Properties

Label 1450.2.j.h.1293.5
Level $1450$
Weight $2$
Character 1450.1293
Analytic conductor $11.578$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1450,2,Mod(157,1450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1450, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1450.157"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1450 = 2 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1450.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-12,0,0,4,0,28,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5783082931\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 119x^{8} + 346x^{6} + 397x^{4} + 80x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 290)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1293.5
Root \(-2.31763i\) of defining polynomial
Character \(\chi\) \(=\) 1450.1293
Dual form 1450.2.j.h.157.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +2.37143 q^{3} -1.00000 q^{4} +2.37143i q^{6} +(-1.54761 + 1.54761i) q^{7} -1.00000i q^{8} +2.62368 q^{9} +(-1.74911 + 1.74911i) q^{11} -2.37143 q^{12} +(-4.70293 + 4.70293i) q^{13} +(-1.54761 - 1.54761i) q^{14} +1.00000 q^{16} +5.49611i q^{17} +2.62368i q^{18} +(-4.80216 - 4.80216i) q^{19} +(-3.67005 + 3.67005i) q^{21} +(-1.74911 - 1.74911i) q^{22} +(-1.90213 - 1.90213i) q^{23} -2.37143i q^{24} +(-4.70293 - 4.70293i) q^{26} -0.892408 q^{27} +(1.54761 - 1.54761i) q^{28} +(2.50843 - 4.76527i) q^{29} +(1.34066 - 1.34066i) q^{31} +1.00000i q^{32} +(-4.14789 + 4.14789i) q^{33} -5.49611 q^{34} -2.62368 q^{36} +9.27054 q^{37} +(4.80216 - 4.80216i) q^{38} +(-11.1527 + 11.1527i) q^{39} +(6.23227 + 6.23227i) q^{41} +(-3.67005 - 3.67005i) q^{42} -8.13887 q^{43} +(1.74911 - 1.74911i) q^{44} +(1.90213 - 1.90213i) q^{46} -3.34747 q^{47} +2.37143 q^{48} +2.20981i q^{49} +13.0336i q^{51} +(4.70293 - 4.70293i) q^{52} +(1.34066 + 1.34066i) q^{53} -0.892408i q^{54} +(1.54761 + 1.54761i) q^{56} +(-11.3880 - 11.3880i) q^{57} +(4.76527 + 2.50843i) q^{58} +8.03932i q^{59} +(-1.90213 + 1.90213i) q^{61} +(1.34066 + 1.34066i) q^{62} +(-4.06044 + 4.06044i) q^{63} -1.00000 q^{64} +(-4.14789 - 4.14789i) q^{66} +(7.71402 + 7.71402i) q^{67} -5.49611i q^{68} +(-4.51078 - 4.51078i) q^{69} -3.31237i q^{71} -2.62368i q^{72} -2.80389i q^{73} +9.27054i q^{74} +(4.80216 + 4.80216i) q^{76} -5.41388i q^{77} +(-11.1527 - 11.1527i) q^{78} +(-1.05529 - 1.05529i) q^{79} -9.98733 q^{81} +(-6.23227 + 6.23227i) q^{82} +(1.00000 + 1.00000i) q^{83} +(3.67005 - 3.67005i) q^{84} -8.13887i q^{86} +(5.94856 - 11.3005i) q^{87} +(1.74911 + 1.74911i) q^{88} +(7.44059 + 7.44059i) q^{89} -14.5566i q^{91} +(1.90213 + 1.90213i) q^{92} +(3.17928 - 3.17928i) q^{93} -3.34747i q^{94} +2.37143i q^{96} -6.98037 q^{97} -2.20981 q^{98} +(-4.58911 + 4.58911i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{4} + 4 q^{7} + 28 q^{9} + 10 q^{11} - 2 q^{13} + 4 q^{14} + 12 q^{16} - 16 q^{19} - 16 q^{21} + 10 q^{22} - 4 q^{23} - 2 q^{26} - 12 q^{27} - 4 q^{28} + 20 q^{29} + 18 q^{31} + 6 q^{33} - 28 q^{36}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1450\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1277\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 2.37143 1.36915 0.684573 0.728944i \(-0.259989\pi\)
0.684573 + 0.728944i \(0.259989\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 2.37143i 0.968133i
