Properties

Label 1452.3.e.l.485.9
Level $1452$
Weight $3$
Character 1452.485
Analytic conductor $39.564$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,3,Mod(485,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.485"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1452.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-4,0,14,0,0,0,-2,0,-8,0,0,0,-2,0,1,0,0,0,-70,0, -54,0,0,0,-50] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5641343851\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7 x^{14} - 18 x^{13} + 41 x^{12} + 216 x^{11} + 199 x^{10} - 1278 x^{9} - 468 x^{8} + \cdots + 43046721 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 485.9
Root \(-1.08635 - 2.79640i\) of defining polynomial
Character \(\chi\) \(=\) 1452.485
Dual form 1452.3.e.l.485.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.08635 - 2.79640i) q^{3} -3.92851i q^{5} -4.86735 q^{7} +(-6.63968 - 6.07575i) q^{9} -23.4682 q^{13} +(-10.9857 - 4.26774i) q^{15} +1.24388i q^{17} -8.80998 q^{19} +(-5.28766 + 13.6111i) q^{21} +2.99618i q^{23} +9.56683 q^{25} +(-24.2032 + 11.9668i) q^{27} +51.7070i q^{29} +38.5697 q^{31} +19.1214i q^{35} +38.1187 q^{37} +(-25.4948 + 65.6265i) q^{39} -19.6699i q^{41} +8.37836 q^{43} +(-23.8686 + 26.0840i) q^{45} +52.5197i q^{47} -25.3089 q^{49} +(3.47838 + 1.35129i) q^{51} -66.7993i q^{53} +(-9.57074 + 24.6362i) q^{57} +38.1323i q^{59} +48.4584 q^{61} +(32.3177 + 29.5728i) q^{63} +92.1951i q^{65} -27.6614 q^{67} +(8.37850 + 3.25490i) q^{69} -111.327i q^{71} -72.2982 q^{73} +(10.3929 - 26.7526i) q^{75} +19.0712 q^{79} +(7.17062 + 80.6820i) q^{81} +73.2064i q^{83} +4.88659 q^{85} +(144.593 + 56.1720i) q^{87} +99.5693i q^{89} +114.228 q^{91} +(41.9003 - 107.856i) q^{93} +34.6101i q^{95} -139.199 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{7} + 14 q^{9} - 2 q^{13} - 8 q^{15} - 2 q^{19} + q^{21} - 70 q^{25} - 54 q^{27} - 50 q^{31} + 30 q^{37} + 68 q^{39} - 50 q^{43} + 17 q^{45} + 232 q^{49} + 218 q^{51} + 205 q^{57} - 80 q^{61}+ \cdots - 416 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.08635 2.79640i 0.362117 0.932132i
\(4\) 0 0
\(5\) 3.92851i 0.785702i −0.919602 0.392851i \(-0.871489\pi\)
0.919602 0.392851i \(-0.128511\pi\)
\(6\) 0 0
\(7\) −4.86735 −0.695336 −0.347668 0.937618i \(-0.613026\pi\)
−0.347668 + 0.937618i \(0.613026\pi\)
\(8\) 0 0
\(9\) −6.63968 6.07575i −0.737742 0.675083i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −23.4682 −1.80525 −0.902624 0.430429i \(-0.858362\pi\)
−0.902624 + 0.430429i \(0.858362\pi\)
\(14\) 0 0
\(15\) −10.9857 4.26774i −0.732378 0.284516i
\(16\) 0 0
\(17\) 1.24388i 0.0731694i 0.999331 + 0.0365847i \(0.0116479\pi\)
−0.999331 + 0.0365847i \(0.988352\pi\)
\(18\) 0 0
\(19\) −8.80998 −0.463683 −0.231842 0.972754i \(-0.574475\pi\)
−0.231842 + 0.972754i \(0.574475\pi\)
\(20\) 0 0
\(21\) −5.28766 + 13.6111i −0.251793 + 0.648146i
\(22\) 0 0
\(23\) 2.99618i 0.130269i 0.997877 + 0.0651343i \(0.0207476\pi\)
−0.997877 + 0.0651343i \(0.979252\pi\)
\(24\) 0 0
\(25\) 9.56683 0.382673
\(26\) 0 0
\(27\) −24.2032 + 11.9668i −0.896416 + 0.443214i
\(28\) 0 0
\(29\) 51.7070i 1.78300i 0.453021 + 0.891500i \(0.350346\pi\)
−0.453021 + 0.891500i \(0.649654\pi\)
\(30\) 0 0
\(31\) 38.5697 1.24418 0.622092 0.782944i \(-0.286283\pi\)
0.622092 + 0.782944i \(0.286283\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 19.1214i 0.546327i
\(36\) 0 0
\(37\) 38.1187 1.03024 0.515118 0.857119i \(-0.327748\pi\)
0.515118 + 0.857119i \(0.327748\pi\)
\(38\) 0 0
\(39\) −25.4948 + 65.6265i −0.653712 + 1.68273i
\(40\) 0 0
\(41\) 19.6699i 0.479755i −0.970803 0.239877i \(-0.922893\pi\)
0.970803 0.239877i \(-0.0771072\pi\)
\(42\) 0 0
\(43\) 8.37836 0.194845 0.0974227 0.995243i \(-0.468940\pi\)
0.0974227 + 0.995243i \(0.468940\pi\)
\(44\) 0 0
\(45\) −23.8686 + 26.0840i −0.530414 + 0.579645i
\(46\) 0 0
\(47\) 52.5197i 1.11744i 0.829356 + 0.558720i \(0.188707\pi\)
−0.829356 + 0.558720i \(0.811293\pi\)
\(48\) 0 0
\(49\) −25.3089 −0.516507
\(50\) 0 0
\(51\) 3.47838 + 1.35129i 0.0682036 + 0.0264959i
\(52\) 0 0
\(53\) 66.7993i 1.26036i −0.776448 0.630182i \(-0.782980\pi\)
0.776448 0.630182i \(-0.217020\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −9.57074 + 24.6362i −0.167908 + 0.432214i
\(58\) 0 0
\(59\) 38.1323i 0.646310i 0.946346 + 0.323155i \(0.104744\pi\)
−0.946346 + 0.323155i \(0.895256\pi\)
\(60\) 0 0
\(61\) 48.4584 0.794400 0.397200 0.917732i \(-0.369982\pi\)
0.397200 + 0.917732i \(0.369982\pi\)
\(62\) 0 0
\(63\) 32.3177 + 29.5728i 0.512979 + 0.469410i
\(64\) 0 0
\(65\) 92.1951i 1.41839i
\(66\) 0 0
\(67\) −27.6614 −0.412856 −0.206428 0.978462i \(-0.566184\pi\)
