333 + 0.577350i
\(10\) 0 0
\(11\) −1.50000 + 2.59808i −0.452267 + 0.783349i −0.998526 0.0542666i \(-0.982718\pi\)
0.546259 + 0.837616i \(0.316051\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −3.00000 −0.774597
\(16\) 0 0
\(17\) −3.50000 + 6.06218i −0.848875 + 1.47029i 0.0333386 + 0.999444i \(0.489386\pi\)
−0.882213 + 0.470850i \(0.843947\pi\)
\(18\) 0 0
\(19\) −0.500000 0.866025i −0.114708 0.198680i 0.802955 0.596040i \(-0.203260\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 0 0
\(21\) 0.500000 + 2.59808i 0.109109 + 0.566947i
\(22\) 0 0
\(23\) 0.500000 + 0.866025i 0.104257 + 0.180579i 0.913434 0.406986i \(-0.133420\pi\)
−0.809177 + 0.587565i \(0.800087\pi\)
\(24\) 0 0
\(25\) −2.00000 + 3.46410i −0.400000 + 0.692820i
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 4.50000 7.79423i 0.808224 1.39988i −0.105869 0.994380i \(-0.533762\pi\)
0.914093 0.405505i \(-0.132904\pi\)
\(32\) 0 0
\(33\) −1.50000 2.59808i −0.261116 0.452267i
\(34\) 0 0
\(35\) 7.50000 + 2.59808i 1.26773 + 0.439155i
\(36\) 0 0
\(37\) 1.50000 + 2.59808i 0.246598 + 0.427121i 0.962580 0.270998i \(-0.0873538\pi\)
−0.715981 + 0.698119i \(0.754020\pi\)
\(38\) 0 0
\(39\) 0.500000 0.866025i 0.0800641 0.138675i
\(40\) 0 0
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) −3.00000 + 5.19615i −0.447214 + 0.774597i
\(46\) 0 0
\(47\) 1.50000 + 2.59808i 0.218797 + 0.378968i 0.954441 0.298401i \(-0.0964533\pi\)
−0.735643 + 0.677369i \(0.763120\pi\)
\(48\) 0 0
\(49\) 1.00000 6.92820i 0.142857 0.989743i
\(50\) 0 0
\(51\) −3.50000 6.06218i −0.490098 0.848875i
\(52\) 0 0
\(53\) 0.500000 0.866025i 0.0686803 0.118958i −0.829640 0.558298i \(-0.811454\pi\)
0.898321 + 0.439340i \(0.144788\pi\)
\(54\) 0 0
\(55\) −9.00000 −1.21356
\(56\) 0 0
\(57\) 1.00000 0.132453
\(58\) 0 0
\(59\) −5.50000 + 9.52628i −0.716039 + 1.24022i 0.246518 + 0.969138i \(0.420713\pi\)
−0.962557 + 0.271078i \(0.912620\pi\)
\(60\) 0 0
\(61\) 0.500000 + 0.866025i 0.0640184 + 0.110883i 0.896258 0.443533i \(-0.146275\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 0 0
\(63\) 5.00000 + 1.73205i 0.629941 + 0.218218i
\(64\) 0 0
\(65\) −1.50000 2.59808i −0.186052 0.322252i
\(66\) 0 0
\(67\) −3.50000 + 6.06218i −0.427593 + 0.740613i −0.996659 0.0816792i \(-0.973972\pi\)
0.569066 + 0.822292i \(0.307305\pi\)
\(68\) 0 0
\(69\) −1.00000 −0.120386
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) 3.50000 6.06218i 0.409644 0.709524i −0.585206 0.810885i \(-0.698986\pi\)
0.994850 + 0.101361i \(0.0323196\pi\)
\(74\) 0 0
\(75\) −2.00000 3.46410i −0.230940 0.400000i
\(76\) 0 0
\(77\) 1.50000 + 7.79423i 0.170941 + 0.888235i
\(78\) 0 0
\(79\) −5.50000 9.52628i −0.618798 1.07179i −0.989705 0.143120i \(-0.954286\pi\)
0.370907 0.928670i \(-0.379047\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) −21.0000 −2.27777
\(86\) 0 0
\(87\) 1.00000 1.73205i 0.107211 0.185695i
\(88\) 0 0
\(89\) −0.500000 0.866025i −0.0529999 0.0917985i 0.838308 0.545197i \(-0.183545\pi\)
−0.891308 + 0.453398i \(0.850212\pi\)
\(90\) 0 0
\(91\) −2.00000 + 1.73205i −0.209657 + 0.181568i
\(92\) 0 0
\(93\) 4.50000 + 7.79423i 0.466628 + 0.808224i
\(94\) 0 0
\(95\) 1.50000 2.59808i 0.153897 0.266557i
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) −6.00000 −0.603023
\(100\) 0 0
\(101\) −7.50000 + 12.9904i −0.746278 + 1.29259i 0.203317 + 0.979113i \(0.434828\pi\)
−0.949595 + 0.313478i \(0.898506\pi\)
\(102\) 0 0
\(103\) 6.50000 + 11.2583i 0.640464 + 1.10932i 0.985329 + 0.170664i \(0.0545913\pi\)
−0.344865 + 0.938652i \(0.612075\pi\)
\(104\) 0 0
\(105\) −6.00000 + 5.19615i −0.585540 + 0.507093i
\(106\) 0 0
\(107\) 4.50000 + 7.79423i 0.435031 + 0.753497i 0.997298 0.0734594i \(-0.0234039\pi\)
−0.562267 + 0.826956i \(0.690071\pi\)
\(108\) 0 0
\(109\) 3.50000 6.06218i 0.335239 0.580651i −0.648292 0.761392i \(-0.724516\pi\)
0.983531 + 0.180741i \(0.0578495\pi\)
\(110\) 0 0
\(111\) −3.00000 −0.284747
\(112\) 0 0
\(113\) −18.0000 −1.69330 −0.846649 0.532152i \(-0.821383\pi\)
−0.846649 + 0.532152i \(0.821383\pi\)
\(114\) 0 0
\(115\) −1.50000 + 2.59808i −0.139876 + 0.242272i
\(116\) 0 0
\(117\) −1.00000 1.73205i −0.0924500 0.160128i
\(118\) 0 0
\(119\) 3.50000 + 18.1865i 0.320844 + 1.66716i
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) 0 0
\(123\) −5.00000 + 8.66025i −0.450835 + 0.780869i
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) 0 0
\(129\) 2.00000 3.46410i 0.176090 0.304997i
\(130\) 0 0
\(131\) −7.50000 12.9904i −0.655278 1.13497i −0.981824 0.189794i \(-0.939218\pi\)
0.326546 0.945181i \(-0.394115\pi\)
\(132\) 0 0
\(133\) −2.50000 0.866025i −0.216777 0.0750939i