\(7\) −1.54761 + 1.54761i −0.584942 + 0.584942i −0.936257 0.351315i \(-0.885734\pi\)
0.351315 + 0.936257i \(0.385734\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.62368 0.874561
\(10\) 0 0
\(11\) −1.74911 + 1.74911i −0.527376 + 0.527376i −0.919789 0.392413i \(-0.871640\pi\)
0.392413 + 0.919789i \(0.371640\pi\)
\(12\) −2.37143 −0.684573
\(13\) −4.70293 + 4.70293i −1.30436 + 1.30436i −0.378935 + 0.925423i \(0.623710\pi\)
−0.925423 + 0.378935i \(0.876290\pi\)
\(14\) −1.54761 1.54761i −0.413616 0.413616i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 5.49611i 1.33300i 0.745504 + 0.666501i \(0.232209\pi\)
−0.745504 + 0.666501i \(0.767791\pi\)
\(18\) 2.62368i 0.618408i
\(19\) −4.80216 4.80216i −1.10169 1.10169i −0.994207 0.107484i \(-0.965721\pi\)
−0.107484 0.994207i \(-0.534279\pi\)
\(20\) 0 0
\(21\) −3.67005 + 3.67005i −0.800871 + 0.800871i
\(22\) −1.74911 1.74911i −0.372911 0.372911i
\(23\) −1.90213 1.90213i −0.396622 0.396622i 0.480418 0.877040i \(-0.340485\pi\)
−0.877040 + 0.480418i \(0.840485\pi\)
\(24\) 2.37143i 0.484066i
\(25\) 0 0
\(26\) −4.70293 4.70293i −0.922321 0.922321i
\(27\) −0.892408 −0.171744
\(28\) 1.54761 1.54761i 0.292471 0.292471i
\(29\) 2.50843 4.76527i 0.465803 0.884889i
\(30\) 0 0
\(31\) 1.34066 1.34066i 0.240789 0.240789i −0.576387 0.817177i \(-0.695538\pi\)
0.817177 + 0.576387i \(0.195538\pi\)
\(32\) 1.00000i 0.176777i
\(33\) −4.14789 + 4.14789i −0.722055 + 0.722055i
\(34\) −5.49611 −0.942575
\(35\) 0 0
\(36\) −2.62368 −0.437281
\(37\) 9.27054 1.52407 0.762034 0.647537i \(-0.224201\pi\)
0.762034 + 0.647537i \(0.224201\pi\)
\(38\) 4.80216 4.80216i 0.779013 0.779013i
\(39\) −11.1527 + 11.1527i −1.78586 + 1.78586i
\(40\) 0 0
\(41\) 6.23227 + 6.23227i 0.973317 + 0.973317i 0.999653 0.0263359i \(-0.00838394\pi\)
−0.0263359 + 0.999653i \(0.508384\pi\)
\(42\) −3.67005 3.67005i −0.566301 0.566301i
\(43\) −8.13887 −1.24117 −0.620583 0.784141i \(-0.713104\pi\)
−0.620583 + 0.784141i \(0.713104\pi\)
\(44\) 1.74911 1.74911i 0.263688 0.263688i
\(45\) 0 0
\(46\) 1.90213 1.90213i 0.280454 0.280454i
\(47\) −3.34747 −0.488279 −0.244140 0.969740i \(-0.578506\pi\)
−0.244140 + 0.969740i \(0.578506\pi\)
\(48\) 2.37143 0.342287
\(49\) 2.20981i 0.315687i
\(50\) 0 0
\(51\) 13.0336i 1.82508i
\(52\) 4.70293 4.70293i 0.652179 0.652179i
\(53\) 1.34066 + 1.34066i 0.184154 + 0.184154i 0.793163 0.609009i \(-0.208433\pi\)
−0.609009 + 0.793163i \(0.708433\pi\)
\(54\) 0.892408i 0.121441i
\(55\) 0 0
\(56\) 1.54761 + 1.54761i 0.206808 + 0.206808i
\(57\) −11.3880 11.3880i −1.50838 1.50838i
\(58\) 4.76527 + 2.50843i 0.625711 + 0.329372i
\(59\) 8.03932i 1.04663i 0.852139 + 0.523315i \(0.175305\pi\)
−0.852139 + 0.523315i \(0.824695\pi\)
\(60\) 0 0
\(61\) −1.90213 + 1.90213i −0.243543 + 0.243543i −0.818314 0.574771i \(-0.805091\pi\)
0.574771 + 0.818314i \(0.305091\pi\)
\(62\) 1.34066 + 1.34066i 0.170264 + 0.170264i
\(63\) −4.06044 + 4.06044i −0.511567 + 0.511567i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −4.14789 4.14789i −0.510570 0.510570i
\(67\) 7.71402 + 7.71402i 0.942417 + 0.942417i 0.998430 0.0560127i \(-0.0178387\pi\)
−0.0560127 + 0.998430i \(0.517839\pi\)
\(68\) 5.49611i 0.666501i
\(69\) −4.51078 4.51078i −0.543034 0.543034i
\(70\) 0 0
\(71\) 3.31237i 0.393106i −0.980493 0.196553i \(-0.937025\pi\)
0.980493 0.196553i \(-0.0629748\pi\)
\(72\) 2.62368i 0.309204i
\(73\) 2.80389i 0.328170i −0.986446 0.164085i \(-0.947533\pi\)