−0.206428 + 0.978462i \(0.566184\pi\)
\(68\) 0 0
\(69\) 8.37850 + 3.25490i 0.121428 + 0.0471725i
\(70\) 0 0
\(71\) 111.327i 1.56799i −0.620766 0.783996i \(-0.713178\pi\)
0.620766 0.783996i \(-0.286822\pi\)
\(72\) 0 0
\(73\) −72.2982 −0.990386 −0.495193 0.868783i \(-0.664903\pi\)
−0.495193 + 0.868783i \(0.664903\pi\)
\(74\) 0 0
\(75\) 10.3929 26.7526i 0.138573 0.356702i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 19.0712 0.241408 0.120704 0.992689i \(-0.461485\pi\)
0.120704 + 0.992689i \(0.461485\pi\)
\(80\) 0 0
\(81\) 7.17062 + 80.6820i 0.0885262 + 0.996074i
\(82\) 0 0
\(83\) 73.2064i 0.882005i 0.897506 + 0.441002i \(0.145377\pi\)
−0.897506 + 0.441002i \(0.854623\pi\)
\(84\) 0 0
\(85\) 4.88659 0.0574893
\(86\) 0 0
\(87\) 144.593 + 56.1720i 1.66199 + 0.645655i
\(88\) 0 0
\(89\) 99.5693i 1.11876i 0.828912 + 0.559378i \(0.188960\pi\)
−0.828912 + 0.559378i \(0.811040\pi\)
\(90\) 0 0
\(91\) 114.228 1.25525
\(92\) 0 0
\(93\) 41.9003 107.856i 0.450541 1.15974i
\(94\) 0 0
\(95\) 34.6101i 0.364317i
\(96\) 0 0
\(97\) −139.199 −1.43504 −0.717519 0.696539i \(-0.754723\pi\)
−0.717519 + 0.696539i \(0.754723\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 112.642i 1.11527i −0.830087 0.557634i \(-0.811709\pi\)
0.830087 0.557634i \(-0.188291\pi\)
\(102\) 0 0
\(103\) −96.5798 −0.937668 −0.468834 0.883286i \(-0.655326\pi\)
−0.468834 + 0.883286i \(0.655326\pi\)
\(104\) 0 0
\(105\) 53.4711 + 20.7726i 0.509249 + 0.197834i
\(106\) 0 0
\(107\) 76.5598i 0.715512i −0.933815 0.357756i \(-0.883542\pi\)
0.933815 0.357756i \(-0.116458\pi\)
\(108\) 0 0
\(109\) 0.480728 0.00441035 0.00220518 0.999998i \(-0.499298\pi\)
0.00220518 + 0.999998i \(0.499298\pi\)
\(110\) 0 0
\(111\) 41.4104 106.595i 0.373066 0.960316i
\(112\) 0 0
\(113\) 218.286i 1.93174i 0.259035 + 0.965868i \(0.416595\pi\)
−0.259035 + 0.965868i \(0.583405\pi\)
\(114\) 0 0
\(115\) 11.7705 0.102352
\(116\) 0 0
\(117\) 155.821 + 142.587i 1.33181 + 1.21869i
\(118\) 0 0
\(119\) 6.05440i 0.0508773i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −55.0050 21.3685i −0.447195 0.173727i
\(124\) 0 0
\(125\) 135.796i 1.08637i
\(126\) 0 0
\(127\) 1.07327 0.00845093 0.00422547 0.999991i \(-0.498655\pi\)
0.00422547 + 0.999991i \(0.498655\pi\)
\(128\) 0 0
\(129\) 9.10185 23.4292i 0.0705569 0.181622i
\(130\) 0 0
\(131\) 199.521i 1.52306i 0.648128 + 0.761531i \(0.275552\pi\)
−0.648128 + 0.761531i \(0.724448\pi\)
\(132\) 0 0
\(133\) 42.8813 0.322416
\(134\) 0 0
\(135\) 47.0116 + 95.0826i 0.348234 + 0.704315i
\(136\) 0 0
\(137\) 27.8147i 0.203027i −0.994834 0.101514i \(-0.967631\pi\)
0.994834 0.101514i \(-0.0323686\pi\)
\(138\) 0 0
\(139\) 163.034 1.17290 0.586452 0.809984i \(-0.300524\pi\)
0.586452 + 0.809984i \(0.300524\pi\)
\(140\) 0 0
\(141\) 146.866 + 57.0549i 1.04160 + 0.404644i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 203.131 1.40091
\(146\) 0 0
\(147\) −27.4943 + 70.7737i −0.187036 + 0.481453i
\(148\) 0 0
\(149\) 188.752i 1.26680i 0.773827 + 0.633398i \(0.218340\pi\)
−0.773827 + 0.633398i \(0.781660\pi\)
\(150\) 0 0
\(151\) −193.942 −1.28438 −0.642191 0.766545i \(-0.721974\pi\)
−0.642191 + 0.766545i \(0.721974\pi\)
\(152\) 0 0
\(153\) 7.55750 8.25896i 0.0493954 0.0539801i
\(154\) 0 0
\(155\) 151.521i 0.977557i
\(156\) 0 0
\(157\) −164.580 −1.04828 −0.524141 0.851631i \(-0.675614\pi\)
−0.524141 + 0.851631i \(0.675614\pi\)
\(158\) 0 0
\(159\) −186.797 72.5676i −1.17483 0.456400i
\(160\) 0 0
\(161\) 14.5835i 0.0905804i
\(162\) 0 0
\(163\) −239.237 −1.46771 −0.733855 0.679306i \(-0.762281\pi\)
−0.733855 + 0.679306i \(0.762281\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 172.264i 1.03152i −0.856733 0.515760i \(-0.827509\pi\)
0.856733 0.515760i \(-0.172491\pi\)
\(168\) 0 0
\(169\) 381.758 2.25892
\(170\) 0 0
\(171\) 58.4954 + 53.5272i 0.342078 + 0.313025i
\(172\) 0 0
\(173\) 57.7934i 0.334066i 0.985951 + 0.167033i \(0.0534187\pi\)
−0.985951 + 0.167033i \(0.946581\pi\)
\(174\) 0 0
\(175\) −46.5651 −0.266086
\(176\) 0 0
\(177\) 106.633 + 41.4251i 0.602447 + 0.234040i
\(178\) 0 0
\(179\) 18.5040i 0.103375i −0.998663 0.0516873i \(-0.983540\pi\)
0.998663 0.0516873i \(-0.0164599\pi\)
\(180\) 0 0
\(181\) −32.9019 −0.181779 −0.0908893 0.995861i \(-0.528971\pi\)
−0.0908893 + 0.995861i \(0.528971\pi\)
\(182\) 0 0
\(183\) 52.6429 135.509i 0.287666 0.740486i
\(184\) 0 0
\(185\) 149.750i 0.809458i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 117.806 58.2465i 0.623310 0.308183i
\(190\) 0 0
\(191\) 221.269i 1.15848i 0.815158 + 0.579238i \(0.196650\pi\)
−0.815158 + 0.579238i \(0.803350\pi\)
\(192\) 0 0
\(193\) 264.763 1.37183 0.685913 0.727683i \(-0.259403\pi\)
0.685913 + 0.727683i \(0.259403\pi\)