\(134\) 0 0
\(135\) −7.50000 12.9904i −0.645497 1.11803i
\(136\) 0 0
\(137\) 3.50000 6.06218i 0.299025 0.517927i −0.676888 0.736086i \(-0.736672\pi\)
0.975913 + 0.218159i \(0.0700052\pi\)
\(138\) 0 0
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) 0 0
\(141\) −3.00000 −0.252646
\(142\) 0 0
\(143\) 1.50000 2.59808i 0.125436 0.217262i
\(144\) 0 0
\(145\) −3.00000 5.19615i −0.249136 0.431517i
\(146\) 0 0
\(147\) 5.50000 + 4.33013i 0.453632 + 0.357143i
\(148\) 0 0
\(149\) −8.50000 14.7224i −0.696347 1.20611i −0.969724 0.244202i \(-0.921474\pi\)
0.273377 0.961907i \(-0.411859\pi\)
\(150\) 0 0
\(151\) −9.50000 + 16.4545i −0.773099 + 1.33905i 0.162758 + 0.986666i \(0.447961\pi\)
−0.935857 + 0.352381i \(0.885372\pi\)
\(152\) 0 0
\(153\) −14.0000 −1.13183
\(154\) 0 0
\(155\) 27.0000 2.16869
\(156\) 0 0
\(157\) 6.50000 11.2583i 0.518756 0.898513i −0.481006 0.876717i \(-0.659728\pi\)
0.999762 0.0217953i \(-0.00693820\pi\)
\(158\) 0 0
\(159\) 0.500000 + 0.866025i 0.0396526 + 0.0686803i
\(160\) 0 0
\(161\) 2.50000 + 0.866025i 0.197028 + 0.0682524i
\(162\) 0 0
\(163\) 7.50000 + 12.9904i 0.587445 + 1.01749i 0.994566 + 0.104111i \(0.0331996\pi\)
−0.407120 + 0.913375i \(0.633467\pi\)
\(164\) 0 0
\(165\) 4.50000 7.79423i 0.350325 0.606780i
\(166\) 0 0
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 1.00000 1.73205i 0.0764719 0.132453i
\(172\) 0 0
\(173\) 10.5000 + 18.1865i 0.798300 + 1.38270i 0.920722 + 0.390218i \(0.127601\pi\)
−0.122422 + 0.992478i \(0.539066\pi\)
\(174\) 0 0
\(175\) 2.00000 + 10.3923i 0.151186 + 0.785584i
\(176\) 0 0
\(177\) −5.50000 9.52628i −0.413405 0.716039i
\(178\) 0 0
\(179\) 5.50000 9.52628i 0.411089 0.712028i −0.583920 0.811811i \(-0.698482\pi\)
0.995009 + 0.0997838i \(0.0318151\pi\)
\(180\) 0 0
\(181\) 26.0000 1.93256 0.966282 0.257485i \(-0.0828937\pi\)
0.966282 + 0.257485i \(0.0828937\pi\)
\(182\) 0 0
\(183\) −1.00000 −0.0739221
\(184\) 0 0
\(185\) −4.50000 + 7.79423i −0.330847 + 0.573043i
\(186\) 0 0
\(187\) −10.5000 18.1865i −0.767836 1.32993i
\(188\) 0 0
\(189\) −10.0000 + 8.66025i −0.727393 + 0.629941i
\(190\) 0 0
\(191\) 12.5000 + 21.6506i 0.904468 + 1.56658i 0.821629 + 0.570022i \(0.193065\pi\)
0.0828388 + 0.996563i \(0.473601\pi\)
\(192\) 0 0
\(193\) 11.5000 19.9186i 0.827788 1.43377i −0.0719816 0.997406i \(-0.522932\pi\)
0.899770 0.436365i \(-0.143734\pi\)
\(194\) 0 0
\(195\) 3.00000 0.214834
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) −2.50000 + 4.33013i −0.177220 + 0.306955i −0.940927 0.338608i \(-0.890044\pi\)
0.763707 + 0.645563i \(0.223377\pi\)
\(200\) 0 0
\(201\) −3.50000 6.06218i −0.246871 0.427593i
\(202\) 0 0
\(203\) −4.00000 + 3.46410i −0.280745 + 0.243132i
\(204\) 0 0
\(205\) 15.0000 + 25.9808i 1.04765 + 1.81458i
\(206\) 0 0
\(207\) −1.00000 + 1.73205i −0.0695048 + 0.120386i
\(208\) 0 0
\(209\) 3.00000 0.207514
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) 4.00000 6.92820i 0.274075 0.474713i
\(214\) 0 0
\(215\) −6.00000 10.3923i −0.409197 0.708749i
\(216\) 0 0
\(217\) −4.50000 23.3827i −0.305480 1.58732i
\(218\) 0 0
\(219\) 3.50000 + 6.06218i 0.236508 + 0.409644i
\(220\) 0 0
\(221\) 3.50000 6.06218i 0.235435 0.407786i
\(222\) 0 0
\(223\) 8.00000 0.535720 0.267860 0.963458i \(-0.413684\pi\)
0.267860 + 0.963458i \(0.413684\pi\)
\(224\) 0 0
\(225\) −8.00000 −0.533333
\(226\) 0 0
\(227\) 10.5000 18.1865i 0.696909 1.20708i −0.272623 0.962121i \(-0.587891\pi\)
0.969533 0.244962i \(-0.0787754\pi\)
\(228\) 0 0
\(229\) 9.50000 + 16.4545i 0.627778 + 1.08734i 0.987997 + 0.154475i \(0.0493686\pi\)
−0.360219 + 0.932868i \(0.617298\pi\)
\(230\) 0 0
\(231\) −7.50000 2.59808i −0.493464 0.170941i
\(232\) 0 0
\(233\) −1.50000 2.59808i −0.0982683 0.170206i 0.812700 0.582683i \(-0.197997\pi\)
−0.910968 + 0.412477i \(0.864664\pi\)
\(234\) 0 0
\(235\) −4.50000 + 7.79423i −0.293548 + 0.508439i
\(236\) 0 0
\(237\) 11.0000 0.714527
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 9.50000 16.4545i 0.611949 1.05993i −0.378963 0.925412i \(-0.623719\pi\)
0.990912 0.134515i \(-0.0429475\pi\)
\(242\) 0 0
\(243\) −8.00000 13.8564i −0.513200 0.888889i
\(244\) 0 0
\(245\) 19.5000 7.79423i 1.24581 0.497955i
\(246\) 0 0
\(247\) 0.500000 + 0.866025i 0.0318142 + 0.0551039i
\(248\) 0 0
\(249\) −2.00000 + 3.46410i −0.126745 + 0.219529i
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) −3.00000 −0.188608
\(254\) 0 0
\(255\) 10.5000 18.1865i 0.657536 1.13888i
\(256\) 0 0
\(257\) 10.5000 + 18.1865i 0.654972 + 1.13444i 0.981901 + 0.189396i \(0.0606529\pi\)
−0.326929 + 0.945049i \(0.606014\pi\)
\(258\) 0 0
