Properties

Label 1452.4.a.r.1.3
Level $1452$
Weight $4$
Character 1452.1
Self dual yes
Analytic conductor $85.671$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,4,Mod(1,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1452.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-18,0,-12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(85.6707733283\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 74x^{4} - 18x^{3} + 1206x^{2} + 2088x - 99 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-5.89143\) of defining polynomial
Character \(\chi\) \(=\) 1452.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -2.54018 q^{5} -26.1494 q^{7} +9.00000 q^{9} -38.2737 q^{13} +7.62055 q^{15} +106.022 q^{17} +56.8376 q^{19} +78.4481 q^{21} +75.4162 q^{23} -118.547 q^{25} -27.0000 q^{27} +78.1574 q^{29} -141.481 q^{31} +66.4241 q^{35} +258.738 q^{37} +114.821 q^{39} +410.838 q^{41} -64.8313 q^{43} -22.8616 q^{45} +446.234 q^{47} +340.789 q^{49} -318.065 q^{51} -320.890 q^{53} -170.513 q^{57} -50.4518 q^{59} -63.2866 q^{61} -235.344 q^{63} +97.2222 q^{65} -297.845 q^{67} -226.249 q^{69} -315.811 q^{71} -1111.77 q^{73} +355.642 q^{75} -216.539 q^{79} +81.0000 q^{81} -434.074 q^{83} -269.314 q^{85} -234.472 q^{87} -1363.23 q^{89} +1000.83 q^{91} +424.444 q^{93} -144.378 q^{95} +757.176 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 18 q^{3} - 12 q^{5} + 54 q^{9} + 36 q^{15} - 492 q^{23} + 534 q^{25} - 162 q^{27} - 270 q^{31} + 582 q^{37} - 108 q^{45} + 756 q^{47} + 780 q^{49} - 72 q^{53} + 564 q^{59} - 1590 q^{67} + 1476 q^{69}+ \cdots - 4242 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) −2.54018 −0.227201 −0.113600 0.993527i \(-0.536238\pi\)
−0.113600 + 0.993527i \(0.536238\pi\)
\(6\) 0 0
\(7\) −26.1494 −1.41193 −0.705966 0.708246i \(-0.749487\pi\)
−0.705966 + 0.708246i \(0.749487\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −38.2737 −0.816555 −0.408278 0.912858i \(-0.633870\pi\)
−0.408278 + 0.912858i \(0.633870\pi\)
\(14\) 0 0
\(15\) 7.62055 0.131174
\(16\) 0 0
\(17\) 106.022 1.51259 0.756295 0.654231i \(-0.227007\pi\)
0.756295 + 0.654231i \(0.227007\pi\)
\(18\) 0 0
\(19\) 56.8376 0.686287 0.343143 0.939283i \(-0.388508\pi\)
0.343143 + 0.939283i \(0.388508\pi\)
\(20\) 0 0
\(21\) 78.4481 0.815179
\(22\) 0 0
\(23\) 75.4162 0.683711 0.341856 0.939752i \(-0.388945\pi\)
0.341856 + 0.939752i \(0.388945\pi\)
\(24\) 0 0
\(25\) −118.547 −0.948380
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 78.1574 0.500464 0.250232 0.968186i \(-0.419493\pi\)
0.250232 + 0.968186i \(0.419493\pi\)
\(30\) 0 0
\(31\) −141.481 −0.819703 −0.409851 0.912152i \(-0.634419\pi\)
−0.409851 + 0.912152i \(0.634419\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 66.4241 0.320792
\(36\) 0 0
\(37\) 258.738 1.14963 0.574814 0.818284i \(-0.305075\pi\)
0.574814 + 0.818284i \(0.305075\pi\)
\(38\) 0 0
\(39\) 114.821 0.471438
\(40\) 0 0
\(41\) 410.838 1.56493 0.782465 0.622695i \(-0.213962\pi\)
0.782465 + 0.622695i \(0.213962\pi\)
\(42\) 0 0
\(43\) −64.8313 −0.229923 −0.114961 0.993370i \(-0.536674\pi\)
−0.114961 + 0.993370i \(0.536674\pi\)
\(44\) 0 0
\(45\) −22.8616 −0.0757336
\(46\) 0 0
\(47\) 446.234 1.38489 0.692446 0.721469i \(-0.256533\pi\)
0.692446 + 0.721469i \(0.256533\pi\)
\(48\) 0 0
\(49\) 340.789 0.993553
\(50\) 0 0
\(51\) −318.065 −0.873294
\(52\) 0 0
\(53\) −320.890 −0.831654 −0.415827 0.909444i \(-0.636508\pi\)
−0.415827 + 0.909444i \(0.636508\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −170.513 −0.396228
\(58\) 0 0
\(59\) −50.4518 −0.111327 −0.0556633 0.998450i \(-0.517727\pi\)
−0.0556633 + 0.998450i \(0.517727\pi\)
\(60\) 0 0
\(61\) −63.2866 −0.132836 −0.0664181 0.997792i \(-0.521157\pi\)
−0.0664181 + 0.997792i \(0.521157\pi\)
\(62\) 0 0
\(63\) −235.344 −0.470644
\(64\) 0 0
\(65\) 97.2222 0.185522
\(66\) 0 0
\(67\) −297.845 −0.543099 −0.271549 0.962425i \(-0.587536\pi\)
−0.271549 + 0.962425i \(0.587536\pi\)
\(68\) 0 0
\(69\) −226.249 −0.394741
\(70\) 0 0
\(71\) −315.811 −0.527886 −0.263943 0.964538i \(-0.585023\pi\)
−0.263943 + 0.964538i \(0.585023\pi\)
\(72\) 0 0