\(194\) 0 0
\(195\) 257.814 + 100.156i 1.32212 + 0.513623i
\(196\) 0 0
\(197\) 230.752i 1.17133i 0.810553 + 0.585665i \(0.199167\pi\)
−0.810553 + 0.585665i \(0.800833\pi\)
\(198\) 0 0
\(199\) 34.0846 0.171280 0.0856398 0.996326i \(-0.472707\pi\)
0.0856398 + 0.996326i \(0.472707\pi\)
\(200\) 0 0
\(201\) −30.0500 + 77.3522i −0.149503 + 0.384837i
\(202\) 0 0
\(203\) 251.676i 1.23978i
\(204\) 0 0
\(205\) −77.2735 −0.376944
\(206\) 0 0
\(207\) 18.2040 19.8936i 0.0879421 0.0961046i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −392.819 −1.86170 −0.930850 0.365402i \(-0.880932\pi\)
−0.930850 + 0.365402i \(0.880932\pi\)
\(212\) 0 0
\(213\) −311.316 120.941i −1.46158 0.567797i
\(214\) 0 0
\(215\) 32.9144i 0.153090i
\(216\) 0 0
\(217\) −187.732 −0.865126
\(218\) 0 0
\(219\) −78.5413 + 202.174i −0.358636 + 0.923171i
\(220\) 0 0
\(221\) 29.1917i 0.132089i
\(222\) 0 0
\(223\) −13.2044 −0.0592125 −0.0296063 0.999562i \(-0.509425\pi\)
−0.0296063 + 0.999562i \(0.509425\pi\)
\(224\) 0 0
\(225\) −63.5206 58.1256i −0.282314 0.258336i
\(226\) 0 0
\(227\) 22.5130i 0.0991764i −0.998770 0.0495882i \(-0.984209\pi\)
0.998770 0.0495882i \(-0.0157909\pi\)
\(228\) 0 0
\(229\) −142.304 −0.621413 −0.310706 0.950506i \(-0.600566\pi\)
−0.310706 + 0.950506i \(0.600566\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 416.553i 1.78778i 0.448284 + 0.893891i \(0.352035\pi\)
−0.448284 + 0.893891i \(0.647965\pi\)
\(234\) 0 0
\(235\) 206.324 0.877974
\(236\) 0 0
\(237\) 20.7180 53.3306i 0.0874179 0.225024i
\(238\) 0 0
\(239\) 170.568i 0.713675i 0.934166 + 0.356837i \(0.116145\pi\)
−0.934166 + 0.356837i \(0.883855\pi\)
\(240\) 0 0
\(241\) 151.910 0.630330 0.315165 0.949037i \(-0.397940\pi\)
0.315165 + 0.949037i \(0.397940\pi\)
\(242\) 0 0
\(243\) 233.409 + 67.5971i 0.960530 + 0.278178i
\(244\) 0 0
\(245\) 99.4261i 0.405821i
\(246\) 0 0
\(247\) 206.755 0.837063
\(248\) 0 0
\(249\) 204.714 + 79.5279i 0.822145 + 0.319389i
\(250\) 0 0
\(251\) 388.488i 1.54776i 0.633332 + 0.773880i \(0.281687\pi\)
−0.633332 + 0.773880i \(0.718313\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 5.30856 13.6649i 0.0208179 0.0535877i
\(256\) 0 0
\(257\) 192.084i 0.747409i 0.927548 + 0.373705i \(0.121913\pi\)
−0.927548 + 0.373705i \(0.878087\pi\)
\(258\) 0 0
\(259\) −185.537 −0.716360
\(260\) 0 0
\(261\) 314.158 343.318i 1.20367 1.31539i
\(262\) 0 0
\(263\) 402.957i 1.53216i −0.642747 0.766078i \(-0.722205\pi\)
0.642747 0.766078i \(-0.277795\pi\)
\(264\) 0 0
\(265\) −262.422 −0.990270
\(266\) 0 0
\(267\) 278.435 + 108.167i 1.04283 + 0.405121i
\(268\) 0 0
\(269\) 152.284i 0.566111i 0.959104 + 0.283055i \(0.0913481\pi\)
−0.959104 + 0.283055i \(0.908652\pi\)
\(270\) 0 0
\(271\) −521.761 −1.92532 −0.962658 0.270721i \(-0.912738\pi\)
−0.962658 + 0.270721i \(0.912738\pi\)
\(272\) 0 0
\(273\) 124.092 319.427i 0.454550 1.17006i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 65.3160 0.235798 0.117899 0.993026i \(-0.462384\pi\)
0.117899 + 0.993026i \(0.462384\pi\)
\(278\) 0 0
\(279\) −256.090 234.340i −0.917887 0.839927i
\(280\) 0 0
\(281\) 45.9893i 0.163663i 0.996646 + 0.0818315i \(0.0260769\pi\)
−0.996646 + 0.0818315i \(0.973923\pi\)
\(282\) 0 0
\(283\) −408.174 −1.44231 −0.721155 0.692774i \(-0.756388\pi\)
−0.721155 + 0.692774i \(0.756388\pi\)
\(284\) 0 0
\(285\) 96.7835 + 37.5987i 0.339591 + 0.131925i
\(286\) 0 0
\(287\) 95.7405i 0.333591i
\(288\) 0 0
\(289\) 287.453 0.994646
\(290\) 0 0
\(291\) −151.219 + 389.255i −0.519653 + 1.33765i
\(292\) 0 0
\(293\) 458.355i 1.56435i 0.623059 + 0.782175i \(0.285890\pi\)
−0.623059 + 0.782175i \(0.714110\pi\)
\(294\) 0 0
\(295\) 149.803 0.507807
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 70.3150i 0.235167i
\(300\) 0 0
\(301\) −40.7804 −0.135483
\(302\) 0 0
\(303\) −314.992 122.369i −1.03958 0.403858i
\(304\) 0 0
\(305\) 190.369i 0.624161i
\(306\) 0 0
\(307\) −292.014 −0.951185 −0.475592 0.879666i \(-0.657766\pi\)
−0.475592 + 0.879666i \(0.657766\pi\)
\(308\) 0 0
\(309\) −104.920 + 270.075i −0.339546 + 0.874030i
\(310\) 0 0
\(311\) 128.356i 0.412720i −0.978476 0.206360i \(-0.933838\pi\)
0.978476 0.206360i \(-0.0661618\pi\)
\(312\) 0 0
\(313\) 153.622 0.490805 0.245403 0.969421i \(-0.421080\pi\)
0.245403 + 0.969421i \(0.421080\pi\)
\(314\) 0 0
\(315\) 116.177 126.960i 0.368816 0.403048i
\(316\) 0 0
\(317\) 335.277i 1.05766i −0.848729 0.528828i \(-0.822631\pi\)
0.848729 0.528828i \(-0.177369\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −214.092 83.1709i −0.666952 0.259099i
\(322\) 0 0
\(323\) 10.9586i 0.0339274i
\(324\) 0 0
\(325\) −224.516 −0.690820
\(326\) 0 0
\(327\) 0.522240 1.34431i 0.00159707 0.00411103i
\(328\) 0 0
