Properties

Label 1452.4.a.o.1.3
Level $1452$
Weight $4$
Character 1452.1
Self dual yes
Analytic conductor $85.671$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,4,Mod(1,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1452.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-12,0,-6,0,-11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(85.6707733283\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.885025.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 93x^{2} + 94x + 2189 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(7.04048\) of defining polynomial
Character \(\chi\) \(=\) 1452.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -1.66773 q^{5} +27.3211 q^{7} +9.00000 q^{9} -6.61093 q^{13} +5.00318 q^{15} -25.9424 q^{17} -25.0751 q^{19} -81.9633 q^{21} -89.6533 q^{23} -122.219 q^{25} -27.0000 q^{27} +181.874 q^{29} +62.9586 q^{31} -45.5641 q^{35} -332.007 q^{37} +19.8328 q^{39} -41.3231 q^{41} -9.61174 q^{43} -15.0095 q^{45} -360.922 q^{47} +403.443 q^{49} +77.8271 q^{51} -513.601 q^{53} +75.2252 q^{57} +211.844 q^{59} +645.477 q^{61} +245.890 q^{63} +11.0252 q^{65} +947.111 q^{67} +268.960 q^{69} +486.431 q^{71} -795.268 q^{73} +366.656 q^{75} +652.849 q^{79} +81.0000 q^{81} -1421.81 q^{83} +43.2647 q^{85} -545.621 q^{87} -754.014 q^{89} -180.618 q^{91} -188.876 q^{93} +41.8183 q^{95} +446.787 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{3} - 6 q^{5} - 11 q^{7} + 36 q^{9} + 158 q^{13} + 18 q^{15} - 117 q^{17} - 139 q^{19} + 33 q^{21} - 174 q^{23} - 122 q^{25} - 108 q^{27} - 177 q^{29} + 104 q^{31} + 285 q^{35} + 240 q^{37} - 474 q^{39}+ \cdots + 2016 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) −1.66773 −0.149166 −0.0745829 0.997215i \(-0.523763\pi\)
−0.0745829 + 0.997215i \(0.523763\pi\)
\(6\) 0 0
\(7\) 27.3211 1.47520 0.737600 0.675237i \(-0.235959\pi\)
0.737600 + 0.675237i \(0.235959\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −6.61093 −0.141042 −0.0705209 0.997510i \(-0.522466\pi\)
−0.0705209 + 0.997510i \(0.522466\pi\)
\(14\) 0 0
\(15\) 5.00318 0.0861210
\(16\) 0 0
\(17\) −25.9424 −0.370115 −0.185057 0.982728i \(-0.559247\pi\)
−0.185057 + 0.982728i \(0.559247\pi\)
\(18\) 0 0
\(19\) −25.0751 −0.302769 −0.151385 0.988475i \(-0.548373\pi\)
−0.151385 + 0.988475i \(0.548373\pi\)
\(20\) 0 0
\(21\) −81.9633 −0.851708
\(22\) 0 0
\(23\) −89.6533 −0.812783 −0.406391 0.913699i \(-0.633213\pi\)
−0.406391 + 0.913699i \(0.633213\pi\)
\(24\) 0 0
\(25\) −122.219 −0.977750
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 181.874 1.16459 0.582294 0.812978i \(-0.302155\pi\)
0.582294 + 0.812978i \(0.302155\pi\)
\(30\) 0 0
\(31\) 62.9586 0.364765 0.182382 0.983228i \(-0.441619\pi\)
0.182382 + 0.983228i \(0.441619\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −45.5641 −0.220050
\(36\) 0 0
\(37\) −332.007 −1.47518 −0.737588 0.675251i \(-0.764035\pi\)
−0.737588 + 0.675251i \(0.764035\pi\)
\(38\) 0 0
\(39\) 19.8328 0.0814305
\(40\) 0 0
\(41\) −41.3231 −0.157405 −0.0787023 0.996898i \(-0.525078\pi\)
−0.0787023 + 0.996898i \(0.525078\pi\)
\(42\) 0 0
\(43\) −9.61174 −0.0340878 −0.0170439 0.999855i \(-0.505426\pi\)
−0.0170439 + 0.999855i \(0.505426\pi\)
\(44\) 0 0
\(45\) −15.0095 −0.0497220
\(46\) 0 0
\(47\) −360.922 −1.12013 −0.560063 0.828450i \(-0.689223\pi\)
−0.560063 + 0.828450i \(0.689223\pi\)
\(48\) 0 0
\(49\) 403.443 1.17622
\(50\) 0 0
\(51\) 77.8271 0.213686
\(52\) 0 0
\(53\) −513.601 −1.33110 −0.665552 0.746352i \(-0.731804\pi\)
−0.665552 + 0.746352i \(0.731804\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 75.2252 0.174804
\(58\) 0 0
\(59\) 211.844 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(60\) 0 0
\(61\) 645.477 1.35483 0.677417 0.735599i \(-0.263099\pi\)
0.677417 + 0.735599i \(0.263099\pi\)
\(62\) 0 0
\(63\) 245.890 0.491734
\(64\) 0 0
\(65\) 11.0252 0.0210386
\(66\) 0 0
\(67\) 947.111 1.72699 0.863493 0.504361i \(-0.168272\pi\)
0.863493 + 0.504361i \(0.168272\pi\)
\(68\) 0 0
\(69\) 268.960 0.469260
\(70\) 0 0
\(71\) 486.431 0.813081 0.406540 0.913633i \(-0.366735\pi\)
0.406540 + 0.913633i \(0.366735\pi\)
\(72\) 0 0