\(73\) −1111.77 −1.78251 −0.891253 0.453506i \(-0.850173\pi\)
−0.891253 + 0.453506i \(0.850173\pi\)
\(74\) 0 0
\(75\) 355.642 0.547547
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −216.539 −0.308387 −0.154193 0.988041i \(-0.549278\pi\)
−0.154193 + 0.988041i \(0.549278\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −434.074 −0.574046 −0.287023 0.957924i \(-0.592666\pi\)
−0.287023 + 0.957924i \(0.592666\pi\)
\(84\) 0 0
\(85\) −269.314 −0.343662
\(86\) 0 0
\(87\) −234.472 −0.288943
\(88\) 0 0
\(89\) −1363.23 −1.62362 −0.811809 0.583924i \(-0.801517\pi\)
−0.811809 + 0.583924i \(0.801517\pi\)
\(90\) 0 0
\(91\) 1000.83 1.15292
\(92\) 0 0
\(93\) 424.444 0.473256
\(94\) 0 0
\(95\) −144.378 −0.155925
\(96\) 0 0
\(97\) 757.176 0.792573 0.396287 0.918127i \(-0.370299\pi\)
0.396287 + 0.918127i \(0.370299\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1765.66 1.73950 0.869750 0.493493i \(-0.164280\pi\)
0.869750 + 0.493493i \(0.164280\pi\)
\(102\) 0 0
\(103\) −1350.20 −1.29164 −0.645821 0.763489i \(-0.723485\pi\)
−0.645821 + 0.763489i \(0.723485\pi\)
\(104\) 0 0
\(105\) −199.272 −0.185209
\(106\) 0 0
\(107\) 616.304 0.556825 0.278413 0.960462i \(-0.410192\pi\)
0.278413 + 0.960462i \(0.410192\pi\)
\(108\) 0 0
\(109\) 1340.39 1.17785 0.588927 0.808186i \(-0.299550\pi\)
0.588927 + 0.808186i \(0.299550\pi\)
\(110\) 0 0
\(111\) −776.213 −0.663738
\(112\) 0 0
\(113\) 1631.82 1.35849 0.679243 0.733913i \(-0.262308\pi\)
0.679243 + 0.733913i \(0.262308\pi\)
\(114\) 0 0
\(115\) −191.571 −0.155340
\(116\) 0 0
\(117\) −344.463 −0.272185
\(118\) 0 0
\(119\) −2772.40 −2.13567
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −1232.51 −0.903513
\(124\) 0 0
\(125\) 618.655 0.442674
\(126\) 0 0
\(127\) 298.202 0.208356 0.104178 0.994559i \(-0.466779\pi\)
0.104178 + 0.994559i \(0.466779\pi\)
\(128\) 0 0
\(129\) 194.494 0.132746
\(130\) 0 0
\(131\) 201.576 0.134441 0.0672206 0.997738i \(-0.478587\pi\)
0.0672206 + 0.997738i \(0.478587\pi\)
\(132\) 0 0
\(133\) −1486.27 −0.968990
\(134\) 0 0
\(135\) 68.5849 0.0437248
\(136\) 0 0
\(137\) −1390.51 −0.867150 −0.433575 0.901117i \(-0.642748\pi\)
−0.433575 + 0.901117i \(0.642748\pi\)
\(138\) 0 0
\(139\) −1636.71 −0.998734 −0.499367 0.866390i \(-0.666434\pi\)
−0.499367 + 0.866390i \(0.666434\pi\)
\(140\) 0 0
\(141\) −1338.70 −0.799568
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −198.534 −0.113706
\(146\) 0 0
\(147\) −1022.37 −0.573628
\(148\) 0 0
\(149\) −1112.20 −0.611510 −0.305755 0.952110i \(-0.598909\pi\)
−0.305755 + 0.952110i \(0.598909\pi\)
\(150\) 0 0
\(151\) 1696.08 0.914075 0.457038 0.889447i \(-0.348910\pi\)
0.457038 + 0.889447i \(0.348910\pi\)
\(152\) 0 0
\(153\) 954.195 0.504197
\(154\) 0 0
\(155\) 359.388 0.186237
\(156\) 0 0
\(157\) −1888.14 −0.959810 −0.479905 0.877320i \(-0.659329\pi\)
−0.479905 + 0.877320i \(0.659329\pi\)
\(158\) 0 0
\(159\) 962.671 0.480156
\(160\) 0 0
\(161\) −1972.08 −0.965354
\(162\) 0 0
\(163\) −3346.75 −1.60821 −0.804104 0.594488i \(-0.797355\pi\)
−0.804104 + 0.594488i \(0.797355\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2966.19 −1.37443 −0.687217 0.726453i \(-0.741168\pi\)
−0.687217 + 0.726453i \(0.741168\pi\)
\(168\) 0 0
\(169\) −732.123 −0.333238
\(170\) 0 0
\(171\) 511.539 0.228762
\(172\) 0 0
\(173\) 1957.75 0.860375 0.430188 0.902740i \(-0.358447\pi\)
0.430188 + 0.902740i \(0.358447\pi\)
\(174\) 0 0
\(175\) 3099.94 1.33905
\(176\) 0 0
\(177\) 151.355 0.0642744
\(178\) 0 0
\(179\) −4415.78 −1.84386 −0.921930 0.387357i \(-0.873388\pi\)
−0.921930 + 0.387357i \(0.873388\pi\)
\(180\) 0 0
\(181\) 2412.52 0.990723 0.495362 0.868687i \(-0.335036\pi\)
0.495362 + 0.868687i \(0.335036\pi\)
\(182\) 0 0
\(183\) 189.860 0.0766931
\(184\) 0 0
\(185\) −657.241 −0.261196
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 706.032 0.271726
\(190\) 0 0
\(191\) −2243.91 −0.850072 −0.425036 0.905177i \(-0.639738\pi\)
−0.425036 + 0.905177i \(0.639738\pi\)
\(192\) 0 0
\(193\) −1838.33 −0.685628 −0.342814 0.939403i \(-0.611380\pi\)
−0.342814 + 0.939403i \(0.611380\pi\)
\(194\) 0 0
\(195\) −291.667 −0.107111