\(329\) 255.632i 0.776996i
\(330\) 0 0
\(331\) −438.407 −1.32449 −0.662246 0.749287i \(-0.730396\pi\)
−0.662246 + 0.749287i \(0.730396\pi\)
\(332\) 0 0
\(333\) −253.096 231.600i −0.760048 0.695495i
\(334\) 0 0
\(335\) 108.668i 0.324382i
\(336\) 0 0
\(337\) −76.1881 −0.226078 −0.113039 0.993591i \(-0.536058\pi\)
−0.113039 + 0.993591i \(0.536058\pi\)
\(338\) 0 0
\(339\) 610.415 + 237.136i 1.80063 + 0.699515i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 361.688 1.05448
\(344\) 0 0
\(345\) 12.7869 32.9150i 0.0370635 0.0954058i
\(346\) 0 0
\(347\) 45.5255i 0.131197i −0.997846 0.0655987i \(-0.979104\pi\)
0.997846 0.0655987i \(-0.0208957\pi\)
\(348\) 0 0
\(349\) 44.8532 0.128519 0.0642595 0.997933i \(-0.479531\pi\)
0.0642595 + 0.997933i \(0.479531\pi\)
\(350\) 0 0
\(351\) 568.007 280.839i 1.61825 0.800111i
\(352\) 0 0
\(353\) 30.9900i 0.0877903i 0.999036 + 0.0438952i \(0.0139768\pi\)
−0.999036 + 0.0438952i \(0.986023\pi\)
\(354\) 0 0
\(355\) −437.351 −1.23197
\(356\) 0 0
\(357\) −16.9305 6.57722i −0.0474244 0.0184236i
\(358\) 0 0
\(359\) 442.020i 1.23125i −0.788038 0.615627i \(-0.788903\pi\)
0.788038 0.615627i \(-0.211097\pi\)
\(360\) 0 0
\(361\) −283.384 −0.784998
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 284.024i 0.778148i
\(366\) 0 0
\(367\) 163.998 0.446860 0.223430 0.974720i \(-0.428275\pi\)
0.223430 + 0.974720i \(0.428275\pi\)
\(368\) 0 0
\(369\) −119.510 + 130.602i −0.323874 + 0.353935i
\(370\) 0 0
\(371\) 325.136i 0.876377i
\(372\) 0 0
\(373\) −494.457 −1.32562 −0.662810 0.748787i \(-0.730637\pi\)
−0.662810 + 0.748787i \(0.730637\pi\)
\(374\) 0 0
\(375\) −379.740 147.522i −1.01264 0.393393i
\(376\) 0 0
\(377\) 1213.47i 3.21876i
\(378\) 0 0
\(379\) −33.4644 −0.0882967 −0.0441483 0.999025i \(-0.514057\pi\)
−0.0441483 + 0.999025i \(0.514057\pi\)
\(380\) 0 0
\(381\) 1.16595 3.00128i 0.00306023 0.00787739i
\(382\) 0 0
\(383\) 43.0569i 0.112420i −0.998419 0.0562100i \(-0.982098\pi\)
0.998419 0.0562100i \(-0.0179016\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −55.6296 50.9048i −0.143746 0.131537i
\(388\) 0 0
\(389\) 205.336i 0.527857i −0.964542 0.263929i \(-0.914982\pi\)
0.964542 0.263929i \(-0.0850183\pi\)
\(390\) 0 0
\(391\) −3.72688 −0.00953167
\(392\) 0 0
\(393\) 557.940 + 216.750i 1.41970 + 0.551527i
\(394\) 0 0
\(395\) 74.9213i 0.189674i
\(396\) 0 0
\(397\) 305.317 0.769061 0.384530 0.923112i \(-0.374363\pi\)
0.384530 + 0.923112i \(0.374363\pi\)
\(398\) 0 0
\(399\) 46.5842 119.913i 0.116752 0.300534i
\(400\) 0 0
\(401\) 375.495i 0.936396i 0.883624 + 0.468198i \(0.155097\pi\)
−0.883624 + 0.468198i \(0.844903\pi\)
\(402\) 0 0
\(403\) −905.163 −2.24606
\(404\) 0 0
\(405\) 316.960 28.1699i 0.782617 0.0695552i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −33.0529 −0.0808140 −0.0404070 0.999183i \(-0.512865\pi\)
−0.0404070 + 0.999183i \(0.512865\pi\)
\(410\) 0 0
\(411\) −77.7811 30.2166i −0.189248 0.0735197i
\(412\) 0 0
\(413\) 185.603i 0.449403i
\(414\) 0 0
\(415\) 287.592 0.692993
\(416\) 0 0
\(417\) 177.112 455.907i 0.424729 1.09330i
\(418\) 0 0
\(419\) 225.453i 0.538073i −0.963130 0.269037i \(-0.913295\pi\)
0.963130 0.269037i \(-0.0867053\pi\)
\(420\) 0 0
\(421\) 149.943 0.356159 0.178080 0.984016i \(-0.443012\pi\)
0.178080 + 0.984016i \(0.443012\pi\)
\(422\) 0 0
\(423\) 319.096 348.714i 0.754365 0.824382i
\(424\) 0 0
\(425\) 11.9000i 0.0280000i
\(426\) 0 0
\(427\) −235.864 −0.552375
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 407.178i 0.944730i −0.881403 0.472365i \(-0.843401\pi\)
0.881403 0.472365i \(-0.156599\pi\)
\(432\) 0 0
\(433\) −193.788 −0.447547 −0.223774 0.974641i \(-0.571838\pi\)
−0.223774 + 0.974641i \(0.571838\pi\)
\(434\) 0 0
\(435\) 220.672 568.036i 0.507292 1.30583i
\(436\) 0 0
\(437\) 26.3963i 0.0604033i
\(438\) 0 0
\(439\) −511.496 −1.16514 −0.582569 0.812781i \(-0.697953\pi\)
−0.582569 + 0.812781i \(0.697953\pi\)
\(440\) 0 0
\(441\) 168.043 + 153.770i 0.381049 + 0.348685i
\(442\) 0 0
\(443\) 198.177i 0.447353i 0.974663 + 0.223677i \(0.0718060\pi\)
−0.974663 + 0.223677i \(0.928194\pi\)
\(444\) 0 0
\(445\) 391.159 0.879009
\(446\) 0 0
\(447\) 527.827 + 205.052i 1.18082 + 0.458729i
\(448\) 0 0
\(449\) 528.711i 1.17753i 0.808305 + 0.588765i \(0.200385\pi\)
−0.808305 + 0.588765i \(0.799615\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −210.689 + 542.338i −0.465097 + 1.19721i
\(454\) 0 0
\(455\) 448.746i 0.986256i
\(456\) 0 0
\(457\) 494.121 1.08123 0.540614 0.841271i \(-0.318192\pi\)
0.540614 + 0.841271i \(0.318192\pi\)
\(458\) 0 0
\(459\) −14.8852 30.1059i −0.0324297 0.0655902i
\(460\) 0 0
\(461\) 630.172i 1.36697i −0.729966 0.683484i \(-0.760464\pi\)