\(259\) 7.50000 + 2.59808i 0.466027 + 0.161437i
\(260\) 0 0
\(261\) −2.00000 3.46410i −0.123797 0.214423i
\(262\) 0 0
\(263\) 7.50000 12.9904i 0.462470 0.801021i −0.536614 0.843828i \(-0.680297\pi\)
0.999083 + 0.0428069i \(0.0136300\pi\)
\(264\) 0 0
\(265\) 3.00000 0.184289
\(266\) 0 0
\(267\) 1.00000 0.0611990
\(268\) 0 0
\(269\) 12.5000 21.6506i 0.762138 1.32006i −0.179608 0.983738i \(-0.557483\pi\)
0.941746 0.336324i \(-0.109184\pi\)
\(270\) 0 0
\(271\) 7.50000 + 12.9904i 0.455593 + 0.789109i 0.998722 0.0505395i \(-0.0160941\pi\)
−0.543130 + 0.839649i \(0.682761\pi\)
\(272\) 0 0
\(273\) −0.500000 2.59808i −0.0302614 0.157243i
\(274\) 0 0
\(275\) −6.00000 10.3923i −0.361814 0.626680i
\(276\) 0 0
\(277\) −3.50000 + 6.06218i −0.210295 + 0.364241i −0.951807 0.306699i \(-0.900776\pi\)
0.741512 + 0.670940i \(0.234109\pi\)
\(278\) 0 0
\(279\) 18.0000 1.07763
\(280\) 0 0
\(281\) −26.0000 −1.55103 −0.775515 0.631329i \(-0.782510\pi\)
−0.775515 + 0.631329i \(0.782510\pi\)
\(282\) 0 0
\(283\) −0.500000 + 0.866025i −0.0297219 + 0.0514799i −0.880504 0.474039i \(-0.842796\pi\)
0.850782 + 0.525519i \(0.176129\pi\)
\(284\) 0 0
\(285\) 1.50000 + 2.59808i 0.0888523 + 0.153897i
\(286\) 0 0
\(287\) 20.0000 17.3205i 1.18056 1.02240i
\(288\) 0 0
\(289\) −16.0000 27.7128i −0.941176 1.63017i
\(290\) 0 0
\(291\) −1.00000 + 1.73205i −0.0586210 + 0.101535i
\(292\) 0 0
\(293\) 14.0000 0.817889 0.408944 0.912559i \(-0.365897\pi\)
0.408944 + 0.912559i \(0.365897\pi\)
\(294\) 0 0
\(295\) −33.0000 −1.92133
\(296\) 0 0
\(297\) 7.50000 12.9904i 0.435194 0.753778i
\(298\) 0 0
\(299\) −0.500000 0.866025i −0.0289157 0.0500835i
\(300\) 0 0
\(301\) −8.00000 + 6.92820i −0.461112 + 0.399335i
\(302\) 0 0
\(303\) −7.50000 12.9904i −0.430864 0.746278i
\(304\) 0 0
\(305\) −1.50000 + 2.59808i −0.0858898 + 0.148765i
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) −13.0000 −0.739544
\(310\) 0 0
\(311\) 7.50000 12.9904i 0.425286 0.736617i −0.571161 0.820838i \(-0.693507\pi\)
0.996447 + 0.0842210i \(0.0268402\pi\)
\(312\) 0 0
\(313\) −9.50000 16.4545i −0.536972 0.930062i −0.999065 0.0432311i \(-0.986235\pi\)
0.462093 0.886831i \(-0.347098\pi\)
\(314\) 0 0
\(315\) 3.00000 + 15.5885i 0.169031 + 0.878310i
\(316\) 0 0
\(317\) 9.50000 + 16.4545i 0.533573 + 0.924176i 0.999231 + 0.0392110i \(0.0124844\pi\)
−0.465658 + 0.884965i \(0.654182\pi\)
\(318\) 0 0
\(319\) 3.00000 5.19615i 0.167968 0.290929i
\(320\) 0 0
\(321\) −9.00000 −0.502331
\(322\) 0 0
\(323\) 7.00000 0.389490
\(324\) 0 0
\(325\) 2.00000 3.46410i 0.110940 0.192154i
\(326\) 0 0
\(327\) 3.50000 + 6.06218i 0.193550 + 0.335239i
\(328\) 0 0
\(329\) 7.50000 + 2.59808i 0.413488 + 0.143237i
\(330\) 0 0
\(331\) 7.50000 + 12.9904i 0.412237 + 0.714016i 0.995134 0.0985303i \(-0.0314141\pi\)
−0.582897 + 0.812546i \(0.698081\pi\)
\(332\) 0 0
\(333\) −3.00000 + 5.19615i −0.164399 + 0.284747i
\(334\) 0 0
\(335\) −21.0000 −1.14735
\(336\) 0 0
\(337\) −18.0000 −0.980522 −0.490261 0.871576i \(-0.663099\pi\)
−0.490261 + 0.871576i \(0.663099\pi\)
\(338\) 0 0
\(339\) 9.00000 15.5885i 0.488813 0.846649i
\(340\) 0 0
\(341\) 13.5000 + 23.3827i 0.731066 + 1.26624i
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 0 0
\(345\) −1.50000 2.59808i −0.0807573 0.139876i
\(346\) 0 0
\(347\) 5.50000 9.52628i 0.295255 0.511397i −0.679789 0.733408i \(-0.737929\pi\)
0.975044 + 0.222010i \(0.0712619\pi\)
\(348\) 0 0
\(349\) −26.0000 −1.39175 −0.695874 0.718164i \(-0.744983\pi\)
−0.695874 + 0.718164i \(0.744983\pi\)
\(350\) 0 0
\(351\) 5.00000 0.266880
\(352\) 0 0
\(353\) −2.50000 + 4.33013i −0.133062 + 0.230469i −0.924855 0.380319i \(-0.875814\pi\)
0.791794 + 0.610789i \(0.209147\pi\)
\(354\) 0 0
\(355\) −12.0000 20.7846i −0.636894 1.10313i
\(356\) 0 0
\(357\) −17.5000 6.06218i −0.926198 0.320844i
\(358\) 0 0
\(359\) −12.5000 21.6506i −0.659725 1.14268i −0.980687 0.195585i \(-0.937340\pi\)
0.320962 0.947092i \(-0.395994\pi\)
\(360\) 0 0
\(361\) 9.00000 15.5885i 0.473684 0.820445i
\(362\) 0 0
\(363\) −2.00000 −0.104973
\(364\) 0 0
\(365\) 21.0000 1.09919
\(366\) 0 0
\(367\) 7.50000 12.9904i 0.391497 0.678092i −0.601150 0.799136i \(-0.705291\pi\)
0.992647 + 0.121044i \(0.0386241\pi\)
\(368\) 0 0
\(369\) 10.0000 + 17.3205i 0.520579 + 0.901670i
\(370\) 0 0
\(371\) −0.500000 2.59808i −0.0259587 0.134885i
\(372\) 0 0
\(373\) 14.5000 + 25.1147i 0.750782 + 1.30039i 0.947444 + 0.319921i \(0.103656\pi\)
−0.196663 + 0.980471i \(0.563010\pi\)
\(374\) 0 0
\(375\) −1.50000 + 2.59808i −0.0774597 + 0.134164i
\(376\) 0 0
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 0 0
\(381\) −2.00000 + 3.46410i −0.102463 + 0.177471i