\(196\) 0 0
\(197\) 3351.47 1.21209 0.606047 0.795429i \(-0.292754\pi\)
0.606047 + 0.795429i \(0.292754\pi\)
\(198\) 0 0
\(199\) −1032.38 −0.367758 −0.183879 0.982949i \(-0.558865\pi\)
−0.183879 + 0.982949i \(0.558865\pi\)
\(200\) 0 0
\(201\) 893.536 0.313558
\(202\) 0 0
\(203\) −2043.77 −0.706622
\(204\) 0 0
\(205\) −1043.60 −0.355553
\(206\) 0 0
\(207\) 678.746 0.227904
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1360.30 −0.443824 −0.221912 0.975067i \(-0.571230\pi\)
−0.221912 + 0.975067i \(0.571230\pi\)
\(212\) 0 0
\(213\) 947.433 0.304775
\(214\) 0 0
\(215\) 164.683 0.0522386
\(216\) 0 0
\(217\) 3699.64 1.15736
\(218\) 0 0
\(219\) 3335.31 1.02913
\(220\) 0 0
\(221\) −4057.84 −1.23511
\(222\) 0 0
\(223\) 2909.37 0.873658 0.436829 0.899544i \(-0.356101\pi\)
0.436829 + 0.899544i \(0.356101\pi\)
\(224\) 0 0
\(225\) −1066.93 −0.316127
\(226\) 0 0
\(227\) −5121.69 −1.49753 −0.748763 0.662837i \(-0.769352\pi\)
−0.748763 + 0.662837i \(0.769352\pi\)
\(228\) 0 0
\(229\) −5803.70 −1.67476 −0.837378 0.546624i \(-0.815913\pi\)
−0.837378 + 0.546624i \(0.815913\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1483.89 0.417224 0.208612 0.977999i \(-0.433105\pi\)
0.208612 + 0.977999i \(0.433105\pi\)
\(234\) 0 0
\(235\) −1133.52 −0.314649
\(236\) 0 0
\(237\) 649.617 0.178047
\(238\) 0 0
\(239\) 5090.19 1.37764 0.688822 0.724931i \(-0.258128\pi\)
0.688822 + 0.724931i \(0.258128\pi\)
\(240\) 0 0
\(241\) 2272.07 0.607289 0.303645 0.952785i \(-0.401796\pi\)
0.303645 + 0.952785i \(0.401796\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) −865.665 −0.225736
\(246\) 0 0
\(247\) −2175.39 −0.560391
\(248\) 0 0
\(249\) 1302.22 0.331426
\(250\) 0 0
\(251\) 504.097 0.126766 0.0633831 0.997989i \(-0.479811\pi\)
0.0633831 + 0.997989i \(0.479811\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 807.943 0.198413
\(256\) 0 0
\(257\) −8044.64 −1.95257 −0.976286 0.216485i \(-0.930541\pi\)
−0.976286 + 0.216485i \(0.930541\pi\)
\(258\) 0 0
\(259\) −6765.82 −1.62320
\(260\) 0 0
\(261\) 703.417 0.166821
\(262\) 0 0
\(263\) 1070.47 0.250980 0.125490 0.992095i \(-0.459950\pi\)
0.125490 + 0.992095i \(0.459950\pi\)
\(264\) 0 0
\(265\) 815.120 0.188953
\(266\) 0 0
\(267\) 4089.69 0.937396
\(268\) 0 0
\(269\) 475.225 0.107714 0.0538568 0.998549i \(-0.482849\pi\)
0.0538568 + 0.998549i \(0.482849\pi\)
\(270\) 0 0
\(271\) 3752.90 0.841228 0.420614 0.907240i \(-0.361815\pi\)
0.420614 + 0.907240i \(0.361815\pi\)
\(272\) 0 0
\(273\) −3002.50 −0.665639
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1294.84 −0.280865 −0.140433 0.990090i \(-0.544849\pi\)
−0.140433 + 0.990090i \(0.544849\pi\)
\(278\) 0 0
\(279\) −1273.33 −0.273234
\(280\) 0 0
\(281\) −5245.82 −1.11366 −0.556832 0.830625i \(-0.687983\pi\)
−0.556832 + 0.830625i \(0.687983\pi\)
\(282\) 0 0
\(283\) −7793.87 −1.63709 −0.818547 0.574439i \(-0.805220\pi\)
−0.818547 + 0.574439i \(0.805220\pi\)
\(284\) 0 0
\(285\) 433.134 0.0900233
\(286\) 0 0
\(287\) −10743.1 −2.20958
\(288\) 0 0
\(289\) 6327.59 1.28793
\(290\) 0 0
\(291\) −2271.53 −0.457592
\(292\) 0 0
\(293\) −9089.55 −1.81235 −0.906173 0.422908i \(-0.861009\pi\)
−0.906173 + 0.422908i \(0.861009\pi\)
\(294\) 0 0
\(295\) 128.157 0.0252935
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2886.46 −0.558288
\(300\) 0 0
\(301\) 1695.30 0.324635
\(302\) 0 0
\(303\) −5296.97 −1.00430
\(304\) 0 0
\(305\) 160.759 0.0301805
\(306\) 0 0
\(307\) 6200.52 1.15271 0.576356 0.817199i \(-0.304474\pi\)
0.576356 + 0.817199i \(0.304474\pi\)
\(308\) 0 0
\(309\) 4050.60 0.745730
\(310\) 0 0
\(311\) −7229.44 −1.31815 −0.659073 0.752079i \(-0.729051\pi\)
−0.659073 + 0.752079i \(0.729051\pi\)
\(312\) 0 0
\(313\) 1588.15 0.286798 0.143399 0.989665i \(-0.454197\pi\)
0.143399 + 0.989665i \(0.454197\pi\)
\(314\) 0 0
\(315\) 597.817 0.106931
\(316\) 0 0
\(317\) 6915.07 1.22520 0.612601 0.790392i \(-0.290123\pi\)
0.612601 + 0.790392i \(0.290123\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −1848.91 −0.321483
\(322\) 0 0
\(323\) 6026.02 1.03807
\(324\) 0 0
\(325\) 4537.25 0.774404
\(326\) 0 0
\(327\) −4021.17 −0.680035
\(328\) 0 0