0.729966 0.683484i \(-0.239536\pi\)
\(462\) 0 0
\(463\) −140.450 −0.303347 −0.151674 0.988431i \(-0.548466\pi\)
−0.151674 + 0.988431i \(0.548466\pi\)
\(464\) 0 0
\(465\) −423.714 164.606i −0.911213 0.353991i
\(466\) 0 0
\(467\) 732.037i 1.56753i 0.621057 + 0.783766i \(0.286704\pi\)
−0.621057 + 0.783766i \(0.713296\pi\)
\(468\) 0 0
\(469\) 134.638 0.287074
\(470\) 0 0
\(471\) −178.792 + 460.232i −0.379601 + 0.977138i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −84.2835 −0.177439
\(476\) 0 0
\(477\) −405.855 + 443.526i −0.850850 + 0.929823i
\(478\) 0 0
\(479\) 693.824i 1.44848i −0.689545 0.724242i \(-0.742190\pi\)
0.689545 0.724242i \(-0.257810\pi\)
\(480\) 0 0
\(481\) −894.579 −1.85983
\(482\) 0 0
\(483\) −40.7811 15.8428i −0.0844330 0.0328008i
\(484\) 0 0
\(485\) 546.843i 1.12751i
\(486\) 0 0
\(487\) −132.947 −0.272991 −0.136496 0.990641i \(-0.543584\pi\)
−0.136496 + 0.990641i \(0.543584\pi\)
\(488\) 0 0
\(489\) −259.895 + 669.001i −0.531483 + 1.36810i
\(490\) 0 0
\(491\) 951.503i 1.93789i −0.247280 0.968944i \(-0.579537\pi\)
0.247280 0.968944i \(-0.420463\pi\)
\(492\) 0 0
\(493\) −64.3173 −0.130461
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 541.870i 1.09028i
\(498\) 0 0
\(499\) 392.408 0.786389 0.393195 0.919455i \(-0.371370\pi\)
0.393195 + 0.919455i \(0.371370\pi\)
\(500\) 0 0
\(501\) −481.718 187.139i −0.961514 0.373532i
\(502\) 0 0
\(503\) 548.215i 1.08989i −0.838472 0.544945i \(-0.816550\pi\)
0.838472 0.544945i \(-0.183450\pi\)
\(504\) 0 0
\(505\) −442.515 −0.876268
\(506\) 0 0
\(507\) 414.724 1067.55i 0.817995 2.10562i
\(508\) 0 0
\(509\) 469.090i 0.921591i 0.887506 + 0.460795i \(0.152436\pi\)
−0.887506 + 0.460795i \(0.847564\pi\)
\(510\) 0 0
\(511\) 351.901 0.688651
\(512\) 0 0
\(513\) 213.230 105.427i 0.415653 0.205511i
\(514\) 0 0
\(515\) 379.414i 0.736727i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 161.613 + 62.7840i 0.311394 + 0.120971i
\(520\) 0 0
\(521\) 77.8258i 0.149378i −0.997207 0.0746888i \(-0.976204\pi\)
0.997207 0.0746888i \(-0.0237964\pi\)
\(522\) 0 0
\(523\) −373.600 −0.714341 −0.357170 0.934039i \(-0.616258\pi\)
−0.357170 + 0.934039i \(0.616258\pi\)
\(524\) 0 0
\(525\) −50.5861 + 130.215i −0.0963545 + 0.248028i
\(526\) 0 0
\(527\) 47.9761i 0.0910362i
\(528\) 0 0
\(529\) 520.023 0.983030
\(530\) 0 0
\(531\) 231.682 253.186i 0.436313 0.476810i
\(532\) 0 0
\(533\) 461.619i 0.866076i
\(534\) 0 0
\(535\) −300.766 −0.562179
\(536\) 0 0
\(537\) −51.7447 20.1019i −0.0963588 0.0374337i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 88.0993 0.162845 0.0814226 0.996680i \(-0.474054\pi\)
0.0814226 + 0.996680i \(0.474054\pi\)
\(542\) 0 0
\(543\) −35.7431 + 92.0069i −0.0658252 + 0.169442i
\(544\) 0 0
\(545\) 1.88855i 0.00346522i
\(546\) 0 0
\(547\) −354.731 −0.648502 −0.324251 0.945971i \(-0.605112\pi\)
−0.324251 + 0.945971i \(0.605112\pi\)
\(548\) 0 0
\(549\) −321.748 294.421i −0.586062 0.536286i
\(550\) 0 0
\(551\) 455.537i 0.826747i
\(552\) 0 0
\(553\) −92.8263 −0.167859
\(554\) 0 0
\(555\) −418.760 162.681i −0.754522 0.293119i
\(556\) 0 0
\(557\) 441.848i 0.793264i −0.917978 0.396632i \(-0.870179\pi\)
0.917978 0.396632i \(-0.129821\pi\)
\(558\) 0 0
\(559\) −196.625 −0.351745
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 732.386i 1.30086i −0.759565 0.650432i \(-0.774588\pi\)
0.759565 0.650432i \(-0.225412\pi\)
\(564\) 0 0
\(565\) 857.539 1.51777
\(566\) 0 0
\(567\) −34.9020 392.708i −0.0615555 0.692606i
\(568\) 0 0
\(569\) 460.340i 0.809034i 0.914531 + 0.404517i \(0.132560\pi\)
−0.914531 + 0.404517i \(0.867440\pi\)
\(570\) 0 0
\(571\) −64.8107 −0.113504 −0.0567519 0.998388i \(-0.518074\pi\)
−0.0567519 + 0.998388i \(0.518074\pi\)
\(572\) 0 0
\(573\) 618.756 + 240.376i 1.07985 + 0.419505i
\(574\) 0 0
\(575\) 28.6639i 0.0498503i
\(576\) 0 0
\(577\) −222.871 −0.386258 −0.193129 0.981173i \(-0.561864\pi\)
−0.193129 + 0.981173i \(0.561864\pi\)
\(578\) 0 0
\(579\) 287.625 740.381i 0.496762 1.27872i
\(580\) 0 0
\(581\) 356.321i 0.613290i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 560.154 612.146i 0.957529 1.04640i
\(586\) 0 0
\(587\) 783.407i 1.33459i −0.744792 0.667297i \(-0.767451\pi\)
0.744792 0.667297i \(-0.232549\pi\)
\(588\) 0 0
\(589\) −339.798 −0.576907
\(590\) 0 0
\(591\) 645.274 + 250.678i 1.09183 + 0.424159i
\(592\) 0 0
\(593\) 258.436i 0.435812i −0.975970 0.217906i \(-0.930077\pi\)
0.975970 0.217906i \(-0.0699226\pi\)
\(594\) 0 0
\(595\) −23.7848 −0.0399744
\(596\) 0 0
\(597\) 37.0279 95.3142i 0.0620233 0.159655i
\(598\) 0 0
\(599\) 708.581i 1.18294i −0.806327 0.591470i \(-0.798548\pi\)
0.806327 0.591470i \(-0.201452\pi\)
\(600\) 0 0