\(73\) −795.268 −1.27506 −0.637528 0.770427i \(-0.720043\pi\)
−0.637528 + 0.770427i \(0.720043\pi\)
\(74\) 0 0
\(75\) 366.656 0.564504
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 652.849 0.929762 0.464881 0.885373i \(-0.346097\pi\)
0.464881 + 0.885373i \(0.346097\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −1421.81 −1.88028 −0.940141 0.340785i \(-0.889307\pi\)
−0.940141 + 0.340785i \(0.889307\pi\)
\(84\) 0 0
\(85\) 43.2647 0.0552085
\(86\) 0 0
\(87\) −545.621 −0.672376
\(88\) 0 0
\(89\) −754.014 −0.898038 −0.449019 0.893522i \(-0.648226\pi\)
−0.449019 + 0.893522i \(0.648226\pi\)
\(90\) 0 0
\(91\) −180.618 −0.208065
\(92\) 0 0
\(93\) −188.876 −0.210597
\(94\) 0 0
\(95\) 41.8183 0.0451628
\(96\) 0 0
\(97\) 446.787 0.467674 0.233837 0.972276i \(-0.424872\pi\)
0.233837 + 0.972276i \(0.424872\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1254.57 1.23598 0.617990 0.786186i \(-0.287947\pi\)
0.617990 + 0.786186i \(0.287947\pi\)
\(102\) 0 0
\(103\) 582.126 0.556880 0.278440 0.960454i \(-0.410183\pi\)
0.278440 + 0.960454i \(0.410183\pi\)
\(104\) 0 0
\(105\) 136.692 0.127046
\(106\) 0 0
\(107\) −561.090 −0.506940 −0.253470 0.967343i \(-0.581572\pi\)
−0.253470 + 0.967343i \(0.581572\pi\)
\(108\) 0 0
\(109\) −1339.20 −1.17681 −0.588405 0.808566i \(-0.700244\pi\)
−0.588405 + 0.808566i \(0.700244\pi\)
\(110\) 0 0
\(111\) 996.020 0.851694
\(112\) 0 0
\(113\) −863.293 −0.718688 −0.359344 0.933205i \(-0.617000\pi\)
−0.359344 + 0.933205i \(0.617000\pi\)
\(114\) 0 0
\(115\) 149.517 0.121239
\(116\) 0 0
\(117\) −59.4984 −0.0470139
\(118\) 0 0
\(119\) −708.774 −0.545993
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 123.969 0.0908776
\(124\) 0 0
\(125\) 412.293 0.295013
\(126\) 0 0
\(127\) −2328.51 −1.62694 −0.813472 0.581604i \(-0.802425\pi\)
−0.813472 + 0.581604i \(0.802425\pi\)
\(128\) 0 0
\(129\) 28.8352 0.0196806
\(130\) 0 0
\(131\) −762.449 −0.508515 −0.254257 0.967137i \(-0.581831\pi\)
−0.254257 + 0.967137i \(0.581831\pi\)
\(132\) 0 0
\(133\) −685.078 −0.446645
\(134\) 0 0
\(135\) 45.0286 0.0287070
\(136\) 0 0
\(137\) 879.336 0.548370 0.274185 0.961677i \(-0.411592\pi\)
0.274185 + 0.961677i \(0.411592\pi\)
\(138\) 0 0
\(139\) 513.121 0.313111 0.156555 0.987669i \(-0.449961\pi\)
0.156555 + 0.987669i \(0.449961\pi\)
\(140\) 0 0
\(141\) 1082.77 0.646705
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −303.315 −0.173717
\(146\) 0 0
\(147\) −1210.33 −0.679089
\(148\) 0 0
\(149\) −944.681 −0.519405 −0.259702 0.965689i \(-0.583624\pi\)
−0.259702 + 0.965689i \(0.583624\pi\)
\(150\) 0 0
\(151\) 1725.70 0.930036 0.465018 0.885301i \(-0.346048\pi\)
0.465018 + 0.885301i \(0.346048\pi\)
\(152\) 0 0
\(153\) −233.481 −0.123372
\(154\) 0 0
\(155\) −104.998 −0.0544104
\(156\) 0 0
\(157\) −2339.29 −1.18914 −0.594571 0.804043i \(-0.702678\pi\)
−0.594571 + 0.804043i \(0.702678\pi\)
\(158\) 0 0
\(159\) 1540.80 0.768513
\(160\) 0 0
\(161\) −2449.43 −1.19902
\(162\) 0 0
\(163\) 2350.19 1.12933 0.564665 0.825320i \(-0.309005\pi\)
0.564665 + 0.825320i \(0.309005\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3373.46 −1.56315 −0.781576 0.623810i \(-0.785584\pi\)
−0.781576 + 0.623810i \(0.785584\pi\)
\(168\) 0 0
\(169\) −2153.30 −0.980107
\(170\) 0 0
\(171\) −225.675 −0.100923
\(172\) 0 0
\(173\) −1789.32 −0.786356 −0.393178 0.919462i \(-0.628624\pi\)
−0.393178 + 0.919462i \(0.628624\pi\)
\(174\) 0 0
\(175\) −3339.15 −1.44238
\(176\) 0 0
\(177\) −635.533 −0.269885
\(178\) 0 0
\(179\) −3344.50 −1.39653 −0.698267 0.715837i \(-0.746045\pi\)
−0.698267 + 0.715837i \(0.746045\pi\)
\(180\) 0 0
\(181\) 1778.16 0.730219 0.365110 0.930965i \(-0.381031\pi\)
0.365110 + 0.930965i \(0.381031\pi\)
\(182\) 0 0
\(183\) −1936.43 −0.782214
\(184\) 0 0
\(185\) 553.696 0.220046
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −737.670 −0.283903
\(190\) 0 0
\(191\) −3908.30 −1.48060 −0.740300 0.672277i \(-0.765316\pi\)
−0.740300 + 0.672277i \(0.765316\pi\)
\(192\) 0 0
\(193\) −359.764 −0.134178 −0.0670892 0.997747i \(-0.521371\pi\)
−0.0670892 + 0.997747i \(0.521371\pi\)
\(194\) 0 0
\(195\) −33.0757 −0.0121467
\(196\) 0 0
\(197\) −4139.93 −1.49725 −0.748624 0.662995i \(-0.769285\pi\)