\(329\) −11668.7 −1.95537
\(330\) 0 0
\(331\) −9801.17 −1.62756 −0.813778 0.581175i \(-0.802593\pi\)
−0.813778 + 0.581175i \(0.802593\pi\)
\(332\) 0 0
\(333\) 2328.64 0.383209
\(334\) 0 0
\(335\) 756.582 0.123392
\(336\) 0 0
\(337\) −9503.73 −1.53621 −0.768103 0.640327i \(-0.778799\pi\)
−0.768103 + 0.640327i \(0.778799\pi\)
\(338\) 0 0
\(339\) −4895.47 −0.784323
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 57.8275 0.00910318
\(344\) 0 0
\(345\) 574.713 0.0896855
\(346\) 0 0
\(347\) 2040.66 0.315701 0.157851 0.987463i \(-0.449544\pi\)
0.157851 + 0.987463i \(0.449544\pi\)
\(348\) 0 0
\(349\) 4067.71 0.623896 0.311948 0.950099i \(-0.399019\pi\)
0.311948 + 0.950099i \(0.399019\pi\)
\(350\) 0 0
\(351\) 1033.39 0.157146
\(352\) 0 0
\(353\) −5470.21 −0.824787 −0.412394 0.911006i \(-0.635307\pi\)
−0.412394 + 0.911006i \(0.635307\pi\)
\(354\) 0 0
\(355\) 802.218 0.119936
\(356\) 0 0
\(357\) 8317.19 1.23303
\(358\) 0 0
\(359\) 6413.83 0.942922 0.471461 0.881887i \(-0.343727\pi\)
0.471461 + 0.881887i \(0.343727\pi\)
\(360\) 0 0
\(361\) −3628.48 −0.529011
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2824.10 0.404987
\(366\) 0 0
\(367\) −7863.74 −1.11848 −0.559242 0.829004i \(-0.688908\pi\)
−0.559242 + 0.829004i \(0.688908\pi\)
\(368\) 0 0
\(369\) 3697.54 0.521643
\(370\) 0 0
\(371\) 8391.08 1.17424
\(372\) 0 0
\(373\) 2794.19 0.387875 0.193938 0.981014i \(-0.437874\pi\)
0.193938 + 0.981014i \(0.437874\pi\)
\(374\) 0 0
\(375\) −1855.97 −0.255578
\(376\) 0 0
\(377\) −2991.37 −0.408657
\(378\) 0 0
\(379\) −3318.55 −0.449768 −0.224884 0.974385i \(-0.572200\pi\)
−0.224884 + 0.974385i \(0.572200\pi\)
\(380\) 0 0
\(381\) −894.606 −0.120294
\(382\) 0 0
\(383\) −4808.32 −0.641498 −0.320749 0.947164i \(-0.603935\pi\)
−0.320749 + 0.947164i \(0.603935\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −583.482 −0.0766409
\(388\) 0 0
\(389\) 2474.39 0.322511 0.161255 0.986913i \(-0.448446\pi\)
0.161255 + 0.986913i \(0.448446\pi\)
\(390\) 0 0
\(391\) 7995.75 1.03418
\(392\) 0 0
\(393\) −604.729 −0.0776197
\(394\) 0 0
\(395\) 550.049 0.0700657
\(396\) 0 0
\(397\) 11862.7 1.49967 0.749836 0.661624i \(-0.230132\pi\)
0.749836 + 0.661624i \(0.230132\pi\)
\(398\) 0 0
\(399\) 4458.80 0.559447
\(400\) 0 0
\(401\) −5696.44 −0.709393 −0.354697 0.934981i \(-0.615416\pi\)
−0.354697 + 0.934981i \(0.615416\pi\)
\(402\) 0 0
\(403\) 5415.01 0.669332
\(404\) 0 0
\(405\) −205.755 −0.0252445
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −40.5788 −0.00490585 −0.00245292 0.999997i \(-0.500781\pi\)
−0.00245292 + 0.999997i \(0.500781\pi\)
\(410\) 0 0
\(411\) 4171.54 0.500649
\(412\) 0 0
\(413\) 1319.28 0.157186
\(414\) 0 0
\(415\) 1102.63 0.130424
\(416\) 0 0
\(417\) 4910.14 0.576620
\(418\) 0 0
\(419\) 14629.9 1.70577 0.852887 0.522096i \(-0.174850\pi\)
0.852887 + 0.522096i \(0.174850\pi\)
\(420\) 0 0
\(421\) 11909.0 1.37865 0.689325 0.724452i \(-0.257907\pi\)
0.689325 + 0.724452i \(0.257907\pi\)
\(422\) 0 0
\(423\) 4016.11 0.461631
\(424\) 0 0
\(425\) −12568.6 −1.43451
\(426\) 0 0
\(427\) 1654.90 0.187556
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 15478.7 1.72989 0.864947 0.501864i \(-0.167352\pi\)
0.864947 + 0.501864i \(0.167352\pi\)
\(432\) 0 0
\(433\) 7213.51 0.800599 0.400299 0.916384i \(-0.368906\pi\)
0.400299 + 0.916384i \(0.368906\pi\)
\(434\) 0 0
\(435\) 595.602 0.0656481
\(436\) 0 0
\(437\) 4286.48 0.469222
\(438\) 0 0
\(439\) −546.724 −0.0594390 −0.0297195 0.999558i \(-0.509461\pi\)
−0.0297195 + 0.999558i \(0.509461\pi\)
\(440\) 0 0
\(441\) 3067.10 0.331184
\(442\) 0 0
\(443\) −12830.7 −1.37608 −0.688040 0.725672i \(-0.741529\pi\)
−0.688040 + 0.725672i \(0.741529\pi\)
\(444\) 0 0
\(445\) 3462.85 0.368887
\(446\) 0 0
\(447\) 3336.60 0.353056
\(448\) 0 0
\(449\) −2643.74 −0.277875 −0.138938 0.990301i \(-0.544369\pi\)
−0.138938 + 0.990301i \(0.544369\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −5088.25 −0.527742
\(454\) 0 0
\(455\) −2542.30 −0.261945
\(456\) 0 0
\(457\) 13267.2 1.35801 0.679007 0.734132i \(-0.262411\pi\)
0.679007 + 0.734132i \(0.262411\pi\)
\(458\) 0 0