\(601\) 720.547 1.19891 0.599457 0.800407i \(-0.295383\pi\)
0.599457 + 0.800407i \(0.295383\pi\)
\(602\) 0 0
\(603\) 183.663 + 168.064i 0.304581 + 0.278712i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 107.231 0.176657 0.0883287 0.996091i \(-0.471847\pi\)
0.0883287 + 0.996091i \(0.471847\pi\)
\(608\) 0 0
\(609\) −703.787 273.409i −1.15564 0.448947i
\(610\) 0 0
\(611\) 1232.54i 2.01726i
\(612\) 0 0
\(613\) −828.985 −1.35234 −0.676170 0.736746i \(-0.736362\pi\)
−0.676170 + 0.736746i \(0.736362\pi\)
\(614\) 0 0
\(615\) −83.9462 + 216.087i −0.136498 + 0.351362i
\(616\) 0 0
\(617\) 44.6300i 0.0723338i −0.999346 0.0361669i \(-0.988485\pi\)
0.999346 0.0361669i \(-0.0115148\pi\)
\(618\) 0 0
\(619\) −960.665 −1.55196 −0.775981 0.630756i \(-0.782745\pi\)
−0.775981 + 0.630756i \(0.782745\pi\)
\(620\) 0 0
\(621\) −35.8546 72.5172i −0.0577368 0.116775i
\(622\) 0 0
\(623\) 484.639i 0.777912i
\(624\) 0 0
\(625\) −294.305 −0.470888
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 47.4151i 0.0753818i
\(630\) 0 0
\(631\) −86.3415 −0.136833 −0.0684164 0.997657i \(-0.521795\pi\)
−0.0684164 + 0.997657i \(0.521795\pi\)
\(632\) 0 0
\(633\) −426.739 + 1098.48i −0.674154 + 1.73535i
\(634\) 0 0
\(635\) 4.21634i 0.00663991i
\(636\) 0 0
\(637\) 593.954 0.932424
\(638\) 0 0
\(639\) −676.397 + 739.178i −1.05852 + 1.15677i
\(640\) 0 0
\(641\) 956.235i 1.49179i −0.666066 0.745893i \(-0.732023\pi\)
0.666066 0.745893i \(-0.267977\pi\)
\(642\) 0 0
\(643\) 345.210 0.536874 0.268437 0.963297i \(-0.413493\pi\)
0.268437 + 0.963297i \(0.413493\pi\)
\(644\) 0 0
\(645\) −92.0418 35.7567i −0.142701 0.0554367i
\(646\) 0 0
\(647\) 305.845i 0.472712i 0.971666 + 0.236356i \(0.0759532\pi\)
−0.971666 + 0.236356i \(0.924047\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −203.944 + 524.974i −0.313277 + 0.806412i
\(652\) 0 0
\(653\) 654.227i 1.00188i 0.865482 + 0.500939i \(0.167012\pi\)
−0.865482 + 0.500939i \(0.832988\pi\)
\(654\) 0 0
\(655\) 783.820 1.19667
\(656\) 0 0
\(657\) 480.036 + 439.265i 0.730649 + 0.668592i
\(658\) 0 0
\(659\) 111.907i 0.169813i −0.996389 0.0849063i \(-0.972941\pi\)
0.996389 0.0849063i \(-0.0270591\pi\)
\(660\) 0 0
\(661\) −86.0243 −0.130143 −0.0650713 0.997881i \(-0.520727\pi\)
−0.0650713 + 0.997881i \(0.520727\pi\)
\(662\) 0 0
\(663\) −81.6315 31.7124i −0.123124 0.0478317i
\(664\) 0 0
\(665\) 168.459i 0.253323i
\(666\) 0 0
\(667\) −154.923 −0.232269
\(668\) 0 0
\(669\) −14.3446 + 36.9247i −0.0214419 + 0.0551939i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 182.608 0.271334 0.135667 0.990754i \(-0.456682\pi\)
0.135667 + 0.990754i \(0.456682\pi\)
\(674\) 0 0
\(675\) −231.548 + 114.484i −0.343034 + 0.169606i
\(676\) 0 0
\(677\) 340.463i 0.502899i −0.967870 0.251450i \(-0.919093\pi\)
0.967870 0.251450i \(-0.0809073\pi\)
\(678\) 0 0
\(679\) 677.530 0.997834
\(680\) 0 0
\(681\) −62.9554 24.4571i −0.0924455 0.0359135i
\(682\) 0 0
\(683\) 746.115i 1.09241i −0.837652 0.546204i \(-0.816072\pi\)
0.837652 0.546204i \(-0.183928\pi\)
\(684\) 0 0
\(685\) −109.270 −0.159519
\(686\) 0 0
\(687\) −154.592 + 397.937i −0.225024 + 0.579239i
\(688\) 0 0
\(689\) 1567.66i 2.27527i
\(690\) 0 0
\(691\) 364.621 0.527671 0.263836 0.964568i \(-0.415012\pi\)
0.263836 + 0.964568i \(0.415012\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 640.479i 0.921553i
\(696\) 0 0
\(697\) 24.4670 0.0351034
\(698\) 0 0
\(699\) 1164.85 + 452.524i 1.66645 + 0.647387i
\(700\) 0 0
\(701\) 88.0985i 0.125675i −0.998024 0.0628377i \(-0.979985\pi\)
0.998024 0.0628377i \(-0.0200151\pi\)
\(702\) 0 0
\(703\) −335.825 −0.477703
\(704\) 0 0
\(705\) 224.141 576.964i 0.317930 0.818388i
\(706\) 0 0
\(707\) 548.269i 0.775486i
\(708\) 0 0
\(709\) 691.437 0.975228 0.487614 0.873059i \(-0.337867\pi\)
0.487614 + 0.873059i \(0.337867\pi\)
\(710\) 0 0
\(711\) −126.627 115.872i −0.178096 0.162970i
\(712\) 0 0
\(713\) 115.562i 0.162078i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 476.977 + 185.297i 0.665240 + 0.258434i
\(718\) 0 0
\(719\) 139.223i 0.193634i 0.995302 + 0.0968171i \(0.0308662\pi\)
−0.995302 + 0.0968171i \(0.969134\pi\)
\(720\) 0 0
\(721\) 470.088 0.651994
\(722\) 0 0
\(723\) 165.027 424.800i 0.228254 0.587551i
\(724\) 0 0
\(725\) 494.672i 0.682306i
\(726\) 0 0
\(727\) −822.403 −1.13123 −0.565614 0.824670i \(-0.691361\pi\)
−0.565614 + 0.824670i \(0.691361\pi\)
\(728\) 0 0
\(729\) 442.593 579.269i 0.607123 0.794608i
\(730\) 0 0
\(731\) 10.4217i 0.0142567i
\(732\) 0 0
\(733\) −569.900 −0.777490 −0.388745 0.921345i \(-0.627091\pi\)
−0.388745 + 0.921345i \(0.627091\pi\)
\(734\) 0 0
\(735\) 278.035 + 108.012i 0.378279 + 0.146955i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −240.719 −0.325735 −0.162868 0.986648i \(-0.552074\pi\)