−0.748624 + 0.662995i \(0.769285\pi\)
\(198\) 0 0
\(199\) −3664.80 −1.30548 −0.652740 0.757582i \(-0.726381\pi\)
−0.652740 + 0.757582i \(0.726381\pi\)
\(200\) 0 0
\(201\) −2841.33 −0.997076
\(202\) 0 0
\(203\) 4968.99 1.71800
\(204\) 0 0
\(205\) 68.9156 0.0234794
\(206\) 0 0
\(207\) −806.879 −0.270928
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1653.43 −0.539465 −0.269733 0.962935i \(-0.586935\pi\)
−0.269733 + 0.962935i \(0.586935\pi\)
\(212\) 0 0
\(213\) −1459.29 −0.469432
\(214\) 0 0
\(215\) 16.0297 0.00508474
\(216\) 0 0
\(217\) 1720.10 0.538101
\(218\) 0 0
\(219\) 2385.80 0.736154
\(220\) 0 0
\(221\) 171.503 0.0522016
\(222\) 0 0
\(223\) −74.3016 −0.0223121 −0.0111561 0.999938i \(-0.503551\pi\)
−0.0111561 + 0.999938i \(0.503551\pi\)
\(224\) 0 0
\(225\) −1099.97 −0.325917
\(226\) 0 0
\(227\) −5850.02 −1.71048 −0.855241 0.518231i \(-0.826591\pi\)
−0.855241 + 0.518231i \(0.826591\pi\)
\(228\) 0 0
\(229\) 2051.85 0.592097 0.296048 0.955173i \(-0.404331\pi\)
0.296048 + 0.955173i \(0.404331\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4407.45 1.23924 0.619618 0.784904i \(-0.287288\pi\)
0.619618 + 0.784904i \(0.287288\pi\)
\(234\) 0 0
\(235\) 601.919 0.167084
\(236\) 0 0
\(237\) −1958.55 −0.536799
\(238\) 0 0
\(239\) 1411.70 0.382072 0.191036 0.981583i \(-0.438815\pi\)
0.191036 + 0.981583i \(0.438815\pi\)
\(240\) 0 0
\(241\) −1511.63 −0.404035 −0.202018 0.979382i \(-0.564750\pi\)
−0.202018 + 0.979382i \(0.564750\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) −672.831 −0.175451
\(246\) 0 0
\(247\) 165.770 0.0427031
\(248\) 0 0
\(249\) 4265.42 1.08558
\(250\) 0 0
\(251\) 4759.95 1.19699 0.598497 0.801125i \(-0.295765\pi\)
0.598497 + 0.801125i \(0.295765\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −129.794 −0.0318746
\(256\) 0 0
\(257\) 6414.55 1.55692 0.778461 0.627693i \(-0.216001\pi\)
0.778461 + 0.627693i \(0.216001\pi\)
\(258\) 0 0
\(259\) −9070.78 −2.17618
\(260\) 0 0
\(261\) 1636.86 0.388196
\(262\) 0 0
\(263\) −6345.85 −1.48784 −0.743920 0.668269i \(-0.767036\pi\)
−0.743920 + 0.668269i \(0.767036\pi\)
\(264\) 0 0
\(265\) 856.545 0.198555
\(266\) 0 0
\(267\) 2262.04 0.518482
\(268\) 0 0
\(269\) 977.706 0.221605 0.110803 0.993842i \(-0.464658\pi\)
0.110803 + 0.993842i \(0.464658\pi\)
\(270\) 0 0
\(271\) −3415.84 −0.765673 −0.382837 0.923816i \(-0.625053\pi\)
−0.382837 + 0.923816i \(0.625053\pi\)
\(272\) 0 0
\(273\) 541.854 0.120126
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 3537.59 0.767340 0.383670 0.923470i \(-0.374660\pi\)
0.383670 + 0.923470i \(0.374660\pi\)
\(278\) 0 0
\(279\) 566.628 0.121588
\(280\) 0 0
\(281\) −4012.49 −0.851833 −0.425917 0.904762i \(-0.640048\pi\)
−0.425917 + 0.904762i \(0.640048\pi\)
\(282\) 0 0
\(283\) −2856.26 −0.599954 −0.299977 0.953946i \(-0.596979\pi\)
−0.299977 + 0.953946i \(0.596979\pi\)
\(284\) 0 0
\(285\) −125.455 −0.0260748
\(286\) 0 0
\(287\) −1128.99 −0.232203
\(288\) 0 0
\(289\) −4239.99 −0.863015
\(290\) 0 0
\(291\) −1340.36 −0.270012
\(292\) 0 0
\(293\) −6744.61 −1.34479 −0.672397 0.740191i \(-0.734735\pi\)
−0.672397 + 0.740191i \(0.734735\pi\)
\(294\) 0 0
\(295\) −353.298 −0.0697282
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 592.692 0.114636
\(300\) 0 0
\(301\) −262.603 −0.0502864
\(302\) 0 0
\(303\) −3763.70 −0.713593
\(304\) 0 0
\(305\) −1076.48 −0.202095
\(306\) 0 0
\(307\) 3900.45 0.725116 0.362558 0.931961i \(-0.381904\pi\)
0.362558 + 0.931961i \(0.381904\pi\)
\(308\) 0 0
\(309\) −1746.38 −0.321515
\(310\) 0 0
\(311\) 5428.47 0.989775 0.494888 0.868957i \(-0.335209\pi\)
0.494888 + 0.868957i \(0.335209\pi\)
\(312\) 0 0
\(313\) 5143.49 0.928841 0.464421 0.885615i \(-0.346263\pi\)
0.464421 + 0.885615i \(0.346263\pi\)
\(314\) 0 0
\(315\) −410.077 −0.0733499
\(316\) 0 0
\(317\) 2628.40 0.465697 0.232848 0.972513i \(-0.425195\pi\)
0.232848 + 0.972513i \(0.425195\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 1683.27 0.292682
\(322\) 0 0
\(323\) 650.506 0.112059
\(324\) 0 0
\(325\) 807.980 0.137904
\(326\) 0 0
\(327\) 4017.61 0.679432
\(328\) 0 0
\(329\) −9860.79 −1.65241
\(330\) 0 0