\(459\) −2862.59 −0.291098
\(460\) 0 0
\(461\) −15562.1 −1.57223 −0.786115 0.618080i \(-0.787911\pi\)
−0.786115 + 0.618080i \(0.787911\pi\)
\(462\) 0 0
\(463\) 7233.58 0.726075 0.363038 0.931774i \(-0.381740\pi\)
0.363038 + 0.931774i \(0.381740\pi\)
\(464\) 0 0
\(465\) −1078.16 −0.107524
\(466\) 0 0
\(467\) −16335.6 −1.61867 −0.809335 0.587347i \(-0.800173\pi\)
−0.809335 + 0.587347i \(0.800173\pi\)
\(468\) 0 0
\(469\) 7788.46 0.766818
\(470\) 0 0
\(471\) 5664.43 0.554147
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −6737.96 −0.650860
\(476\) 0 0
\(477\) −2888.01 −0.277218
\(478\) 0 0
\(479\) 2714.83 0.258964 0.129482 0.991582i \(-0.458668\pi\)
0.129482 + 0.991582i \(0.458668\pi\)
\(480\) 0 0
\(481\) −9902.85 −0.938734
\(482\) 0 0
\(483\) 5916.25 0.557348
\(484\) 0 0
\(485\) −1923.37 −0.180073
\(486\) 0 0
\(487\) −17888.5 −1.66448 −0.832242 0.554413i \(-0.812943\pi\)
−0.832242 + 0.554413i \(0.812943\pi\)
\(488\) 0 0
\(489\) 10040.3 0.928500
\(490\) 0 0
\(491\) 4786.96 0.439985 0.219992 0.975502i \(-0.429397\pi\)
0.219992 + 0.975502i \(0.429397\pi\)
\(492\) 0 0
\(493\) 8286.38 0.756997
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8258.26 0.745339
\(498\) 0 0
\(499\) 16093.0 1.44373 0.721863 0.692036i \(-0.243286\pi\)
0.721863 + 0.692036i \(0.243286\pi\)
\(500\) 0 0
\(501\) 8898.56 0.793529
\(502\) 0 0
\(503\) 11735.7 1.04030 0.520149 0.854076i \(-0.325876\pi\)
0.520149 + 0.854076i \(0.325876\pi\)
\(504\) 0 0
\(505\) −4485.09 −0.395216
\(506\) 0 0
\(507\) 2196.37 0.192395
\(508\) 0 0
\(509\) 11803.6 1.02787 0.513934 0.857830i \(-0.328188\pi\)
0.513934 + 0.857830i \(0.328188\pi\)
\(510\) 0 0
\(511\) 29072.1 2.51678
\(512\) 0 0
\(513\) −1534.62 −0.132076
\(514\) 0 0
\(515\) 3429.76 0.293462
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −5873.25 −0.496738
\(520\) 0 0
\(521\) 13862.4 1.16569 0.582844 0.812584i \(-0.301940\pi\)
0.582844 + 0.812584i \(0.301940\pi\)
\(522\) 0 0
\(523\) −10358.4 −0.866041 −0.433021 0.901384i \(-0.642552\pi\)
−0.433021 + 0.901384i \(0.642552\pi\)
\(524\) 0 0
\(525\) −9299.82 −0.773100
\(526\) 0 0
\(527\) −15000.1 −1.23987
\(528\) 0 0
\(529\) −6479.40 −0.532539
\(530\) 0 0
\(531\) −454.066 −0.0371088
\(532\) 0 0
\(533\) −15724.3 −1.27785
\(534\) 0 0
\(535\) −1565.52 −0.126511
\(536\) 0 0
\(537\) 13247.3 1.06455
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −4978.41 −0.395635 −0.197818 0.980239i \(-0.563385\pi\)
−0.197818 + 0.980239i \(0.563385\pi\)
\(542\) 0 0
\(543\) −7237.55 −0.571994
\(544\) 0 0
\(545\) −3404.84 −0.267610
\(546\) 0 0
\(547\) −23106.8 −1.80617 −0.903085 0.429461i \(-0.858704\pi\)
−0.903085 + 0.429461i \(0.858704\pi\)
\(548\) 0 0
\(549\) −569.579 −0.0442788
\(550\) 0 0
\(551\) 4442.28 0.343462
\(552\) 0 0
\(553\) 5662.35 0.435421
\(554\) 0 0
\(555\) 1971.72 0.150802
\(556\) 0 0
\(557\) 5777.91 0.439530 0.219765 0.975553i \(-0.429471\pi\)
0.219765 + 0.975553i \(0.429471\pi\)
\(558\) 0 0
\(559\) 2481.33 0.187745
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 11244.8 0.841764 0.420882 0.907115i \(-0.361721\pi\)
0.420882 + 0.907115i \(0.361721\pi\)
\(564\) 0 0
\(565\) −4145.13 −0.308649
\(566\) 0 0
\(567\) −2118.10 −0.156881
\(568\) 0 0
\(569\) 6793.91 0.500555 0.250277 0.968174i \(-0.419478\pi\)
0.250277 + 0.968174i \(0.419478\pi\)
\(570\) 0 0
\(571\) −2275.66 −0.166784 −0.0833919 0.996517i \(-0.526575\pi\)
−0.0833919 + 0.996517i \(0.526575\pi\)
\(572\) 0 0
\(573\) 6731.73 0.490789
\(574\) 0 0
\(575\) −8940.40 −0.648418
\(576\) 0 0
\(577\) 14473.4 1.04425 0.522127 0.852868i \(-0.325139\pi\)
0.522127 + 0.852868i \(0.325139\pi\)
\(578\) 0 0
\(579\) 5515.00 0.395847
\(580\) 0 0
\(581\) 11350.8 0.810514
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 875.000 0.0618407
\(586\) 0 0
\(587\) −6820.80 −0.479599 −0.239800 0.970822i \(-0.577082\pi\)
−0.239800 + 0.970822i \(0.577082\pi\)
\(588\) 0 0
\(589\) −8041.46 −0.562551
\(590\) 0 0
\(591\) −10054.4 −0.699803
\(592\) 0 0
\(593\) −25294.8 −1.75166 −0.875830 0.482620i \(-0.839685\pi\)
−0.875830 + 0.482620i \(0.839685\pi\)
\(594\) 0 0
\(595\) 7042.40 0.485227
\(596\) 0 0