\(382\) 0 0
\(383\) −0.500000 0.866025i −0.0255488 0.0442518i 0.852968 0.521963i \(-0.174800\pi\)
−0.878517 + 0.477711i \(0.841467\pi\)
\(384\) 0 0
\(385\) −18.0000 + 15.5885i −0.917365 + 0.794461i
\(386\) 0 0
\(387\) −4.00000 6.92820i −0.203331 0.352180i
\(388\) 0 0
\(389\) 14.5000 25.1147i 0.735179 1.27337i −0.219465 0.975620i \(-0.570431\pi\)
0.954645 0.297747i \(-0.0962353\pi\)
\(390\) 0 0
\(391\) −7.00000 −0.354005
\(392\) 0 0
\(393\) 15.0000 0.756650
\(394\) 0 0
\(395\) 16.5000 28.5788i 0.830205 1.43796i
\(396\) 0 0
\(397\) 11.5000 + 19.9186i 0.577168 + 0.999685i 0.995802 + 0.0915300i \(0.0291757\pi\)
−0.418634 + 0.908155i \(0.637491\pi\)
\(398\) 0 0
\(399\) 2.00000 1.73205i 0.100125 0.0867110i
\(400\) 0 0
\(401\) 13.5000 + 23.3827i 0.674158 + 1.16768i 0.976714 + 0.214544i \(0.0688266\pi\)
−0.302556 + 0.953131i \(0.597840\pi\)
\(402\) 0 0
\(403\) −4.50000 + 7.79423i −0.224161 + 0.388258i
\(404\) 0 0
\(405\) −3.00000 −0.149071
\(406\) 0 0
\(407\) −9.00000 −0.446113
\(408\) 0 0
\(409\) 11.5000 19.9186i 0.568638 0.984911i −0.428063 0.903749i \(-0.640804\pi\)
0.996701 0.0811615i \(-0.0258630\pi\)
\(410\) 0 0
\(411\) 3.50000 + 6.06218i 0.172642 + 0.299025i
\(412\) 0 0
\(413\) 5.50000 + 28.5788i 0.270637 + 1.40627i
\(414\) 0 0
\(415\) 6.00000 + 10.3923i 0.294528 + 0.510138i
\(416\) 0 0
\(417\) −4.00000 + 6.92820i −0.195881 + 0.339276i
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 0 0
\(423\) −3.00000 + 5.19615i −0.145865 + 0.252646i
\(424\) 0 0
\(425\) −14.0000 24.2487i −0.679100 1.17624i
\(426\) 0 0
\(427\) 2.50000 + 0.866025i 0.120983 + 0.0419099i
\(428\) 0 0
\(429\) 1.50000 + 2.59808i 0.0724207 + 0.125436i
\(430\) 0 0
\(431\) −9.50000 + 16.4545i −0.457599 + 0.792585i −0.998833 0.0482871i \(-0.984624\pi\)
0.541235 + 0.840872i \(0.317957\pi\)
\(432\) 0 0
\(433\) 34.0000 1.63394 0.816968 0.576683i \(-0.195653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) 0 0
\(435\) 6.00000 0.287678
\(436\) 0 0
\(437\) 0.500000 0.866025i 0.0239182 0.0414276i
\(438\) 0 0
\(439\) −3.50000 6.06218i −0.167046 0.289332i 0.770334 0.637641i \(-0.220089\pi\)
−0.937380 + 0.348309i \(0.886756\pi\)
\(440\) 0 0
\(441\) 13.0000 5.19615i 0.619048 0.247436i
\(442\) 0 0
\(443\) 20.5000 + 35.5070i 0.973984 + 1.68699i 0.683247 + 0.730188i \(0.260567\pi\)
0.290738 + 0.956803i \(0.406099\pi\)
\(444\) 0 0
\(445\) 1.50000 2.59808i 0.0711068 0.123161i
\(446\) 0 0
\(447\) 17.0000 0.804072
\(448\) 0 0
\(449\) 26.0000 1.22702 0.613508 0.789689i \(-0.289758\pi\)
0.613508 + 0.789689i \(0.289758\pi\)
\(450\) 0 0
\(451\) −15.0000 + 25.9808i −0.706322 + 1.22339i
\(452\) 0 0
\(453\) −9.50000 16.4545i −0.446349 0.773099i
\(454\) 0 0
\(455\) −7.50000 2.59808i −0.351605 0.121800i
\(456\) 0 0
\(457\) 13.5000 + 23.3827i 0.631503 + 1.09380i 0.987245 + 0.159211i \(0.0508951\pi\)
−0.355741 + 0.934585i \(0.615772\pi\)
\(458\) 0 0
\(459\) 17.5000 30.3109i 0.816830 1.41479i
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) −13.5000 + 23.3827i −0.626048 + 1.08435i
\(466\) 0 0
\(467\) −11.5000 19.9186i −0.532157 0.921722i −0.999295 0.0375381i \(-0.988048\pi\)
0.467139 0.884184i \(-0.345285\pi\)
\(468\) 0 0
\(469\) 3.50000 + 18.1865i 0.161615 + 0.839776i
\(470\) 0 0
\(471\) 6.50000 + 11.2583i 0.299504 + 0.518756i
\(472\) 0 0
\(473\) 6.00000 10.3923i 0.275880 0.477839i
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) 2.00000 0.0915737
\(478\) 0 0
\(479\) 18.5000 32.0429i 0.845287 1.46408i −0.0400855 0.999196i \(-0.512763\pi\)
0.885372 0.464883i \(-0.153904\pi\)
\(480\) 0 0
\(481\) −1.50000 2.59808i −0.0683941 0.118462i
\(482\) 0 0
\(483\) −2.00000 + 1.73205i −0.0910032 + 0.0788110i
\(484\) 0 0
\(485\) 3.00000 + 5.19615i 0.136223 + 0.235945i
\(486\) 0 0
\(487\) −21.5000 + 37.2391i −0.974258 + 1.68746i −0.291896 + 0.956450i \(0.594286\pi\)
−0.682362 + 0.731014i \(0.739047\pi\)
\(488\) 0 0
\(489\) −15.0000 −0.678323
\(490\) 0 0
\(491\) −28.0000 −1.26362 −0.631811 0.775122i \(-0.717688\pi\)
−0.631811 + 0.775122i \(0.717688\pi\)
\(492\) 0 0
\(493\) 7.00000 12.1244i 0.315264 0.546054i
\(494\) 0 0
\(495\) −9.00000 15.5885i −0.404520 0.700649i
\(496\) 0 0
\(497\) −16.0000 + 13.8564i −0.717698 + 0.621545i
\(498\) 0 0
\(499\) −12.5000 21.6506i −0.559577 0.969216i −0.997532 0.0702185i \(-0.977630\pi\)
0.437955 0.898997i \(-0.355703\pi\)
\(500\) 0 0
\(501\) −4.00000 + 6.92820i −0.178707 + 0.309529i
\(502\) 0 0
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 0 0
\(505\) −45.0000 −2.00247
\(506\) 0 0
\(507\) −0.500000 + 0.866025i −0.0222058 + 0.0384615i
\(508\) 0 0
