Properties

Label 1452.3.e.g
Level $1452$
Weight $3$
Character orbit 1452.e
Analytic conductor $39.564$
Analytic rank $0$
Dimension $4$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,3,Mod(485,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.485"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1452.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-5,0,0,0,0,0,-7,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,-2,0,-20,0, 0,0,-74] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5641343851\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - 1) q^{3} + \beta_{3} q^{5} + ( - \beta_{3} - 3 \beta_{2} - 2 \beta_1 - 3) q^{9} + ( - 2 \beta_{3} + 2 \beta_{2} + \cdots + 4) q^{15} + (5 \beta_{3} + 6 \beta_{2} - 6 \beta_1) q^{23} + (3 \beta_{2} + 3 \beta_1 + 1) q^{25}+ \cdots + (51 \beta_{2} + 51 \beta_1 - 22) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 5 q^{3} - 7 q^{9} + 9 q^{15} - 2 q^{25} - 20 q^{27} - 74 q^{31} - 50 q^{37} + 93 q^{45} - 196 q^{49} + 70 q^{67} - 213 q^{69} + 52 q^{75} + 113 q^{81} - 155 q^{93} - 190 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 2\nu^{2} - 7 ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -5\nu^{3} - 4\nu^{2} + 10\nu + 21 ) / 6 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 4\nu^{3} - \nu^{2} + \nu - 15 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 3\beta_{3} + 9\beta_{2} + 7\beta _1 + 8 ) / 16 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -5\beta_{3} + \beta_{2} + 15\beta _1 + 24 ) / 16 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 5\beta_{3} - \beta_{2} + \beta _1 + 32 ) / 8 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
485.1
−1.18614 1.26217i
−1.18614 + 1.26217i
1.68614 + 0.396143i
1.68614 0.396143i
0 −2.68614 1.33591i 0 5.84096i 0 0 0 5.43070 + 7.17687i 0
485.2 0 −2.68614 + 1.33591i 0 5.84096i 0 0 0 5.43070 7.17687i 0
485.3 0 0.186141 2.99422i 0 4.10891i 0 0 0 −8.93070 1.11469i 0
485.4 0 0.186141 + 2.99422i 0 4.10891i 0 0 0 −8.93070 + 1.11469i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
3.b odd 2 1 inner
33.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1452.3.e.g 4
3.b odd 2 1 inner 1452.3.e.g 4
11.b odd 2 1 CM 1452.3.e.g 4
33.d even 2 1 inner 1452.3.e.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1452.3.e.g 4 1.a even 1 1 trivial
1452.3.e.g 4 3.b odd 2 1 inner
1452.3.e.g 4 11.b odd 2 1 CM
1452.3.e.g 4 33.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1452, [\chi])\):

\( T_{5}^{4} + 51T_{5}^{2} + 576 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 5 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$5$ \( T^{4} + 51T^{2} + 576 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + 2283 T^{2} + 484416 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 37 T - 1514)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 25 T - 3482)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} + 6336)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 6336)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 18411 T^{2} + 63489024 \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 35 T - 12242)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 27771 T^{2} + 159971904 \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} + 25251 T^{2} + 2214144 \) Copy content Toggle raw display
$97$ \( (T^{2} + 95 T - 19202)^{2} \) Copy content Toggle raw display
show more
show less