\(597\) 3097.15 0.212325
\(598\) 0 0
\(599\) −29190.2 −1.99111 −0.995557 0.0941563i \(-0.969985\pi\)
−0.995557 + 0.0941563i \(0.969985\pi\)
\(600\) 0 0
\(601\) 25784.6 1.75005 0.875023 0.484081i \(-0.160846\pi\)
0.875023 + 0.484081i \(0.160846\pi\)
\(602\) 0 0
\(603\) −2680.61 −0.181033
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −19498.5 −1.30382 −0.651910 0.758296i \(-0.726032\pi\)
−0.651910 + 0.758296i \(0.726032\pi\)
\(608\) 0 0
\(609\) 6131.30 0.407968
\(610\) 0 0
\(611\) −17079.0 −1.13084
\(612\) 0 0
\(613\) −9010.88 −0.593713 −0.296856 0.954922i \(-0.595938\pi\)
−0.296856 + 0.954922i \(0.595938\pi\)
\(614\) 0 0
\(615\) 3130.81 0.205279
\(616\) 0 0
\(617\) −10980.3 −0.716453 −0.358227 0.933635i \(-0.616618\pi\)
−0.358227 + 0.933635i \(0.616618\pi\)
\(618\) 0 0
\(619\) 12017.4 0.780322 0.390161 0.920747i \(-0.372419\pi\)
0.390161 + 0.920747i \(0.372419\pi\)
\(620\) 0 0
\(621\) −2036.24 −0.131580
\(622\) 0 0
\(623\) 35647.5 2.29244
\(624\) 0 0
\(625\) 13246.9 0.847804
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 27431.8 1.73891
\(630\) 0 0
\(631\) −23630.7 −1.49084 −0.745422 0.666593i \(-0.767752\pi\)
−0.745422 + 0.666593i \(0.767752\pi\)
\(632\) 0 0
\(633\) 4080.90 0.256242
\(634\) 0 0
\(635\) −757.488 −0.0473386
\(636\) 0 0
\(637\) −13043.2 −0.811291
\(638\) 0 0
\(639\) −2842.30 −0.175962
\(640\) 0 0
\(641\) −3972.80 −0.244799 −0.122400 0.992481i \(-0.539059\pi\)
−0.122400 + 0.992481i \(0.539059\pi\)
\(642\) 0 0
\(643\) −32135.8 −1.97094 −0.985469 0.169855i \(-0.945670\pi\)
−0.985469 + 0.169855i \(0.945670\pi\)
\(644\) 0 0
\(645\) −494.050 −0.0301600
\(646\) 0 0
\(647\) 30595.4 1.85909 0.929544 0.368711i \(-0.120201\pi\)
0.929544 + 0.368711i \(0.120201\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −11098.9 −0.668205
\(652\) 0 0
\(653\) 18867.1 1.13067 0.565333 0.824863i \(-0.308748\pi\)
0.565333 + 0.824863i \(0.308748\pi\)
\(654\) 0 0
\(655\) −512.041 −0.0305452
\(656\) 0 0
\(657\) −10005.9 −0.594169
\(658\) 0 0
\(659\) −14577.4 −0.861693 −0.430847 0.902425i \(-0.641785\pi\)
−0.430847 + 0.902425i \(0.641785\pi\)
\(660\) 0 0
\(661\) 27302.3 1.60656 0.803280 0.595601i \(-0.203086\pi\)
0.803280 + 0.595601i \(0.203086\pi\)
\(662\) 0 0
\(663\) 12173.5 0.713093
\(664\) 0 0
\(665\) 3775.39 0.220155
\(666\) 0 0
\(667\) 5894.33 0.342173
\(668\) 0 0
\(669\) −8728.11 −0.504407
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 9449.41 0.541230 0.270615 0.962688i \(-0.412773\pi\)
0.270615 + 0.962688i \(0.412773\pi\)
\(674\) 0 0
\(675\) 3200.78 0.182516
\(676\) 0 0
\(677\) 12013.6 0.682008 0.341004 0.940062i \(-0.389233\pi\)
0.341004 + 0.940062i \(0.389233\pi\)
\(678\) 0 0
\(679\) −19799.7 −1.11906
\(680\) 0 0
\(681\) 15365.1 0.864597
\(682\) 0 0
\(683\) 17624.3 0.987374 0.493687 0.869640i \(-0.335649\pi\)
0.493687 + 0.869640i \(0.335649\pi\)
\(684\) 0 0
\(685\) 3532.16 0.197017
\(686\) 0 0
\(687\) 17411.1 0.966921
\(688\) 0 0
\(689\) 12281.7 0.679092
\(690\) 0 0
\(691\) 19020.2 1.04713 0.523563 0.851987i \(-0.324603\pi\)
0.523563 + 0.851987i \(0.324603\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4157.55 0.226913
\(696\) 0 0
\(697\) 43557.7 2.36710
\(698\) 0 0
\(699\) −4451.68 −0.240884
\(700\) 0 0
\(701\) 4820.48 0.259725 0.129862 0.991532i \(-0.458546\pi\)
0.129862 + 0.991532i \(0.458546\pi\)
\(702\) 0 0
\(703\) 14706.0 0.788974
\(704\) 0 0
\(705\) 3400.55 0.181663
\(706\) 0 0
\(707\) −46170.8 −2.45606
\(708\) 0 0
\(709\) 9785.59 0.518343 0.259172 0.965831i \(-0.416550\pi\)
0.259172 + 0.965831i \(0.416550\pi\)
\(710\) 0 0
\(711\) −1948.85 −0.102796
\(712\) 0 0
\(713\) −10670.0 −0.560440
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −15270.6 −0.795383
\(718\) 0 0
\(719\) −27008.2 −1.40088 −0.700442 0.713709i \(-0.747014\pi\)
−0.700442 + 0.713709i \(0.747014\pi\)
\(720\) 0 0
\(721\) 35306.9 1.82371
\(722\) 0 0
\(723\) −6816.20 −0.350619
\(724\) 0 0
\(725\) −9265.36 −0.474630
\(726\) 0 0
\(727\) 22367.8 1.14109 0.570547 0.821265i \(-0.306731\pi\)
0.570547 + 0.821265i \(0.306731\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −6873.52 −0.347779