\(509\) −20.5000 35.5070i −0.908647 1.57382i −0.815946 0.578128i \(-0.803783\pi\)
−0.0927004 0.995694i \(-0.529550\pi\)
\(510\) 0 0
\(511\) −3.50000 18.1865i −0.154831 0.804525i
\(512\) 0 0
\(513\) 2.50000 + 4.33013i 0.110378 + 0.191180i
\(514\) 0 0
\(515\) −19.5000 + 33.7750i −0.859273 + 1.48830i
\(516\) 0 0
\(517\) −9.00000 −0.395820
\(518\) 0 0
\(519\) −21.0000 −0.921798
\(520\) 0 0
\(521\) 0.500000 0.866025i 0.0219054 0.0379413i −0.854865 0.518851i \(-0.826360\pi\)
0.876770 + 0.480909i \(0.159693\pi\)
\(522\) 0 0
\(523\) −13.5000 23.3827i −0.590314 1.02245i −0.994190 0.107640i \(-0.965671\pi\)
0.403876 0.914814i \(-0.367663\pi\)
\(524\) 0 0
\(525\) −10.0000 3.46410i −0.436436 0.151186i
\(526\) 0 0
\(527\) 31.5000 + 54.5596i 1.37216 + 2.37665i
\(528\) 0 0
\(529\) 11.0000 19.0526i 0.478261 0.828372i
\(530\) 0 0
\(531\) −22.0000 −0.954719
\(532\) 0 0
\(533\) −10.0000 −0.433148
\(534\) 0 0
\(535\) −13.5000 + 23.3827i −0.583656 + 1.01092i
\(536\) 0 0
\(537\) 5.50000 + 9.52628i 0.237343 + 0.411089i
\(538\) 0 0
\(539\) 16.5000 + 12.9904i 0.710705 + 0.559535i
\(540\) 0 0
\(541\) 1.50000 + 2.59808i 0.0644900 + 0.111700i 0.896468 0.443109i \(-0.146125\pi\)
−0.831978 + 0.554809i \(0.812791\pi\)
\(542\) 0 0
\(543\) −13.0000 + 22.5167i −0.557883 + 0.966282i
\(544\) 0 0
\(545\) 21.0000 0.899541
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 0 0
\(549\) −1.00000 + 1.73205i −0.0426790 + 0.0739221i
\(550\) 0 0
\(551\) 1.00000 + 1.73205i 0.0426014 + 0.0737878i
\(552\) 0 0
\(553\) −27.5000 9.52628i −1.16942 0.405099i
\(554\) 0 0
\(555\) −4.50000 7.79423i −0.191014 0.330847i
\(556\) 0 0
\(557\) 3.50000 6.06218i 0.148300 0.256863i −0.782299 0.622903i \(-0.785953\pi\)
0.930599 + 0.366040i \(0.119287\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) 21.0000 0.886621
\(562\) 0 0
\(563\) 15.5000 26.8468i 0.653247 1.13146i −0.329083 0.944301i \(-0.606740\pi\)
0.982330 0.187156i \(-0.0599271\pi\)
\(564\) 0 0
\(565\) −27.0000 46.7654i −1.13590 1.96743i
\(566\) 0 0
\(567\) 0.500000 + 2.59808i 0.0209980 + 0.109109i
\(568\) 0 0
\(569\) 10.5000 + 18.1865i 0.440183 + 0.762419i 0.997703 0.0677445i \(-0.0215803\pi\)
−0.557520 + 0.830164i \(0.688247\pi\)
\(570\) 0 0
\(571\) 9.50000 16.4545i 0.397563 0.688599i −0.595862 0.803087i \(-0.703189\pi\)
0.993425 + 0.114488i \(0.0365228\pi\)
\(572\) 0 0
\(573\) −25.0000 −1.04439
\(574\) 0 0
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) 1.50000 2.59808i 0.0624458 0.108159i −0.833112 0.553104i \(-0.813443\pi\)
0.895558 + 0.444945i \(0.146777\pi\)
\(578\) 0 0
\(579\) 11.5000 + 19.9186i 0.477924 + 0.827788i
\(580\) 0 0
\(581\) 8.00000 6.92820i 0.331896 0.287430i
\(582\) 0 0
\(583\) 1.50000 + 2.59808i 0.0621237 + 0.107601i
\(584\) 0 0
\(585\) 3.00000 5.19615i 0.124035 0.214834i
\(586\) 0 0
\(587\) 36.0000 1.48588 0.742940 0.669359i \(-0.233431\pi\)
0.742940 + 0.669359i \(0.233431\pi\)
\(588\) 0 0
\(589\) −9.00000 −0.370839
\(590\) 0 0
\(591\) 3.00000 5.19615i 0.123404 0.213741i
\(592\) 0 0
\(593\) −16.5000 28.5788i −0.677574 1.17359i −0.975709 0.219069i \(-0.929698\pi\)
0.298136 0.954524i \(-0.403635\pi\)
\(594\) 0 0
\(595\) −42.0000 + 36.3731i −1.72183 + 1.49115i
\(596\) 0 0
\(597\) −2.50000 4.33013i −0.102318 0.177220i
\(598\) 0 0
\(599\) 17.5000 30.3109i 0.715031 1.23847i −0.247917 0.968781i \(-0.579746\pi\)
0.962948 0.269688i \(-0.0869206\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) −14.0000 −0.570124
\(604\) 0 0
\(605\) −3.00000 + 5.19615i −0.121967 + 0.211254i
\(606\) 0 0
\(607\) 12.5000 + 21.6506i 0.507359 + 0.878772i 0.999964 + 0.00851879i \(0.00271165\pi\)
−0.492604 + 0.870253i \(0.663955\pi\)
\(608\) 0 0
\(609\) −1.00000 5.19615i −0.0405220 0.210559i
\(610\) 0 0
\(611\) −1.50000 2.59808i −0.0606835 0.105107i
\(612\) 0 0
\(613\) −14.5000 + 25.1147i −0.585649 + 1.01437i 0.409145 + 0.912470i \(0.365827\pi\)
−0.994794 + 0.101905i \(0.967506\pi\)
\(614\) 0 0
\(615\) −30.0000 −1.20972
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) −15.5000 + 26.8468i −0.622998 + 1.07906i 0.365927 + 0.930644i \(0.380752\pi\)
−0.988924 + 0.148420i \(0.952581\pi\)
\(620\) 0 0
\(621\) −2.50000 4.33013i −0.100322 0.173762i
\(622\) 0 0
\(623\) −2.50000 0.866025i −0.100160 0.0346966i
\(624\) 0 0
\(625\) 14.5000 + 25.1147i 0.580000 + 1.00459i
\(626\) 0 0
\(627\) −1.50000 + 2.59808i −0.0599042 + 0.103757i
\(628\) 0 0
\(629\) −21.0000 −0.837325
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 0 0
\(633\) 6.00000 10.3923i 0.238479 0.413057i
\(634\) 0 0
\(635\) 6.00000 + 10.3923i 0.238103 + 0.412406i
\(636\) 0 0
\(637\) −1.00000 + 6.92820i −0.0396214 + 0.274505i