\(331\) 2053.63 0.341020 0.170510 0.985356i \(-0.445459\pi\)
0.170510 + 0.985356i \(0.445459\pi\)
\(332\) 0 0
\(333\) −2988.06 −0.491726
\(334\) 0 0
\(335\) −1579.52 −0.257607
\(336\) 0 0
\(337\) 191.631 0.0309757 0.0154878 0.999880i \(-0.495070\pi\)
0.0154878 + 0.999880i \(0.495070\pi\)
\(338\) 0 0
\(339\) 2589.88 0.414935
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 1651.36 0.259956
\(344\) 0 0
\(345\) −448.551 −0.0699976
\(346\) 0 0
\(347\) 7135.84 1.10395 0.551977 0.833859i \(-0.313874\pi\)
0.551977 + 0.833859i \(0.313874\pi\)
\(348\) 0 0
\(349\) 4635.13 0.710924 0.355462 0.934691i \(-0.384323\pi\)
0.355462 + 0.934691i \(0.384323\pi\)
\(350\) 0 0
\(351\) 178.495 0.0271435
\(352\) 0 0
\(353\) 8016.13 1.20866 0.604328 0.796736i \(-0.293442\pi\)
0.604328 + 0.796736i \(0.293442\pi\)
\(354\) 0 0
\(355\) −811.233 −0.121284
\(356\) 0 0
\(357\) 2126.32 0.315229
\(358\) 0 0
\(359\) −1255.97 −0.184645 −0.0923223 0.995729i \(-0.529429\pi\)
−0.0923223 + 0.995729i \(0.529429\pi\)
\(360\) 0 0
\(361\) −6230.24 −0.908331
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1326.29 0.190195
\(366\) 0 0
\(367\) −13377.7 −1.90275 −0.951375 0.308036i \(-0.900328\pi\)
−0.951375 + 0.308036i \(0.900328\pi\)
\(368\) 0 0
\(369\) −371.908 −0.0524682
\(370\) 0 0
\(371\) −14032.1 −1.96364
\(372\) 0 0
\(373\) 9231.57 1.28148 0.640741 0.767757i \(-0.278627\pi\)
0.640741 + 0.767757i \(0.278627\pi\)
\(374\) 0 0
\(375\) −1236.88 −0.170326
\(376\) 0 0
\(377\) −1202.35 −0.164256
\(378\) 0 0
\(379\) −2186.92 −0.296397 −0.148198 0.988958i \(-0.547347\pi\)
−0.148198 + 0.988958i \(0.547347\pi\)
\(380\) 0 0
\(381\) 6985.53 0.939317
\(382\) 0 0
\(383\) −14022.7 −1.87082 −0.935411 0.353562i \(-0.884970\pi\)
−0.935411 + 0.353562i \(0.884970\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −86.5056 −0.0113626
\(388\) 0 0
\(389\) 9801.96 1.27758 0.638790 0.769381i \(-0.279435\pi\)
0.638790 + 0.769381i \(0.279435\pi\)
\(390\) 0 0
\(391\) 2325.82 0.300823
\(392\) 0 0
\(393\) 2287.35 0.293591
\(394\) 0 0
\(395\) −1088.77 −0.138689
\(396\) 0 0
\(397\) 10353.5 1.30889 0.654445 0.756109i \(-0.272902\pi\)
0.654445 + 0.756109i \(0.272902\pi\)
\(398\) 0 0
\(399\) 2055.23 0.257871
\(400\) 0 0
\(401\) 10636.7 1.32461 0.662307 0.749232i \(-0.269577\pi\)
0.662307 + 0.749232i \(0.269577\pi\)
\(402\) 0 0
\(403\) −416.215 −0.0514471
\(404\) 0 0
\(405\) −135.086 −0.0165740
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −10369.1 −1.25359 −0.626794 0.779185i \(-0.715633\pi\)
−0.626794 + 0.779185i \(0.715633\pi\)
\(410\) 0 0
\(411\) −2638.01 −0.316602
\(412\) 0 0
\(413\) 5787.82 0.689588
\(414\) 0 0
\(415\) 2371.18 0.280474
\(416\) 0 0
\(417\) −1539.36 −0.180775
\(418\) 0 0
\(419\) −16756.8 −1.95375 −0.976876 0.213809i \(-0.931413\pi\)
−0.976876 + 0.213809i \(0.931413\pi\)
\(420\) 0 0
\(421\) −6222.69 −0.720369 −0.360185 0.932881i \(-0.617286\pi\)
−0.360185 + 0.932881i \(0.617286\pi\)
\(422\) 0 0
\(423\) −3248.30 −0.373375
\(424\) 0 0
\(425\) 3170.64 0.361879
\(426\) 0 0
\(427\) 17635.1 1.99865
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −3917.50 −0.437817 −0.218909 0.975745i \(-0.570250\pi\)
−0.218909 + 0.975745i \(0.570250\pi\)
\(432\) 0 0
\(433\) −8133.11 −0.902661 −0.451330 0.892357i \(-0.649050\pi\)
−0.451330 + 0.892357i \(0.649050\pi\)
\(434\) 0 0
\(435\) 909.945 0.100295
\(436\) 0 0
\(437\) 2248.06 0.246085
\(438\) 0 0
\(439\) −7855.20 −0.854006 −0.427003 0.904250i \(-0.640431\pi\)
−0.427003 + 0.904250i \(0.640431\pi\)
\(440\) 0 0
\(441\) 3630.98 0.392072
\(442\) 0 0
\(443\) −15877.0 −1.70279 −0.851397 0.524522i \(-0.824244\pi\)
−0.851397 + 0.524522i \(0.824244\pi\)
\(444\) 0 0
\(445\) 1257.49 0.133957
\(446\) 0 0
\(447\) 2834.04 0.299878
\(448\) 0 0
\(449\) −17223.2 −1.81027 −0.905137 0.425121i \(-0.860232\pi\)
−0.905137 + 0.425121i \(0.860232\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −5177.10 −0.536957
\(454\) 0 0
\(455\) 301.221 0.0310362
\(456\) 0 0
\(457\) 10859.3 1.11154 0.555771 0.831335i \(-0.312423\pi\)
0.555771 + 0.831335i \(0.312423\pi\)
\(458\) 0 0
\(459\) 700.444 0.0712286
\(460\) 0 0
\(461\) 6639.83 0.670820 0.335410 0.942072i \(-0.391125\pi\)