−0.162868 + 0.986648i \(0.552074\pi\)
\(740\) 0 0
\(741\) 224.608 578.168i 0.303115 0.780254i
\(742\) 0 0
\(743\) 843.654i 1.13547i 0.823211 + 0.567735i \(0.192180\pi\)
−0.823211 + 0.567735i \(0.807820\pi\)
\(744\) 0 0
\(745\) 741.516 0.995323
\(746\) 0 0
\(747\) 444.783 486.067i 0.595426 0.650692i
\(748\) 0 0
\(749\) 372.644i 0.497522i
\(750\) 0 0
\(751\) 1321.29 1.75938 0.879689 0.475549i \(-0.157750\pi\)
0.879689 + 0.475549i \(0.157750\pi\)
\(752\) 0 0
\(753\) 1086.37 + 422.035i 1.44272 + 0.560471i
\(754\) 0 0
\(755\) 761.901i 1.00914i
\(756\) 0 0
\(757\) −1138.10 −1.50343 −0.751717 0.659485i \(-0.770774\pi\)
−0.751717 + 0.659485i \(0.770774\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 854.619i 1.12302i 0.827469 + 0.561511i \(0.189780\pi\)
−0.827469 + 0.561511i \(0.810220\pi\)
\(762\) 0 0
\(763\) −2.33988 −0.00306668
\(764\) 0 0
\(765\) −32.4454 29.6897i −0.0424123 0.0388101i
\(766\) 0 0
\(767\) 894.898i 1.16675i
\(768\) 0 0
\(769\) 1278.12 1.66205 0.831026 0.556233i \(-0.187754\pi\)
0.831026 + 0.556233i \(0.187754\pi\)
\(770\) 0 0
\(771\) 537.144 + 208.671i 0.696684 + 0.270650i
\(772\) 0 0
\(773\) 670.898i 0.867915i 0.900933 + 0.433957i \(0.142883\pi\)
−0.900933 + 0.433957i \(0.857117\pi\)
\(774\) 0 0
\(775\) 368.990 0.476116
\(776\) 0 0
\(777\) −201.559 + 518.836i −0.259407 + 0.667743i
\(778\) 0 0
\(779\) 173.292i 0.222454i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −618.766 1251.48i −0.790250 1.59831i
\(784\) 0 0
\(785\) 646.555i 0.823637i
\(786\) 0 0
\(787\) −1402.76 −1.78241 −0.891206 0.453600i \(-0.850140\pi\)
−0.891206 + 0.453600i \(0.850140\pi\)
\(788\) 0 0
\(789\) −1126.83 437.753i −1.42817 0.554821i
\(790\) 0 0
\(791\) 1062.48i 1.34321i
\(792\) 0 0
\(793\) −1137.23 −1.43409
\(794\) 0 0
\(795\) −285.082 + 733.835i −0.358594 + 0.923063i
\(796\) 0 0
\(797\) 566.092i 0.710278i −0.934814 0.355139i \(-0.884434\pi\)
0.934814 0.355139i \(-0.115566\pi\)
\(798\) 0 0
\(799\) −65.3282 −0.0817624
\(800\) 0 0
\(801\) 604.958 661.108i 0.755253 0.825354i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −57.2912 −0.0711692
\(806\) 0 0
\(807\) 425.846 + 165.434i 0.527690 + 0.204999i
\(808\) 0 0
\(809\) 989.854i 1.22355i 0.791031 + 0.611776i \(0.209545\pi\)
−0.791031 + 0.611776i \(0.790455\pi\)
\(810\) 0 0
\(811\) −167.646 −0.206716 −0.103358 0.994644i \(-0.532959\pi\)
−0.103358 + 0.994644i \(0.532959\pi\)
\(812\) 0 0
\(813\) −566.816 + 1459.05i −0.697190 + 1.79465i
\(814\) 0 0
\(815\) 939.843i 1.15318i
\(816\) 0 0
\(817\) −73.8131 −0.0903466
\(818\) 0 0
\(819\) −758.438 694.021i −0.926054 0.847401i
\(820\) 0 0
\(821\) 194.351i 0.236724i 0.992971 + 0.118362i \(0.0377643\pi\)
−0.992971 + 0.118362i \(0.962236\pi\)
\(822\) 0 0
\(823\) 653.508 0.794056 0.397028 0.917806i \(-0.370042\pi\)
0.397028 + 0.917806i \(0.370042\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 595.831i 0.720473i 0.932861 + 0.360236i \(0.117304\pi\)
−0.932861 + 0.360236i \(0.882696\pi\)
\(828\) 0 0
\(829\) −1235.22 −1.49002 −0.745008 0.667056i \(-0.767554\pi\)
−0.745008 + 0.667056i \(0.767554\pi\)
\(830\) 0 0
\(831\) 70.9562 182.649i 0.0853865 0.219795i
\(832\) 0 0
\(833\) 31.4812i 0.0377925i
\(834\) 0 0
\(835\) −676.740 −0.810467
\(836\) 0 0
\(837\) −933.511 + 461.555i −1.11531 + 0.551440i
\(838\) 0 0
\(839\) 223.414i 0.266286i 0.991097 + 0.133143i \(0.0425070\pi\)
−0.991097 + 0.133143i \(0.957493\pi\)
\(840\) 0 0
\(841\) −1832.61 −2.17909
\(842\) 0 0
\(843\) 128.604 + 49.9606i 0.152556 + 0.0592653i
\(844\) 0 0
\(845\) 1499.74i 1.77484i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −443.420 + 1141.42i −0.522285 + 1.34442i
\(850\) 0 0
\(851\) 114.210i 0.134207i
\(852\) 0 0
\(853\) −113.818 −0.133433 −0.0667165 0.997772i \(-0.521252\pi\)
−0.0667165 + 0.997772i \(0.521252\pi\)
\(854\) 0 0
\(855\) 210.282 229.800i 0.245944 0.268772i
\(856\) 0 0
\(857\) 953.012i 1.11203i 0.831171 + 0.556017i \(0.187671\pi\)
−0.831171 + 0.556017i \(0.812329\pi\)
\(858\) 0 0
\(859\) 1139.47 1.32651 0.663254 0.748394i \(-0.269175\pi\)
0.663254 + 0.748394i \(0.269175\pi\)
\(860\) 0 0
\(861\) 267.729 + 104.008i 0.310951 + 0.120799i
\(862\) 0 0
\(863\) 403.944i 0.468069i −0.972228 0.234035i \(-0.924807\pi\)
0.972228 0.234035i \(-0.0751929\pi\)
\(864\) 0 0
\(865\) 227.042 0.262476
\(866\) 0 0
\(867\) 312.275 803.832i 0.360179 0.927142i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 649.164 0.745309
\(872\) 0 0
\(873\) 924.235 + 845.736i 1.05869 + 0.968770i
\(874\) 0 0
\(875\) 660.967i 0.755391i
\(876\) 0 0
\(877\) −125.630 −0.143250 −0.0716249 0.997432i \(-0.522818\pi\)
−0.0716249 + 0.997432i \(0.522818\pi\)