\(638\) 0 0
\(639\) −8.00000 13.8564i −0.316475 0.548151i
\(640\) 0 0
\(641\) 4.50000 7.79423i 0.177739 0.307854i −0.763367 0.645966i \(-0.776455\pi\)
0.941106 + 0.338112i \(0.109788\pi\)
\(642\) 0 0
\(643\) −28.0000 −1.10421 −0.552106 0.833774i \(-0.686176\pi\)
−0.552106 + 0.833774i \(0.686176\pi\)
\(644\) 0 0
\(645\) 12.0000 0.472500
\(646\) 0 0
\(647\) −8.50000 + 14.7224i −0.334169 + 0.578799i −0.983325 0.181857i \(-0.941789\pi\)
0.649155 + 0.760656i \(0.275122\pi\)
\(648\) 0 0
\(649\) −16.5000 28.5788i −0.647682 1.12182i
\(650\) 0 0
\(651\) 22.5000 + 7.79423i 0.881845 + 0.305480i
\(652\) 0 0
\(653\) −9.50000 16.4545i −0.371764 0.643914i 0.618073 0.786121i \(-0.287914\pi\)
−0.989837 + 0.142207i \(0.954580\pi\)
\(654\) 0 0
\(655\) 22.5000 38.9711i 0.879148 1.52273i
\(656\) 0 0
\(657\) 14.0000 0.546192
\(658\) 0 0
\(659\) 44.0000 1.71400 0.856998 0.515319i \(-0.172327\pi\)
0.856998 + 0.515319i \(0.172327\pi\)
\(660\) 0 0
\(661\) −18.5000 + 32.0429i −0.719567 + 1.24633i 0.241605 + 0.970375i \(0.422326\pi\)
−0.961172 + 0.275951i \(0.911007\pi\)
\(662\) 0 0
\(663\) 3.50000 + 6.06218i 0.135929 + 0.235435i
\(664\) 0 0
\(665\) −1.50000 7.79423i −0.0581675 0.302247i
\(666\) 0 0
\(667\) −1.00000 1.73205i −0.0387202 0.0670653i
\(668\) 0 0
\(669\) −4.00000 + 6.92820i −0.154649 + 0.267860i
\(670\) 0 0
\(671\) −3.00000 −0.115814
\(672\) 0 0
\(673\) −30.0000 −1.15642 −0.578208 0.815890i \(-0.696248\pi\)
−0.578208 + 0.815890i \(0.696248\pi\)
\(674\) 0 0
\(675\) 10.0000 17.3205i 0.384900 0.666667i
\(676\) 0 0
\(677\) −5.50000 9.52628i −0.211382 0.366125i 0.740765 0.671764i \(-0.234463\pi\)
−0.952147 + 0.305639i \(0.901130\pi\)
\(678\) 0 0
\(679\) 4.00000 3.46410i 0.153506 0.132940i
\(680\) 0 0
\(681\) 10.5000 + 18.1865i 0.402361 + 0.696909i
\(682\) 0 0
\(683\) 0.500000 0.866025i 0.0191320 0.0331375i −0.856301 0.516477i \(-0.827243\pi\)
0.875433 + 0.483340i \(0.160576\pi\)
\(684\) 0 0
\(685\) 21.0000 0.802369
\(686\) 0 0
\(687\) −19.0000 −0.724895
\(688\) 0 0
\(689\) −0.500000 + 0.866025i −0.0190485 + 0.0329929i
\(690\) 0 0
\(691\) −18.5000 32.0429i −0.703773 1.21897i −0.967132 0.254273i \(-0.918164\pi\)
0.263359 0.964698i \(-0.415170\pi\)
\(692\) 0 0
\(693\) −12.0000 + 10.3923i −0.455842 + 0.394771i
\(694\) 0 0
\(695\) 12.0000 + 20.7846i 0.455186 + 0.788405i
\(696\) 0 0
\(697\) −35.0000 + 60.6218i −1.32572 + 2.29621i
\(698\) 0 0
\(699\) 3.00000 0.113470
\(700\) 0 0
\(701\) 10.0000 0.377695 0.188847 0.982006i \(-0.439525\pi\)
0.188847 + 0.982006i \(0.439525\pi\)
\(702\) 0 0
\(703\) 1.50000 2.59808i 0.0565736 0.0979883i
\(704\) 0 0
\(705\) −4.50000 7.79423i −0.169480 0.293548i
\(706\) 0 0
\(707\) 7.50000 + 38.9711i 0.282067 + 1.46566i
\(708\) 0 0
\(709\) −10.5000 18.1865i −0.394336 0.683010i 0.598680 0.800988i \(-0.295692\pi\)
−0.993016 + 0.117978i \(0.962359\pi\)
\(710\) 0 0
\(711\) 11.0000 19.0526i 0.412532 0.714527i
\(712\) 0 0
\(713\) 9.00000 0.337053
\(714\) 0 0
\(715\) 9.00000 0.336581
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 20.5000 + 35.5070i 0.764521 + 1.32419i 0.940499 + 0.339795i \(0.110358\pi\)
−0.175978 + 0.984394i \(0.556309\pi\)
\(720\) 0 0
\(721\) 32.5000 + 11.2583i 1.21036 + 0.419282i
\(722\) 0 0
\(723\) 9.50000 + 16.4545i 0.353309 + 0.611949i
\(724\) 0 0
\(725\) 4.00000 6.92820i 0.148556 0.257307i
\(726\) 0 0
\(727\) 24.0000 0.890111 0.445055 0.895503i \(-0.353184\pi\)
0.445055 + 0.895503i \(0.353184\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 14.0000 24.2487i 0.517809 0.896871i
\(732\) 0 0
\(733\) 13.5000 + 23.3827i 0.498634 + 0.863659i 0.999999 0.00157675i \(-0.000501894\pi\)
−0.501365 + 0.865236i \(0.667169\pi\)
\(734\) 0 0
\(735\) −3.00000 + 20.7846i −0.110657 + 0.766652i
\(736\) 0 0
\(737\) −10.5000 18.1865i −0.386772 0.669910i
\(738\) 0 0
\(739\) −21.5000 + 37.2391i −0.790890 + 1.36986i 0.134526 + 0.990910i \(0.457049\pi\)
−0.925416 + 0.378952i \(0.876285\pi\)
\(740\) 0 0
\(741\) −1.00000 −0.0367359
\(742\) 0 0
\(743\) −24.0000 −0.880475 −0.440237 0.897881i \(-0.645106\pi\)
−0.440237 + 0.897881i \(0.645106\pi\)
\(744\) 0 0
\(745\) 25.5000 44.1673i 0.934248 1.61816i
\(746\) 0 0
\(747\) 4.00000 + 6.92820i 0.146352 + 0.253490i
\(748\) 0 0
\(749\) 22.5000 + 7.79423i 0.822132 + 0.284795i
\(750\) 0 0
\(751\) 6.50000 + 11.2583i 0.237188 + 0.410822i 0.959906 0.280321i \(-0.0904408\pi\)
−0.722718 + 0.691143i \(0.757107\pi\)
\(752\) 0 0
\(753\) 6.00000 10.3923i 0.218652 0.378717i
\(754\) 0 0
\(755\) −57.0000 −2.07444
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) 0 0
\(759\) 1.50000 2.59808i 0.0544466 0.0943042i
\(760\) 0 0