0.335410 + 0.942072i \(0.391125\pi\)
\(462\) 0 0
\(463\) −1039.92 −0.104383 −0.0521913 0.998637i \(-0.516621\pi\)
−0.0521913 + 0.998637i \(0.516621\pi\)
\(464\) 0 0
\(465\) 314.993 0.0314139
\(466\) 0 0
\(467\) −1886.23 −0.186904 −0.0934519 0.995624i \(-0.529790\pi\)
−0.0934519 + 0.995624i \(0.529790\pi\)
\(468\) 0 0
\(469\) 25876.1 2.54765
\(470\) 0 0
\(471\) 7017.86 0.686552
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 3064.64 0.296032
\(476\) 0 0
\(477\) −4622.41 −0.443701
\(478\) 0 0
\(479\) −7128.06 −0.679936 −0.339968 0.940437i \(-0.610416\pi\)
−0.339968 + 0.940437i \(0.610416\pi\)
\(480\) 0 0
\(481\) 2194.87 0.208062
\(482\) 0 0
\(483\) 7348.28 0.692253
\(484\) 0 0
\(485\) −745.118 −0.0697610
\(486\) 0 0
\(487\) 11726.1 1.09109 0.545543 0.838083i \(-0.316324\pi\)
0.545543 + 0.838083i \(0.316324\pi\)
\(488\) 0 0
\(489\) −7050.56 −0.652020
\(490\) 0 0
\(491\) 514.617 0.0473001 0.0236501 0.999720i \(-0.492471\pi\)
0.0236501 + 0.999720i \(0.492471\pi\)
\(492\) 0 0
\(493\) −4718.23 −0.431031
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 13289.8 1.19946
\(498\) 0 0
\(499\) 17802.4 1.59708 0.798542 0.601939i \(-0.205605\pi\)
0.798542 + 0.601939i \(0.205605\pi\)
\(500\) 0 0
\(501\) 10120.4 0.902487
\(502\) 0 0
\(503\) −16949.1 −1.50243 −0.751217 0.660055i \(-0.770533\pi\)
−0.751217 + 0.660055i \(0.770533\pi\)
\(504\) 0 0
\(505\) −2092.27 −0.184366
\(506\) 0 0
\(507\) 6459.89 0.565865
\(508\) 0 0
\(509\) 5216.69 0.454274 0.227137 0.973863i \(-0.427063\pi\)
0.227137 + 0.973863i \(0.427063\pi\)
\(510\) 0 0
\(511\) −21727.6 −1.88096
\(512\) 0 0
\(513\) 677.026 0.0582679
\(514\) 0 0
\(515\) −970.827 −0.0830675
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 5367.97 0.454003
\(520\) 0 0
\(521\) 13965.1 1.17432 0.587162 0.809470i \(-0.300245\pi\)
0.587162 + 0.809470i \(0.300245\pi\)
\(522\) 0 0
\(523\) 938.690 0.0784819 0.0392410 0.999230i \(-0.487506\pi\)
0.0392410 + 0.999230i \(0.487506\pi\)
\(524\) 0 0
\(525\) 10017.4 0.832757
\(526\) 0 0
\(527\) −1633.30 −0.135005
\(528\) 0 0
\(529\) −4129.29 −0.339384
\(530\) 0 0
\(531\) 1906.60 0.155818
\(532\) 0 0
\(533\) 273.184 0.0222006
\(534\) 0 0
\(535\) 935.743 0.0756182
\(536\) 0 0
\(537\) 10033.5 0.806289
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 15255.6 1.21237 0.606183 0.795325i \(-0.292700\pi\)
0.606183 + 0.795325i \(0.292700\pi\)
\(542\) 0 0
\(543\) −5334.48 −0.421592
\(544\) 0 0
\(545\) 2233.42 0.175540
\(546\) 0 0
\(547\) 9060.49 0.708224 0.354112 0.935203i \(-0.384783\pi\)
0.354112 + 0.935203i \(0.384783\pi\)
\(548\) 0 0
\(549\) 5809.30 0.451611
\(550\) 0 0
\(551\) −4560.49 −0.352601
\(552\) 0 0
\(553\) 17836.5 1.37159
\(554\) 0 0
\(555\) −1661.09 −0.127044
\(556\) 0 0
\(557\) −12659.4 −0.963011 −0.481506 0.876443i \(-0.659910\pi\)
−0.481506 + 0.876443i \(0.659910\pi\)
\(558\) 0 0
\(559\) 63.5426 0.00480781
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −17572.5 −1.31544 −0.657722 0.753261i \(-0.728480\pi\)
−0.657722 + 0.753261i \(0.728480\pi\)
\(564\) 0 0
\(565\) 1439.74 0.107204
\(566\) 0 0
\(567\) 2213.01 0.163911
\(568\) 0 0
\(569\) −23691.6 −1.74553 −0.872764 0.488143i \(-0.837675\pi\)
−0.872764 + 0.488143i \(0.837675\pi\)
\(570\) 0 0
\(571\) 25916.4 1.89942 0.949709 0.313134i \(-0.101379\pi\)
0.949709 + 0.313134i \(0.101379\pi\)
\(572\) 0 0
\(573\) 11724.9 0.854825
\(574\) 0 0
\(575\) 10957.3 0.794698
\(576\) 0 0
\(577\) −13650.5 −0.984880 −0.492440 0.870346i \(-0.663895\pi\)
−0.492440 + 0.870346i \(0.663895\pi\)
\(578\) 0 0
\(579\) 1079.29 0.0774679
\(580\) 0 0
\(581\) −38845.3 −2.77379
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 99.2270 0.00701287
\(586\) 0 0
\(587\) 18316.7 1.28792 0.643961 0.765058i \(-0.277290\pi\)
0.643961 + 0.765058i \(0.277290\pi\)
\(588\) 0 0
\(589\) −1578.69 −0.110439
\(590\) 0 0
\(591\) 12419.8 0.864436
\(592\) 0 0
\(593\) 17082.6 1.18296 0.591481 0.806319i \(-0.298543\pi\)
0.591481 + 0.806319i \(0.298543\pi\)
\(594\) 0 0
\(595\) 1182.04 0.0814436
\(596\) 0 0
\(597\) 10994.4 0.753719
\(598\) 0 0
\(599\) −6204.85 −0.423244 −0.211622 0.977352i \(-0.567875\pi\)
−0.211622 + 0.977352i \(0.567875\pi\)
