Newspace parameters
Level: | \( N \) | \(=\) | \( 58 = 2 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 58.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(3.42211078033\) |
Analytic rank: | \(0\) |
Dimension: | \(3\) |
Coefficient field: | 3.3.19816.1 |
Defining polynomial: |
\( x^{3} - x^{2} - 42x - 54 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{3} - x^{2} - 42x - 54 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} - 4\nu - 27 ) / 3 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( 3\beta_{2} + 4\beta _1 + 27 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
2.00000 | −6.53003 | 4.00000 | 20.9205 | −13.0601 | 8.55839 | 8.00000 | 15.6413 | 41.8409 | |||||||||||||||||||||||||||
1.2 | 2.00000 | 2.39712 | 4.00000 | −3.28077 | 4.79424 | 33.9461 | 8.00000 | −21.2538 | −6.56153 | ||||||||||||||||||||||||||||
1.3 | 2.00000 | 6.13291 | 4.00000 | 2.36031 | 12.2658 | −18.5045 | 8.00000 | 10.6126 | 4.72062 | ||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(-1\) |
\(29\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 58.4.a.d | ✓ | 3 |
3.b | odd | 2 | 1 | 522.4.a.k | 3 | ||
4.b | odd | 2 | 1 | 464.4.a.i | 3 | ||
5.b | even | 2 | 1 | 1450.4.a.h | 3 | ||
8.b | even | 2 | 1 | 1856.4.a.r | 3 | ||
8.d | odd | 2 | 1 | 1856.4.a.s | 3 | ||
29.b | even | 2 | 1 | 1682.4.a.d | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
58.4.a.d | ✓ | 3 | 1.a | even | 1 | 1 | trivial |
464.4.a.i | 3 | 4.b | odd | 2 | 1 | ||
522.4.a.k | 3 | 3.b | odd | 2 | 1 | ||
1450.4.a.h | 3 | 5.b | even | 2 | 1 | ||
1682.4.a.d | 3 | 29.b | even | 2 | 1 | ||
1856.4.a.r | 3 | 8.b | even | 2 | 1 | ||
1856.4.a.s | 3 | 8.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{3} - 2T_{3}^{2} - 41T_{3} + 96 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(58))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T - 2)^{3} \)
$3$
\( T^{3} - 2 T^{2} - 41 T + 96 \)
$5$
\( T^{3} - 20 T^{2} - 27 T + 162 \)
$7$
\( T^{3} - 24 T^{2} - 496 T + 5376 \)
$11$
\( T^{3} - 10 T^{2} - 233 T + 2424 \)
$13$
\( T^{3} + 4 T^{2} - 5619 T + 131706 \)
$17$
\( T^{3} + 66 T^{2} - 10660 T - 679368 \)
$19$
\( T^{3} + 164 T^{2} - 124 T - 664448 \)
$23$
\( T^{3} + 204 T^{2} + 4284 T - 677376 \)
$29$
\( (T - 29)^{3} \)
$31$
\( T^{3} + 86 T^{2} - 48089 T - 4766172 \)
$37$
\( T^{3} + 42 T^{2} - 79456 T - 7684896 \)
$41$
\( T^{3} - 562 T^{2} + 102432 T - 5982048 \)
$43$
\( T^{3} - 18 T^{2} - 10369 T + 196488 \)
$47$
\( T^{3} - 654 T^{2} + 98015 T - 3425124 \)
$53$
\( T^{3} - 712 T^{2} + \cdots + 252120546 \)
$59$
\( T^{3} - 184 T^{2} + \cdots + 57362928 \)
$61$
\( T^{3} - 322 T^{2} - 388372 T - 5254424 \)
$67$
\( T^{3} + 228 T^{2} + \cdots + 47608192 \)
$71$
\( T^{3} + 52 T^{2} - 164 T - 672 \)
$73$
\( T^{3} + 494 T^{2} + 6112 T - 9410208 \)
$79$
\( T^{3} + 2110 T^{2} + \cdots + 285187172 \)
$83$
\( T^{3} + 288 T^{2} + \cdots - 437606064 \)
$89$
\( T^{3} - 914 T^{2} + \cdots + 598011552 \)
$97$
\( T^{3} - 218 T^{2} + \cdots - 17006112 \)
show more
show less