\(732\) 0 0
\(733\) −12665.6 −0.638218 −0.319109 0.947718i \(-0.603384\pi\)
−0.319109 + 0.947718i \(0.603384\pi\)
\(734\) 0 0
\(735\) 2597.00 0.130329
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 10981.0 0.546606 0.273303 0.961928i \(-0.411884\pi\)
0.273303 + 0.961928i \(0.411884\pi\)
\(740\) 0 0
\(741\) 6526.16 0.323542
\(742\) 0 0
\(743\) −7465.40 −0.368613 −0.184306 0.982869i \(-0.559004\pi\)
−0.184306 + 0.982869i \(0.559004\pi\)
\(744\) 0 0
\(745\) 2825.19 0.138936
\(746\) 0 0
\(747\) −3906.67 −0.191349
\(748\) 0 0
\(749\) −16115.9 −0.786200
\(750\) 0 0
\(751\) −12937.3 −0.628616 −0.314308 0.949321i \(-0.601772\pi\)
−0.314308 + 0.949321i \(0.601772\pi\)
\(752\) 0 0
\(753\) −1512.29 −0.0731885
\(754\) 0 0
\(755\) −4308.36 −0.207679
\(756\) 0 0
\(757\) 17792.8 0.854282 0.427141 0.904185i \(-0.359521\pi\)
0.427141 + 0.904185i \(0.359521\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −8522.14 −0.405949 −0.202975 0.979184i \(-0.565061\pi\)
−0.202975 + 0.979184i \(0.565061\pi\)
\(762\) 0 0
\(763\) −35050.4 −1.66305
\(764\) 0 0
\(765\) −2423.83 −0.114554
\(766\) 0 0
\(767\) 1930.98 0.0909043
\(768\) 0 0
\(769\) 23114.2 1.08390 0.541950 0.840411i \(-0.317686\pi\)
0.541950 + 0.840411i \(0.317686\pi\)
\(770\) 0 0
\(771\) 24133.9 1.12732
\(772\) 0 0
\(773\) −33994.2 −1.58174 −0.790871 0.611982i \(-0.790372\pi\)
−0.790871 + 0.611982i \(0.790372\pi\)
\(774\) 0 0
\(775\) 16772.2 0.777390
\(776\) 0 0
\(777\) 20297.5 0.937153
\(778\) 0 0
\(779\) 23351.1 1.07399
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −2110.25 −0.0963144
\(784\) 0 0
\(785\) 4796.23 0.218070
\(786\) 0 0
\(787\) −28390.5 −1.28591 −0.642956 0.765903i \(-0.722292\pi\)
−0.642956 + 0.765903i \(0.722292\pi\)
\(788\) 0 0
\(789\) −3211.40 −0.144904
\(790\) 0 0
\(791\) −42671.1 −1.91809
\(792\) 0 0
\(793\) 2422.21 0.108468
\(794\) 0 0
\(795\) −2445.36 −0.109092
\(796\) 0 0
\(797\) 17874.1 0.794394 0.397197 0.917733i \(-0.369983\pi\)
0.397197 + 0.917733i \(0.369983\pi\)
\(798\) 0 0
\(799\) 47310.5 2.09477
\(800\) 0 0
\(801\) −12269.1 −0.541206
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 5009.46 0.219329
\(806\) 0 0
\(807\) −1425.67 −0.0621885
\(808\) 0 0
\(809\) 28314.9 1.23053 0.615264 0.788321i \(-0.289049\pi\)
0.615264 + 0.788321i \(0.289049\pi\)
\(810\) 0 0
\(811\) 17968.1 0.777983 0.388991 0.921241i \(-0.372824\pi\)
0.388991 + 0.921241i \(0.372824\pi\)
\(812\) 0 0
\(813\) −11258.7 −0.485683
\(814\) 0 0
\(815\) 8501.37 0.365386
\(816\) 0 0
\(817\) −3684.86 −0.157793
\(818\) 0 0
\(819\) 9007.49 0.384307
\(820\) 0 0
\(821\) −24621.7 −1.04666 −0.523328 0.852131i \(-0.675310\pi\)
−0.523328 + 0.852131i \(0.675310\pi\)
\(822\) 0 0
\(823\) −39965.3 −1.69271 −0.846356 0.532618i \(-0.821208\pi\)
−0.846356 + 0.532618i \(0.821208\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −34404.2 −1.44662 −0.723308 0.690526i \(-0.757379\pi\)
−0.723308 + 0.690526i \(0.757379\pi\)
\(828\) 0 0
\(829\) 18352.3 0.768878 0.384439 0.923150i \(-0.374395\pi\)
0.384439 + 0.923150i \(0.374395\pi\)
\(830\) 0 0
\(831\) 3884.53 0.162158
\(832\) 0 0
\(833\) 36131.0 1.50284
\(834\) 0 0
\(835\) 7534.65 0.312272
\(836\) 0 0
\(837\) 3819.99 0.157752
\(838\) 0 0
\(839\) −11399.6 −0.469081 −0.234541 0.972106i \(-0.575359\pi\)
−0.234541 + 0.972106i \(0.575359\pi\)
\(840\) 0 0
\(841\) −18280.4 −0.749536
\(842\) 0 0
\(843\) 15737.5 0.642974
\(844\) 0 0
\(845\) 1859.73 0.0757119
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 23381.6 0.945177
\(850\) 0 0
\(851\) 19513.0 0.786013
\(852\) 0 0
\(853\) 27862.9 1.11842 0.559208 0.829027i \(-0.311105\pi\)
0.559208 + 0.829027i \(0.311105\pi\)
\(854\) 0 0
\(855\) −1299.40 −0.0519750
\(856\) 0 0
\(857\) −13579.1 −0.541253 −0.270626 0.962684i \(-0.587231\pi\)
−0.270626 + 0.962684i \(0.587231\pi\)
\(858\) 0 0
\(859\) 40540.1 1.61026 0.805128 0.593102i \(-0.202097\pi\)
0.805128 + 0.593102i \(0.202097\pi\)
\(860\) 0 0
\(861\) 32229.4 1.27570
\(862\) 0 0
\(863\) −15045.5 −0.593457 −0.296729 0.954962i \(-0.595896\pi\)
−0.296729 + 0.954962i \(0.595896\pi\)
\(864\) 0 0
\(865\) −4973.04 −0.195478
\(866\) 0 0