\(600\) 0 0
\(601\) 11452.0 0.777263 0.388631 0.921393i \(-0.372948\pi\)
0.388631 + 0.921393i \(0.372948\pi\)
\(602\) 0 0
\(603\) 8524.00 0.575662
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −20401.6 −1.36421 −0.682106 0.731253i \(-0.738936\pi\)
−0.682106 + 0.731253i \(0.738936\pi\)
\(608\) 0 0
\(609\) −14907.0 −0.991889
\(610\) 0 0
\(611\) 2386.03 0.157985
\(612\) 0 0
\(613\) 8446.77 0.556545 0.278272 0.960502i \(-0.410238\pi\)
0.278272 + 0.960502i \(0.410238\pi\)
\(614\) 0 0
\(615\) −206.747 −0.0135558
\(616\) 0 0
\(617\) 4392.68 0.286617 0.143309 0.989678i \(-0.454226\pi\)
0.143309 + 0.989678i \(0.454226\pi\)
\(618\) 0 0
\(619\) 26484.1 1.71968 0.859842 0.510560i \(-0.170562\pi\)
0.859842 + 0.510560i \(0.170562\pi\)
\(620\) 0 0
\(621\) 2420.64 0.156420
\(622\) 0 0
\(623\) −20600.5 −1.32479
\(624\) 0 0
\(625\) 14589.7 0.933744
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8613.04 0.545985
\(630\) 0 0
\(631\) −3349.81 −0.211337 −0.105669 0.994401i \(-0.533698\pi\)
−0.105669 + 0.994401i \(0.533698\pi\)
\(632\) 0 0
\(633\) 4960.30 0.311460
\(634\) 0 0
\(635\) 3883.32 0.242684
\(636\) 0 0
\(637\) −2667.13 −0.165896
\(638\) 0 0
\(639\) 4377.88 0.271027
\(640\) 0 0
\(641\) 1260.72 0.0776842 0.0388421 0.999245i \(-0.487633\pi\)
0.0388421 + 0.999245i \(0.487633\pi\)
\(642\) 0 0
\(643\) 13766.3 0.844308 0.422154 0.906524i \(-0.361274\pi\)
0.422154 + 0.906524i \(0.361274\pi\)
\(644\) 0 0
\(645\) −48.0892 −0.00293568
\(646\) 0 0
\(647\) −9404.81 −0.571470 −0.285735 0.958309i \(-0.592238\pi\)
−0.285735 + 0.958309i \(0.592238\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −5160.30 −0.310673
\(652\) 0 0
\(653\) 2810.10 0.168404 0.0842020 0.996449i \(-0.473166\pi\)
0.0842020 + 0.996449i \(0.473166\pi\)
\(654\) 0 0
\(655\) 1271.55 0.0758530
\(656\) 0 0
\(657\) −7157.41 −0.425019
\(658\) 0 0
\(659\) 28829.5 1.70416 0.852078 0.523415i \(-0.175342\pi\)
0.852078 + 0.523415i \(0.175342\pi\)
\(660\) 0 0
\(661\) 1946.42 0.114534 0.0572671 0.998359i \(-0.481761\pi\)
0.0572671 + 0.998359i \(0.481761\pi\)
\(662\) 0 0
\(663\) −514.510 −0.0301386
\(664\) 0 0
\(665\) 1142.52 0.0666242
\(666\) 0 0
\(667\) −16305.6 −0.946558
\(668\) 0 0
\(669\) 222.905 0.0128819
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 10075.9 0.577113 0.288557 0.957463i \(-0.406825\pi\)
0.288557 + 0.957463i \(0.406825\pi\)
\(674\) 0 0
\(675\) 3299.90 0.188168
\(676\) 0 0
\(677\) 28273.7 1.60509 0.802546 0.596590i \(-0.203478\pi\)
0.802546 + 0.596590i \(0.203478\pi\)
\(678\) 0 0
\(679\) 12206.7 0.689913
\(680\) 0 0
\(681\) 17550.1 0.987547
\(682\) 0 0
\(683\) −18285.8 −1.02443 −0.512215 0.858857i \(-0.671175\pi\)
−0.512215 + 0.858857i \(0.671175\pi\)
\(684\) 0 0
\(685\) −1466.49 −0.0817982
\(686\) 0 0
\(687\) −6155.56 −0.341847
\(688\) 0 0
\(689\) 3395.38 0.187741
\(690\) 0 0
\(691\) −7815.29 −0.430257 −0.215128 0.976586i \(-0.569017\pi\)
−0.215128 + 0.976586i \(0.569017\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −855.746 −0.0467054
\(696\) 0 0
\(697\) 1072.02 0.0582578
\(698\) 0 0
\(699\) −13222.4 −0.715473
\(700\) 0 0
\(701\) −34661.4 −1.86753 −0.933767 0.357881i \(-0.883499\pi\)
−0.933767 + 0.357881i \(0.883499\pi\)
\(702\) 0 0
\(703\) 8325.08 0.446638
\(704\) 0 0
\(705\) −1805.76 −0.0964663
\(706\) 0 0
\(707\) 34276.1 1.82332
\(708\) 0 0
\(709\) −37748.5 −1.99954 −0.999769 0.0214801i \(-0.993162\pi\)
−0.999769 + 0.0214801i \(0.993162\pi\)
\(710\) 0 0
\(711\) 5875.64 0.309921
\(712\) 0 0
\(713\) −5644.45 −0.296474
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −4235.10 −0.220589
\(718\) 0 0
\(719\) 20484.7 1.06252 0.531258 0.847210i \(-0.321720\pi\)
0.531258 + 0.847210i \(0.321720\pi\)
\(720\) 0 0
\(721\) 15904.3 0.821509
\(722\) 0 0
\(723\) 4534.88 0.233270
\(724\) 0 0
\(725\) −22228.4 −1.13868
\(726\) 0 0
\(727\) 14451.2 0.737231 0.368615 0.929582i \(-0.379832\pi\)
0.368615 + 0.929582i \(0.379832\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 249.351 0.0126164
\(732\) 0 0
\(733\) 29331.6 1.47802 0.739010 0.673694i \(-0.235293\pi\)
0.739010 + 0.673694i \(0.235293\pi\)
\(734\) 0 0
\(735\) 2018.49 0.101297
