Properties

Label 1450.4.a.h
Level $1450$
Weight $4$
Character orbit 1450.a
Self dual yes
Analytic conductor $85.553$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1450,4,Mod(1,1450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1450.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1450 = 2 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-6,-2,12,0,4,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(85.5527695083\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.19816.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 42x - 54 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + (\beta_1 - 1) q^{3} + 4 q^{4} + ( - 2 \beta_1 + 2) q^{6} + (4 \beta_{2} - 8) q^{7} - 8 q^{8} + (3 \beta_{2} + 2 \beta_1 + 1) q^{9} + ( - 2 \beta_{2} + \beta_1 + 3) q^{11} + (4 \beta_1 - 4) q^{12}+ \cdots + (22 \beta_{2} + 38 \beta_1 - 114) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{2} - 2 q^{3} + 12 q^{4} + 4 q^{6} - 24 q^{7} - 24 q^{8} + 5 q^{9} + 10 q^{11} - 8 q^{12} + 4 q^{13} + 48 q^{14} + 48 q^{16} + 66 q^{17} - 10 q^{18} - 164 q^{19} - 88 q^{21} - 20 q^{22} + 204 q^{23}+ \cdots - 304 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 42x - 54 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - 4\nu - 27 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} + 4\beta _1 + 27 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.13291
−1.39712
7.53003
−2.00000 −6.13291 4.00000 0 12.2658 18.5045 −8.00000 10.6126 0
1.2 −2.00000 −2.39712 4.00000 0 4.79424 −33.9461 −8.00000 −21.2538 0
1.3 −2.00000 6.53003 4.00000 0 −13.0601 −8.55839 −8.00000 15.6413 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1450.4.a.h 3
5.b even 2 1 58.4.a.d 3
15.d odd 2 1 522.4.a.k 3
20.d odd 2 1 464.4.a.i 3
40.e odd 2 1 1856.4.a.s 3
40.f even 2 1 1856.4.a.r 3
145.d even 2 1 1682.4.a.d 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
58.4.a.d 3 5.b even 2 1
464.4.a.i 3 20.d odd 2 1
522.4.a.k 3 15.d odd 2 1
1450.4.a.h 3 1.a even 1 1 trivial
1682.4.a.d 3 145.d even 2 1
1856.4.a.r 3 40.f even 2 1
1856.4.a.s 3 40.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1450))\):

\( T_{3}^{3} + 2T_{3}^{2} - 41T_{3} - 96 \) Copy content Toggle raw display
\( T_{7}^{3} + 24T_{7}^{2} - 496T_{7} - 5376 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 2 T^{2} + \cdots - 96 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 24 T^{2} + \cdots - 5376 \) Copy content Toggle raw display
$11$ \( T^{3} - 10 T^{2} + \cdots + 2424 \) Copy content Toggle raw display
$13$ \( T^{3} - 4 T^{2} + \cdots - 131706 \) Copy content Toggle raw display
$17$ \( T^{3} - 66 T^{2} + \cdots + 679368 \) Copy content Toggle raw display
$19$ \( T^{3} + 164 T^{2} + \cdots - 664448 \) Copy content Toggle raw display
$23$ \( T^{3} - 204 T^{2} + \cdots + 677376 \) Copy content Toggle raw display
$29$ \( (T - 29)^{3} \) Copy content Toggle raw display
$31$ \( T^{3} + 86 T^{2} + \cdots - 4766172 \) Copy content Toggle raw display
$37$ \( T^{3} - 42 T^{2} + \cdots + 7684896 \) Copy content Toggle raw display
$41$ \( T^{3} - 562 T^{2} + \cdots - 5982048 \) Copy content Toggle raw display
$43$ \( T^{3} + 18 T^{2} + \cdots - 196488 \) Copy content Toggle raw display
$47$ \( T^{3} + 654 T^{2} + \cdots + 3425124 \) Copy content Toggle raw display
$53$ \( T^{3} + 712 T^{2} + \cdots - 252120546 \) Copy content Toggle raw display
$59$ \( T^{3} - 184 T^{2} + \cdots + 57362928 \) Copy content Toggle raw display
$61$ \( T^{3} - 322 T^{2} + \cdots - 5254424 \) Copy content Toggle raw display
$67$ \( T^{3} - 228 T^{2} + \cdots - 47608192 \) Copy content Toggle raw display
$71$ \( T^{3} + 52 T^{2} + \cdots - 672 \) Copy content Toggle raw display
$73$ \( T^{3} - 494 T^{2} + \cdots + 9410208 \) Copy content Toggle raw display
$79$ \( T^{3} + 2110 T^{2} + \cdots + 285187172 \) Copy content Toggle raw display
$83$ \( T^{3} - 288 T^{2} + \cdots + 437606064 \) Copy content Toggle raw display
$89$ \( T^{3} - 914 T^{2} + \cdots + 598011552 \) Copy content Toggle raw display
$97$ \( T^{3} + 218 T^{2} + \cdots + 17006112 \) Copy content Toggle raw display
show more
show less