\(867\) −18982.8 −0.743586
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 11399.6 0.443470
\(872\) 0 0
\(873\) 6814.59 0.264191
\(874\) 0 0
\(875\) −16177.4 −0.625025
\(876\) 0 0
\(877\) −47716.1 −1.83724 −0.918620 0.395142i \(-0.870695\pi\)
−0.918620 + 0.395142i \(0.870695\pi\)
\(878\) 0 0
\(879\) 27268.6 1.04636
\(880\) 0 0
\(881\) 7586.63 0.290125 0.145062 0.989423i \(-0.453662\pi\)
0.145062 + 0.989423i \(0.453662\pi\)
\(882\) 0 0
\(883\) 23306.0 0.888232 0.444116 0.895969i \(-0.353518\pi\)
0.444116 + 0.895969i \(0.353518\pi\)
\(884\) 0 0
\(885\) −384.470 −0.0146032
\(886\) 0 0
\(887\) −23091.1 −0.874094 −0.437047 0.899439i \(-0.643976\pi\)
−0.437047 + 0.899439i \(0.643976\pi\)
\(888\) 0 0
\(889\) −7797.79 −0.294184
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 25362.9 0.950433
\(894\) 0 0
\(895\) 11216.9 0.418926
\(896\) 0 0
\(897\) 8659.37 0.322328
\(898\) 0 0
\(899\) −11057.8 −0.410232
\(900\) 0 0
\(901\) −34021.3 −1.25795
\(902\) 0 0
\(903\) −5085.89 −0.187428
\(904\) 0 0
\(905\) −6128.23 −0.225093
\(906\) 0 0
\(907\) 29259.3 1.07116 0.535578 0.844486i \(-0.320094\pi\)
0.535578 + 0.844486i \(0.320094\pi\)
\(908\) 0 0
\(909\) 15890.9 0.579833
\(910\) 0 0
\(911\) 9754.80 0.354765 0.177383 0.984142i \(-0.443237\pi\)
0.177383 + 0.984142i \(0.443237\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −482.278 −0.0174247
\(916\) 0 0
\(917\) −5271.09 −0.189822
\(918\) 0 0
\(919\) −12161.0 −0.436512 −0.218256 0.975892i \(-0.570037\pi\)
−0.218256 + 0.975892i \(0.570037\pi\)
\(920\) 0 0
\(921\) −18601.6 −0.665518
\(922\) 0 0
\(923\) 12087.3 0.431048
\(924\) 0 0
\(925\) −30672.7 −1.09028
\(926\) 0 0
\(927\) −12151.8 −0.430547
\(928\) 0 0
\(929\) −42434.8 −1.49865 −0.749323 0.662205i \(-0.769621\pi\)
−0.749323 + 0.662205i \(0.769621\pi\)
\(930\) 0 0
\(931\) 19369.6 0.681862
\(932\) 0 0
\(933\) 21688.3 0.761032
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −20602.8 −0.718319 −0.359159 0.933276i \(-0.616937\pi\)
−0.359159 + 0.933276i \(0.616937\pi\)
\(938\) 0 0
\(939\) −4764.45 −0.165583
\(940\) 0 0
\(941\) 11310.8 0.391839 0.195920 0.980620i \(-0.437231\pi\)
0.195920 + 0.980620i \(0.437231\pi\)
\(942\) 0 0
\(943\) 30983.8 1.06996
\(944\) 0 0
\(945\) −1793.45 −0.0617365
\(946\) 0 0
\(947\) −31990.9 −1.09774 −0.548872 0.835907i \(-0.684942\pi\)
−0.548872 + 0.835907i \(0.684942\pi\)
\(948\) 0 0
\(949\) 42551.6 1.45551
\(950\) 0 0
\(951\) −20745.2 −0.707371
\(952\) 0 0
\(953\) −55966.0 −1.90233 −0.951164 0.308687i \(-0.900111\pi\)
−0.951164 + 0.308687i \(0.900111\pi\)
\(954\) 0 0
\(955\) 5699.94 0.193137
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 36361.0 1.22436
\(960\) 0 0
\(961\) −9774.05 −0.328087
\(962\) 0 0
\(963\) 5546.73 0.185608
\(964\) 0 0
\(965\) 4669.70 0.155775
\(966\) 0 0
\(967\) 14964.4 0.497644 0.248822 0.968549i \(-0.419957\pi\)
0.248822 + 0.968549i \(0.419957\pi\)
\(968\) 0 0
\(969\) −18078.1 −0.599330
\(970\) 0 0
\(971\) −1529.46 −0.0505487 −0.0252743 0.999681i \(-0.508046\pi\)
−0.0252743 + 0.999681i \(0.508046\pi\)
\(972\) 0 0
\(973\) 42799.0 1.41015
\(974\) 0 0
\(975\) −13611.8 −0.447103
\(976\) 0 0
\(977\) 18436.2 0.603712 0.301856 0.953353i \(-0.402394\pi\)
0.301856 + 0.953353i \(0.402394\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 12063.5 0.392618
\(982\) 0 0
\(983\) −7901.56 −0.256379 −0.128189 0.991750i \(-0.540917\pi\)
−0.128189 + 0.991750i \(0.540917\pi\)
\(984\) 0 0
\(985\) −8513.36 −0.275389
\(986\) 0 0
\(987\) 35006.2 1.12894
\(988\) 0 0
\(989\) −4889.33 −0.157201
\(990\) 0 0
\(991\) −20000.2 −0.641097 −0.320548 0.947232i \(-0.603867\pi\)
−0.320548 + 0.947232i \(0.603867\pi\)
\(992\) 0 0
\(993\) 29403.5 0.939670
\(994\) 0 0
\(995\) 2622.44 0.0835548
\(996\) 0 0
\(997\) −23991.9 −0.762117 −0.381058 0.924551i \(-0.624440\pi\)
−0.381058 + 0.924551i \(0.624440\pi\)
\(998\) 0 0
\(999\) −6985.92 −0.221246
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1452.4.a.r.1.3 6
11.10 odd 2 inner 1452.4.a.r.1.4 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1452.4.a.r.1.3 6 1.1 even 1 trivial
1452.4.a.r.1.4 yes 6 11.10 odd 2 inner