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −25755.1 −1.28203 −0.641013 0.767530i \(-0.721486\pi\)
−0.641013 + 0.767530i \(0.721486\pi\)
\(740\) 0 0
\(741\) −497.309 −0.0246546
\(742\) 0 0
\(743\) 7709.43 0.380662 0.190331 0.981720i \(-0.439044\pi\)
0.190331 + 0.981720i \(0.439044\pi\)
\(744\) 0 0
\(745\) 1575.47 0.0774774
\(746\) 0 0
\(747\) −12796.3 −0.626761
\(748\) 0 0
\(749\) −15329.6 −0.747838
\(750\) 0 0
\(751\) −17089.5 −0.830364 −0.415182 0.909738i \(-0.636282\pi\)
−0.415182 + 0.909738i \(0.636282\pi\)
\(752\) 0 0
\(753\) −14279.9 −0.691085
\(754\) 0 0
\(755\) −2877.99 −0.138730
\(756\) 0 0
\(757\) 20347.2 0.976926 0.488463 0.872585i \(-0.337558\pi\)
0.488463 + 0.872585i \(0.337558\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −10417.7 −0.496244 −0.248122 0.968729i \(-0.579813\pi\)
−0.248122 + 0.968729i \(0.579813\pi\)
\(762\) 0 0
\(763\) −36588.5 −1.73603
\(764\) 0 0
\(765\) 389.383 0.0184028
\(766\) 0 0
\(767\) −1400.49 −0.0659305
\(768\) 0 0
\(769\) 41894.3 1.96456 0.982281 0.187417i \(-0.0600115\pi\)
0.982281 + 0.187417i \(0.0600115\pi\)
\(770\) 0 0
\(771\) −19243.7 −0.898889
\(772\) 0 0
\(773\) −12669.5 −0.589509 −0.294754 0.955573i \(-0.595238\pi\)
−0.294754 + 0.955573i \(0.595238\pi\)
\(774\) 0 0
\(775\) −7694.72 −0.356648
\(776\) 0 0
\(777\) 27212.4 1.25642
\(778\) 0 0
\(779\) 1036.18 0.0476572
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −4910.59 −0.224125
\(784\) 0 0
\(785\) 3901.29 0.177379
\(786\) 0 0
\(787\) 23132.4 1.04775 0.523875 0.851795i \(-0.324486\pi\)
0.523875 + 0.851795i \(0.324486\pi\)
\(788\) 0 0
\(789\) 19037.5 0.859005
\(790\) 0 0
\(791\) −23586.1 −1.06021
\(792\) 0 0
\(793\) −4267.21 −0.191088
\(794\) 0 0
\(795\) −2569.63 −0.114636
\(796\) 0 0
\(797\) −8157.15 −0.362536 −0.181268 0.983434i \(-0.558020\pi\)
−0.181268 + 0.983434i \(0.558020\pi\)
\(798\) 0 0
\(799\) 9363.18 0.414575
\(800\) 0 0
\(801\) −6786.13 −0.299346
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 4084.97 0.178852
\(806\) 0 0
\(807\) −2933.12 −0.127944
\(808\) 0 0
\(809\) −9629.79 −0.418498 −0.209249 0.977862i \(-0.567102\pi\)
−0.209249 + 0.977862i \(0.567102\pi\)
\(810\) 0 0
\(811\) 20546.5 0.889626 0.444813 0.895624i \(-0.353270\pi\)
0.444813 + 0.895624i \(0.353270\pi\)
\(812\) 0 0
\(813\) 10247.5 0.442062
\(814\) 0 0
\(815\) −3919.47 −0.168458
\(816\) 0 0
\(817\) 241.015 0.0103207
\(818\) 0 0
\(819\) −1625.56 −0.0693550
\(820\) 0 0
\(821\) 7383.11 0.313852 0.156926 0.987610i \(-0.449842\pi\)
0.156926 + 0.987610i \(0.449842\pi\)
\(822\) 0 0
\(823\) 12862.2 0.544774 0.272387 0.962188i \(-0.412187\pi\)
0.272387 + 0.962188i \(0.412187\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −11661.2 −0.490325 −0.245162 0.969482i \(-0.578841\pi\)
−0.245162 + 0.969482i \(0.578841\pi\)
\(828\) 0 0
\(829\) 8656.55 0.362671 0.181336 0.983421i \(-0.441958\pi\)
0.181336 + 0.983421i \(0.441958\pi\)
\(830\) 0 0
\(831\) −10612.8 −0.443024
\(832\) 0 0
\(833\) −10466.3 −0.435335
\(834\) 0 0
\(835\) 5626.01 0.233169
\(836\) 0 0
\(837\) −1699.88 −0.0701990
\(838\) 0 0
\(839\) −7047.79 −0.290008 −0.145004 0.989431i \(-0.546320\pi\)
−0.145004 + 0.989431i \(0.546320\pi\)
\(840\) 0 0
\(841\) 8689.00 0.356267
\(842\) 0 0
\(843\) 12037.5 0.491806
\(844\) 0 0
\(845\) 3591.10 0.146199
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 8568.77 0.346383
\(850\) 0 0
\(851\) 29765.5 1.19900
\(852\) 0 0
\(853\) −13842.8 −0.555651 −0.277825 0.960632i \(-0.589614\pi\)
−0.277825 + 0.960632i \(0.589614\pi\)
\(854\) 0 0
\(855\) 376.365 0.0150543
\(856\) 0 0
\(857\) −46128.3 −1.83864 −0.919319 0.393512i \(-0.871260\pi\)
−0.919319 + 0.393512i \(0.871260\pi\)
\(858\) 0 0
\(859\) −30332.6 −1.20481 −0.602406 0.798190i \(-0.705791\pi\)
−0.602406 + 0.798190i \(0.705791\pi\)
\(860\) 0 0
\(861\) 3386.98 0.134063
\(862\) 0 0
\(863\) −10578.3 −0.417255 −0.208627 0.977995i \(-0.566900\pi\)
−0.208627 + 0.977995i \(0.566900\pi\)
\(864\) 0 0
\(865\) 2984.10 0.117297
\(866\) 0 0
\(867\) 12720.0 0.498262
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −6261.29 −0.243577
\(872\) 0 0
\(873\) 4021.09 0.155891
\(874\) 0 0
\(875\) 11264.3 0.435203
\(876\) 0 0