\(761\) 9.50000 + 16.4545i 0.344375 + 0.596475i 0.985240 0.171179i \(-0.0547576\pi\)
−0.640865 + 0.767653i \(0.721424\pi\)
\(762\) 0 0
\(763\) −3.50000 18.1865i −0.126709 0.658397i
\(764\) 0 0
\(765\) −21.0000 36.3731i −0.759257 1.31507i
\(766\) 0 0
\(767\) 5.50000 9.52628i 0.198593 0.343974i
\(768\) 0 0
\(769\) −34.0000 −1.22607 −0.613036 0.790055i \(-0.710052\pi\)
−0.613036 + 0.790055i \(0.710052\pi\)
\(770\) 0 0
\(771\) −21.0000 −0.756297
\(772\) 0 0
\(773\) 1.50000 2.59808i 0.0539513 0.0934463i −0.837788 0.545995i \(-0.816152\pi\)
0.891740 + 0.452549i \(0.149485\pi\)
\(774\) 0 0
\(775\) 18.0000 + 31.1769i 0.646579 + 1.11991i
\(776\) 0 0
\(777\) −6.00000 + 5.19615i −0.215249 + 0.186411i
\(778\) 0 0
\(779\) −5.00000 8.66025i −0.179144 0.310286i
\(780\) 0 0
\(781\) 12.0000 20.7846i 0.429394 0.743732i
\(782\) 0 0
\(783\) 10.0000 0.357371
\(784\) 0 0
\(785\) 39.0000 1.39197
\(786\) 0 0
\(787\) −17.5000 + 30.3109i −0.623808 + 1.08047i 0.364963 + 0.931022i \(0.381082\pi\)
−0.988770 + 0.149444i \(0.952252\pi\)
\(788\) 0 0
\(789\) 7.50000 + 12.9904i 0.267007 + 0.462470i
\(790\) 0 0
\(791\) −36.0000 + 31.1769i −1.28001 + 1.10852i
\(792\) 0 0
\(793\) −0.500000 0.866025i −0.0177555 0.0307535i
\(794\) 0 0
\(795\) −1.50000 + 2.59808i −0.0531995 + 0.0921443i
\(796\) 0 0
\(797\) −30.0000 −1.06265 −0.531327 0.847167i \(-0.678307\pi\)
−0.531327 + 0.847167i \(0.678307\pi\)
\(798\) 0 0
\(799\) −21.0000 −0.742927
\(800\) 0 0
\(801\) 1.00000 1.73205i 0.0353333 0.0611990i
\(802\) 0 0
\(803\) 10.5000 + 18.1865i 0.370537 + 0.641789i
\(804\) 0 0
\(805\) 1.50000 + 7.79423i 0.0528681 + 0.274710i
\(806\) 0 0
\(807\) 12.5000 + 21.6506i 0.440021 + 0.762138i
\(808\) 0 0
\(809\) −5.50000 + 9.52628i −0.193370 + 0.334926i −0.946365 0.323100i \(-0.895275\pi\)
0.752995 + 0.658026i \(0.228608\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) 0 0
\(813\) −15.0000 −0.526073
\(814\) 0 0
\(815\) −22.5000 + 38.9711i −0.788141 + 1.36510i
\(816\) 0 0
\(817\) 2.00000 + 3.46410i 0.0699711 + 0.121194i
\(818\) 0 0
\(819\) −5.00000 1.73205i −0.174714 0.0605228i
\(820\) 0 0
\(821\) −22.5000 38.9711i −0.785255 1.36010i −0.928846 0.370465i \(-0.879198\pi\)
0.143591 0.989637i \(-0.454135\pi\)
\(822\) 0 0
\(823\) 11.5000 19.9186i 0.400865 0.694318i −0.592966 0.805228i \(-0.702043\pi\)
0.993831 + 0.110910i \(0.0353764\pi\)
\(824\) 0 0
\(825\) 12.0000 0.417786
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) −7.50000 + 12.9904i −0.260486 + 0.451175i −0.966371 0.257152i \(-0.917216\pi\)
0.705885 + 0.708326i \(0.250549\pi\)
\(830\) 0 0
\(831\) −3.50000 6.06218i −0.121414 0.210295i
\(832\) 0 0
\(833\) 38.5000 + 30.3109i 1.33395 + 1.05021i
\(834\) 0 0
\(835\) 12.0000 + 20.7846i 0.415277 + 0.719281i
\(836\) 0 0
\(837\) −22.5000 + 38.9711i −0.777714 + 1.34704i
\(838\) 0 0
\(839\) 24.0000 0.828572 0.414286 0.910147i \(-0.364031\pi\)
0.414286 + 0.910147i \(0.364031\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 13.0000 22.5167i 0.447744 0.775515i
\(844\) 0 0
\(845\) 1.50000 + 2.59808i 0.0516016 + 0.0893765i
\(846\) 0 0
\(847\) 5.00000 + 1.73205i 0.171802 + 0.0595140i
\(848\) 0 0
\(849\) −0.500000 0.866025i −0.0171600 0.0297219i
\(850\) 0 0
\(851\) −1.50000 + 2.59808i −0.0514193 + 0.0890609i
\(852\) 0 0
\(853\) 14.0000 0.479351 0.239675 0.970853i \(-0.422959\pi\)
0.239675 + 0.970853i \(0.422959\pi\)
\(854\) 0 0
\(855\) 6.00000 0.205196
\(856\) 0 0
\(857\) −5.50000 + 9.52628i −0.187876 + 0.325412i −0.944542 0.328391i \(-0.893494\pi\)
0.756666 + 0.653802i \(0.226827\pi\)
\(858\) 0 0
\(859\) −13.5000 23.3827i −0.460614 0.797807i 0.538378 0.842704i \(-0.319037\pi\)
−0.998992 + 0.0448968i \(0.985704\pi\)
\(860\) 0 0
\(861\) 5.00000 + 25.9808i 0.170400 + 0.885422i
\(862\) 0 0
\(863\) −10.5000 18.1865i −0.357424 0.619077i 0.630106 0.776509i \(-0.283012\pi\)
−0.987530 + 0.157433i \(0.949678\pi\)
\(864\) 0 0
\(865\) −31.5000 + 54.5596i −1.07103 + 1.85508i
\(866\) 0 0
\(867\) 32.0000 1.08678
\(868\) 0 0
\(869\) 33.0000 1.11945
\(870\) 0 0
\(871\) 3.50000 6.06218i 0.118593 0.205409i
\(872\) 0 0
\(873\) 2.00000 + 3.46410i 0.0676897 + 0.117242i
\(874\) 0 0
\(875\) 6.00000 5.19615i 0.202837 0.175662i
\(876\) 0 0
\(877\) 5.50000 + 9.52628i 0.185722 + 0.321680i 0.943820 0.330461i \(-0.107204\pi\)
−0.758098 + 0.652141i \(0.773871\pi\)
\(878\) 0 0
\(879\) −7.00000 + 12.1244i −0.236104 + 0.408944i
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) −12.0000 −0.403832 −0.201916 0.979403i \(-0.564717\pi\)
−0.201916 + 0.979403i \(0.564717\pi\)
\(884\) 0 0
\(885\) 16.5000 28.5788i 0.554641 0.960667i
\(886\) 0 0