\(878\) 0 0
\(879\) 1281.74 + 497.934i 1.45818 + 0.566478i
\(880\) 0 0
\(881\) 151.533i 0.172001i 0.996295 + 0.0860004i \(0.0274086\pi\)
−0.996295 + 0.0860004i \(0.972591\pi\)
\(882\) 0 0
\(883\) −181.979 −0.206092 −0.103046 0.994677i \(-0.532859\pi\)
−0.103046 + 0.994677i \(0.532859\pi\)
\(884\) 0 0
\(885\) 162.739 418.909i 0.183886 0.473343i
\(886\) 0 0
\(887\) 391.155i 0.440987i −0.975388 0.220493i \(-0.929233\pi\)
0.975388 0.220493i \(-0.0707668\pi\)
\(888\) 0 0
\(889\) −5.22398 −0.00587624
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 462.697i 0.518138i
\(894\) 0 0
\(895\) −72.6933 −0.0812215
\(896\) 0 0
\(897\) −196.629 76.3868i −0.219207 0.0851581i
\(898\) 0 0
\(899\) 1994.32i 2.21838i
\(900\) 0 0
\(901\) 83.0903 0.0922201
\(902\) 0 0
\(903\) −44.3019 + 114.038i −0.0490608 + 0.126288i
\(904\) 0 0
\(905\) 129.256i 0.142824i
\(906\) 0 0
\(907\) −1265.28 −1.39501 −0.697507 0.716578i \(-0.745708\pi\)
−0.697507 + 0.716578i \(0.745708\pi\)
\(908\) 0 0
\(909\) −684.384 + 747.907i −0.752898 + 0.822780i
\(910\) 0 0
\(911\) 401.672i 0.440913i −0.975397 0.220457i \(-0.929245\pi\)
0.975397 0.220457i \(-0.0707547\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −532.348 206.808i −0.581801 0.226020i
\(916\) 0 0
\(917\) 971.140i 1.05904i
\(918\) 0 0
\(919\) −798.609 −0.868998 −0.434499 0.900672i \(-0.643075\pi\)
−0.434499 + 0.900672i \(0.643075\pi\)
\(920\) 0 0
\(921\) −317.230 + 816.586i −0.344441 + 0.886630i
\(922\) 0 0
\(923\) 2612.66i 2.83062i
\(924\) 0 0
\(925\) 364.675 0.394243
\(926\) 0 0
\(927\) 641.258 + 586.794i 0.691757 + 0.633003i
\(928\) 0 0
\(929\) 371.191i 0.399560i −0.979841 0.199780i \(-0.935977\pi\)
0.979841 0.199780i \(-0.0640227\pi\)
\(930\) 0 0
\(931\) 222.971 0.239496
\(932\) 0 0
\(933\) −358.934 139.440i −0.384710 0.149453i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −1185.70 −1.26542 −0.632710 0.774389i \(-0.718058\pi\)
−0.632710 + 0.774389i \(0.718058\pi\)
\(938\) 0 0
\(939\) 166.888 429.588i 0.177729 0.457495i
\(940\) 0 0
\(941\) 1098.26i 1.16712i 0.812071 + 0.583558i \(0.198340\pi\)
−0.812071 + 0.583558i \(0.801660\pi\)
\(942\) 0 0
\(943\) 58.9346 0.0624969
\(944\) 0 0
\(945\) −228.822 462.801i −0.242140 0.489736i
\(946\) 0 0
\(947\) 544.356i 0.574821i 0.957807 + 0.287411i \(0.0927944\pi\)
−0.957807 + 0.287411i \(0.907206\pi\)
\(948\) 0 0
\(949\) 1696.71 1.78789
\(950\) 0 0
\(951\) −937.568 364.229i −0.985876 0.382996i
\(952\) 0 0
\(953\) 140.712i 0.147651i −0.997271 0.0738257i \(-0.976479\pi\)
0.997271 0.0738257i \(-0.0235209\pi\)
\(954\) 0 0
\(955\) 869.257 0.910217
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 135.384i 0.141172i
\(960\) 0 0
\(961\) 526.622 0.547994
\(962\) 0 0
\(963\) −465.158 + 508.332i −0.483030 + 0.527863i
\(964\) 0 0
\(965\) 1040.12i 1.07785i
\(966\) 0 0
\(967\) 487.128 0.503751 0.251876 0.967760i \(-0.418953\pi\)
0.251876 + 0.967760i \(0.418953\pi\)
\(968\) 0 0
\(969\) −30.6445 11.9049i −0.0316249 0.0122857i
\(970\) 0 0
\(971\) 750.766i 0.773188i 0.922250 + 0.386594i \(0.126349\pi\)
−0.922250 + 0.386594i \(0.873651\pi\)
\(972\) 0 0
\(973\) −793.543 −0.815563
\(974\) 0 0
\(975\) −243.904 + 627.837i −0.250158 + 0.643936i
\(976\) 0 0
\(977\) 190.661i 0.195149i −0.995228 0.0975747i \(-0.968892\pi\)
0.995228 0.0975747i \(-0.0311085\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −3.19188 2.92078i −0.00325370 0.00297735i
\(982\) 0 0
\(983\) 1611.38i 1.63925i 0.572902 + 0.819624i \(0.305818\pi\)
−0.572902 + 0.819624i \(0.694182\pi\)
\(984\) 0 0
\(985\) 906.511 0.920316
\(986\) 0 0
\(987\) −714.848 277.706i −0.724264 0.281364i
\(988\) 0 0
\(989\) 25.1030i 0.0253822i
\(990\) 0 0
\(991\) 188.780 0.190495 0.0952473 0.995454i \(-0.469636\pi\)
0.0952473 + 0.995454i \(0.469636\pi\)
\(992\) 0 0
\(993\) −476.264 + 1225.96i −0.479621 + 1.23460i
\(994\) 0 0
\(995\) 133.902i 0.134575i
\(996\) 0 0
\(997\) 545.159 0.546799 0.273400 0.961901i \(-0.411852\pi\)
0.273400 + 0.961901i \(0.411852\pi\)
\(998\) 0 0
\(999\) −922.596 + 456.158i −0.923520 + 0.456615i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1452.3.e.l.485.9 16
3.2 odd 2 inner 1452.3.e.l.485.10 16
11.3 even 5 132.3.m.a.53.5 yes 32
11.4 even 5 132.3.m.a.5.2 32
11.10 odd 2 1452.3.e.m.485.9 16
33.14 odd 10 132.3.m.a.53.2 yes 32
33.26 odd 10 132.3.m.a.5.5 yes 32
33.32 even 2 1452.3.e.m.485.10 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.3.m.a.5.2 32 11.4 even 5
132.3.m.a.5.5 yes 32 33.26 odd 10
132.3.m.a.53.2 yes 32 33.14 odd 10
132.3.m.a.53.5 yes 32 11.3 even 5
1452.3.e.l.485.9 16 1.1 even 1 trivial
1452.3.e.l.485.10 16 3.2 odd 2 inner
1452.3.e.m.485.9 16 11.10 odd 2
1452.3.e.m.485.10 16 33.32 even 2