\(877\) −41740.9 −1.60717 −0.803585 0.595190i \(-0.797077\pi\)
−0.803585 + 0.595190i \(0.797077\pi\)
\(878\) 0 0
\(879\) 20233.8 0.776417
\(880\) 0 0
\(881\) 40155.8 1.53562 0.767811 0.640677i \(-0.221346\pi\)
0.767811 + 0.640677i \(0.221346\pi\)
\(882\) 0 0
\(883\) −17631.5 −0.671967 −0.335983 0.941868i \(-0.609069\pi\)
−0.335983 + 0.941868i \(0.609069\pi\)
\(884\) 0 0
\(885\) 1059.89 0.0402576
\(886\) 0 0
\(887\) −30610.5 −1.15874 −0.579368 0.815066i \(-0.696701\pi\)
−0.579368 + 0.815066i \(0.696701\pi\)
\(888\) 0 0
\(889\) −63617.5 −2.40007
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 9050.14 0.339139
\(894\) 0 0
\(895\) 5577.71 0.208315
\(896\) 0 0
\(897\) −1778.08 −0.0661853
\(898\) 0 0
\(899\) 11450.5 0.424801
\(900\) 0 0
\(901\) 13324.0 0.492661
\(902\) 0 0
\(903\) 787.810 0.0290329
\(904\) 0 0
\(905\) −2965.48 −0.108924
\(906\) 0 0
\(907\) 14509.2 0.531170 0.265585 0.964087i \(-0.414435\pi\)
0.265585 + 0.964087i \(0.414435\pi\)
\(908\) 0 0
\(909\) 11291.1 0.411993
\(910\) 0 0
\(911\) 16513.0 0.600550 0.300275 0.953853i \(-0.402922\pi\)
0.300275 + 0.953853i \(0.402922\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 3229.44 0.116680
\(916\) 0 0
\(917\) −20830.9 −0.750161
\(918\) 0 0
\(919\) −12429.2 −0.446138 −0.223069 0.974803i \(-0.571608\pi\)
−0.223069 + 0.974803i \(0.571608\pi\)
\(920\) 0 0
\(921\) −11701.4 −0.418646
\(922\) 0 0
\(923\) −3215.76 −0.114678
\(924\) 0 0
\(925\) 40577.4 1.44235
\(926\) 0 0
\(927\) 5239.14 0.185627
\(928\) 0 0
\(929\) 23589.5 0.833097 0.416548 0.909114i \(-0.363240\pi\)
0.416548 + 0.909114i \(0.363240\pi\)
\(930\) 0 0
\(931\) −10116.3 −0.356122
\(932\) 0 0
\(933\) −16285.4 −0.571447
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 20009.7 0.697640 0.348820 0.937190i \(-0.386582\pi\)
0.348820 + 0.937190i \(0.386582\pi\)
\(938\) 0 0
\(939\) −15430.5 −0.536267
\(940\) 0 0
\(941\) 40823.9 1.41426 0.707132 0.707082i \(-0.249989\pi\)
0.707132 + 0.707082i \(0.249989\pi\)
\(942\) 0 0
\(943\) 3704.75 0.127936
\(944\) 0 0
\(945\) 1230.23 0.0423486
\(946\) 0 0
\(947\) 18558.6 0.636827 0.318413 0.947952i \(-0.396850\pi\)
0.318413 + 0.947952i \(0.396850\pi\)
\(948\) 0 0
\(949\) 5257.47 0.179836
\(950\) 0 0
\(951\) −7885.21 −0.268870
\(952\) 0 0
\(953\) −181.955 −0.00618480 −0.00309240 0.999995i \(-0.500984\pi\)
−0.00309240 + 0.999995i \(0.500984\pi\)
\(954\) 0 0
\(955\) 6517.97 0.220855
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 24024.4 0.808957
\(960\) 0 0
\(961\) −25827.2 −0.866947
\(962\) 0 0
\(963\) −5049.81 −0.168980
\(964\) 0 0
\(965\) 599.988 0.0200148
\(966\) 0 0
\(967\) 23043.6 0.766320 0.383160 0.923682i \(-0.374836\pi\)
0.383160 + 0.923682i \(0.374836\pi\)
\(968\) 0 0
\(969\) −1951.52 −0.0646974
\(970\) 0 0
\(971\) 56960.6 1.88255 0.941273 0.337645i \(-0.109630\pi\)
0.941273 + 0.337645i \(0.109630\pi\)
\(972\) 0 0
\(973\) 14019.0 0.461901
\(974\) 0 0
\(975\) −2423.94 −0.0796186
\(976\) 0 0
\(977\) −12105.4 −0.396402 −0.198201 0.980161i \(-0.563510\pi\)
−0.198201 + 0.980161i \(0.563510\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −12052.8 −0.392270
\(982\) 0 0
\(983\) 22002.2 0.713897 0.356949 0.934124i \(-0.383817\pi\)
0.356949 + 0.934124i \(0.383817\pi\)
\(984\) 0 0
\(985\) 6904.26 0.223338
\(986\) 0 0
\(987\) 29582.4 0.954019
\(988\) 0 0
\(989\) 861.724 0.0277060
\(990\) 0 0
\(991\) −11666.1 −0.373953 −0.186976 0.982364i \(-0.559869\pi\)
−0.186976 + 0.982364i \(0.559869\pi\)
\(992\) 0 0
\(993\) −6160.88 −0.196888
\(994\) 0 0
\(995\) 6111.87 0.194733
\(996\) 0 0
\(997\) 3982.56 0.126508 0.0632542 0.997997i \(-0.479852\pi\)
0.0632542 + 0.997997i \(0.479852\pi\)
\(998\) 0 0
\(999\) 8964.18 0.283898
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1452.4.a.o.1.3 4
11.3 even 5 132.4.i.b.97.2 yes 8
11.4 even 5 132.4.i.b.49.2 8
11.10 odd 2 1452.4.a.p.1.3 4
33.14 odd 10 396.4.j.b.361.1 8
33.26 odd 10 396.4.j.b.181.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.4.i.b.49.2 8 11.4 even 5
132.4.i.b.97.2 yes 8 11.3 even 5
396.4.j.b.181.1 8 33.26 odd 10
396.4.j.b.361.1 8 33.14 odd 10
1452.4.a.o.1.3 4 1.1 even 1 trivial
1452.4.a.p.1.3 4 11.10 odd 2