\(887\) 2.50000 + 4.33013i 0.0839418 + 0.145391i 0.904940 0.425540i \(-0.139916\pi\)
−0.820998 + 0.570931i \(0.806582\pi\)
\(888\) 0 0
\(889\) 8.00000 6.92820i 0.268311 0.232364i
\(890\) 0 0
\(891\) −1.50000 2.59808i −0.0502519 0.0870388i
\(892\) 0 0
\(893\) 1.50000 2.59808i 0.0501956 0.0869413i
\(894\) 0 0
\(895\) 33.0000 1.10307
\(896\) 0 0
\(897\) 1.00000 0.0333890
\(898\) 0 0
\(899\) −9.00000 + 15.5885i −0.300167 + 0.519904i
\(900\) 0 0
\(901\) 3.50000 + 6.06218i 0.116602 + 0.201960i
\(902\) 0 0
\(903\) −2.00000 10.3923i −0.0665558 0.345834i
\(904\) 0 0
\(905\) 39.0000 + 67.5500i 1.29640 + 2.24544i
\(906\) 0 0
\(907\) −8.50000 + 14.7224i −0.282238 + 0.488850i −0.971936 0.235247i \(-0.924410\pi\)
0.689698 + 0.724097i \(0.257743\pi\)
\(908\) 0 0
\(909\) −30.0000 −0.995037
\(910\) 0 0
\(911\) 20.0000 0.662630 0.331315 0.943520i \(-0.392508\pi\)
0.331315 + 0.943520i \(0.392508\pi\)
\(912\) 0 0
\(913\) −6.00000 + 10.3923i −0.198571 + 0.343935i
\(914\) 0 0
\(915\) −1.50000 2.59808i −0.0495885 0.0858898i
\(916\) 0 0
\(917\) −37.5000 12.9904i −1.23836 0.428980i
\(918\) 0 0
\(919\) −15.5000 26.8468i −0.511298 0.885594i −0.999914 0.0130951i \(-0.995832\pi\)
0.488616 0.872499i \(-0.337502\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 8.00000 0.263323
\(924\) 0 0
\(925\) −12.0000 −0.394558
\(926\) 0 0
\(927\) −13.0000 + 22.5167i −0.426976 + 0.739544i
\(928\) 0 0
\(929\) 7.50000 + 12.9904i 0.246067 + 0.426201i 0.962431 0.271526i \(-0.0875283\pi\)
−0.716364 + 0.697727i \(0.754195\pi\)
\(930\) 0 0
\(931\) −6.50000 + 2.59808i −0.213029 + 0.0851485i
\(932\) 0 0
\(933\) 7.50000 + 12.9904i 0.245539 + 0.425286i
\(934\) 0 0
\(935\) 31.5000 54.5596i 1.03016 1.78429i
\(936\) 0 0
\(937\) 54.0000 1.76410 0.882052 0.471153i \(-0.156162\pi\)
0.882052 + 0.471153i \(0.156162\pi\)
\(938\) 0 0
\(939\) 19.0000 0.620042
\(940\) 0 0
\(941\) 13.5000 23.3827i 0.440087 0.762254i −0.557608 0.830104i \(-0.688281\pi\)
0.997695 + 0.0678506i \(0.0216141\pi\)
\(942\) 0 0
\(943\) 5.00000 + 8.66025i 0.162822 + 0.282017i
\(944\) 0 0
\(945\) −37.5000 12.9904i −1.21988 0.422577i
\(946\) 0 0
\(947\) 11.5000 + 19.9186i 0.373700 + 0.647267i 0.990132 0.140141i \(-0.0447557\pi\)
−0.616432 + 0.787408i \(0.711422\pi\)
\(948\) 0 0
\(949\) −3.50000 + 6.06218i −0.113615 + 0.196787i
\(950\) 0 0
\(951\) −19.0000 −0.616117
\(952\) 0 0
\(953\) −50.0000 −1.61966 −0.809829 0.586665i \(-0.800440\pi\)
−0.809829 + 0.586665i \(0.800440\pi\)
\(954\) 0 0
\(955\) −37.5000 + 64.9519i −1.21347 + 2.10179i
\(956\) 0 0
\(957\) 3.00000 + 5.19615i 0.0969762 + 0.167968i
\(958\) 0 0
\(959\) −3.50000 18.1865i −0.113021 0.587274i
\(960\) 0 0
\(961\) −25.0000 43.3013i −0.806452 1.39682i
\(962\) 0 0
\(963\) −9.00000 + 15.5885i −0.290021 + 0.502331i
\(964\) 0 0
\(965\) 69.0000 2.22119
\(966\) 0 0
\(967\) −4.00000 −0.128631 −0.0643157 0.997930i \(-0.520486\pi\)
−0.0643157 + 0.997930i \(0.520486\pi\)
\(968\) 0 0
\(969\) −3.50000 + 6.06218i −0.112436 + 0.194745i
\(970\) 0 0
\(971\) 4.50000 + 7.79423i 0.144412 + 0.250129i 0.929153 0.369694i \(-0.120538\pi\)
−0.784741 + 0.619823i \(0.787204\pi\)
\(972\) 0 0
\(973\) 16.0000 13.8564i 0.512936 0.444216i
\(974\) 0 0
\(975\) 2.00000 + 3.46410i 0.0640513 + 0.110940i
\(976\) 0 0
\(977\) −8.50000 + 14.7224i −0.271939 + 0.471012i −0.969358 0.245651i \(-0.920998\pi\)
0.697419 + 0.716663i \(0.254332\pi\)
\(978\) 0 0
\(979\) 3.00000 0.0958804
\(980\) 0 0
\(981\) 14.0000 0.446986
\(982\) 0 0
\(983\) −13.5000 + 23.3827i −0.430583 + 0.745792i −0.996924 0.0783795i \(-0.975025\pi\)
0.566340 + 0.824171i \(0.308359\pi\)
\(984\) 0 0
\(985\) −9.00000 15.5885i −0.286764 0.496690i
\(986\) 0 0
\(987\) −6.00000 + 5.19615i −0.190982 + 0.165395i
\(988\) 0 0
\(989\) −2.00000 3.46410i −0.0635963 0.110152i
\(990\) 0 0
\(991\) 25.5000 44.1673i 0.810034 1.40302i −0.102805 0.994702i \(-0.532782\pi\)
0.912839 0.408319i \(-0.133885\pi\)
\(992\) 0 0
\(993\) −15.0000 −0.476011
\(994\) 0 0
\(995\) −15.0000 −0.475532
\(996\) 0 0
\(997\) −3.50000 + 6.06218i −0.110846 + 0.191991i −0.916112 0.400923i \(-0.868689\pi\)
0.805266 + 0.592914i \(0.202023\pi\)
\(998\) 0 0
\(999\) −7.50000 12.9904i −0.237289 0.410997i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1456.2.r.e.417.1 2
4.3 odd 2 728.2.r.c.417.1 2
7.2 even 3 inner 1456.2.r.e.625.1 2
28.3 even 6 5096.2.a.j.1.1 1
28.11 odd 6 5096.2.a.b.1.1 1
28.23 odd 6 728.2.r.c.625.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.r.c.417.1 2 4.3 odd 2
728.2.r.c.625.1 yes 2 28.23 odd 6
1456.2.r.e.417.1 2 1.1 even 1 trivial
1456.2.r.e.625.1 2 7.2 even 3 inner
5096.2.a.b.1.1 1 28.11 odd 6
5096.2.a.j.1.1 1 28.3 even 6