0.986446 0.164085i \(-0.0524672\pi\)
\(74\) 9.27054i 1.07768i
\(75\) 0 0
\(76\) 4.80216 + 4.80216i 0.550845 + 0.550845i
\(77\) 5.41388i 0.616969i
\(78\) −11.1527 11.1527i −1.26279 1.26279i
\(79\) −1.05529 1.05529i −0.118729 0.118729i 0.645246 0.763975i \(-0.276755\pi\)
−0.763975 + 0.645246i \(0.776755\pi\)
\(80\) 0 0
\(81\) −9.98733 −1.10970
\(82\) −6.23227 + 6.23227i −0.688239 + 0.688239i
\(83\) 1.00000 + 1.00000i 0.109764 + 0.109764i 0.759856 0.650092i \(-0.225269\pi\)
−0.650092 + 0.759856i \(0.725269\pi\)
\(84\) 3.67005 3.67005i 0.400435 0.400435i
\(85\) 0 0
\(86\) 8.13887i 0.877636i
\(87\) 5.94856 11.3005i 0.637752 1.21154i
\(88\) 1.74911 + 1.74911i 0.186456 + 0.186456i
\(89\) 7.44059 + 7.44059i 0.788700 + 0.788700i 0.981281 0.192581i \(-0.0616857\pi\)
−0.192581 + 0.981281i \(0.561686\pi\)
\(90\) 0 0
\(91\) 14.5566i 1.52595i
\(92\) 1.90213 + 1.90213i 0.198311 + 0.198311i
\(93\) 3.17928 3.17928i 0.329676 0.329676i
\(94\) 3.34747i 0.345266i
\(95\) 0 0
\(96\) 2.37143i 0.242033i
\(97\) −6.98037 −0.708749 −0.354375 0.935104i \(-0.615306\pi\)
−0.354375 + 0.935104i \(0.615306\pi\)
\(98\) −2.20981 −0.223224
\(99\) −4.58911 + 4.58911i −0.461223 + 0.461223i
\(100\) 0 0
\(101\) −8.86530 + 8.86530i −0.882130 + 0.882130i −0.993751 0.111620i \(-0.964396\pi\)
0.111620 + 0.993751i \(0.464396\pi\)
\(102\) −13.0336 −1.29052
\(103\) 8.53083 + 8.53083i 0.840568 + 0.840568i 0.988933 0.148365i \(-0.0474009\pi\)
−0.148365 + 0.988933i \(0.547401\pi\)
\(104\) 4.70293 + 4.70293i 0.461160 + 0.461160i
\(105\) 0 0
\(106\) −1.34066 + 1.34066i −0.130216 + 0.130216i
\(107\) 10.3819 10.3819i 1.00366 1.00366i 0.00366325 0.999993i \(-0.498834\pi\)
0.999993 0.00366325i \(-0.00116605\pi\)
\(108\) 0.892408 0.0858720
\(109\) 2.50284 0.239729 0.119864 0.992790i \(-0.461754\pi\)
0.119864 + 0.992790i \(0.461754\pi\)
\(110\) 0 0
\(111\) 21.9844 2.08667
\(112\) −1.54761 + 1.54761i −0.146235 + 0.146235i
\(113\) 4.50808i 0.424084i 0.977261 + 0.212042i \(0.0680114\pi\)
−0.977261 + 0.212042i \(0.931989\pi\)
\(114\) 11.3880 11.3880i 1.06658 1.06658i
\(115\) 0 0
\(116\) −2.50843 + 4.76527i −0.232901 + 0.442444i
\(117\) −12.3390 + 12.3390i −1.14074 + 1.14074i
\(118\) −8.03932 −0.740079
\(119\) −8.50584 8.50584i −0.779729 0.779729i
\(120\) 0 0
\(121\) 4.88123i 0.443749i
\(122\) −1.90213 1.90213i −0.172211 0.172211i
\(123\) 14.7794 + 14.7794i 1.33261 + 1.33261i
\(124\) −1.34066 + 1.34066i −0.120395 + 0.120395i
\(125\) 0 0
\(126\) −4.06044 4.06044i −0.361733 0.361733i
\(127\) 5.40735i 0.479825i −0.970795 0.239913i \(-0.922881\pi\)
0.970795 0.239913i \(-0.0771188\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −19.3008 −1.69934
\(130\) 0 0
\(131\) 10.5711 + 10.5711i 0.923600 + 0.923600i 0.997282 0.0736817i \(-0.0234749\pi\)
−0.0736817 + 0.997282i \(0.523475\pi\)
\(132\) 4.14789 4.14789i 0.361028 0.361028i
\(133\) 14.8637 1.28885
\(134\) −7.71402 + 7.71402i −0.666390 + 0.666390i
\(135\) 0 0
\(136\) 5.49611 0.471288
\(137\) 5.27765i 0.450900i −0.974255 0.225450i \(-0.927615\pi\)
0.974255 0.225450i \(-0.0723852\pi\)
\(138\) 4.51078 4.51078i 0.383983 0.383983i
\(139\) 5.16233i 0.437863i 0.975740 + 0.218932i \(0.0702572\pi\)
−0.975740 + 0.218932i \(0.929743\pi\)
\(140\) 0 0
\(141\) −7.93830 −0.668526
\(142\) 3.31237 0.277968
\(143\) 16.4519i 1.37578i
\(144\) 2.62368 0.218640
\(145\) 0 0
\(146\) 2.80389 0.232051
\(147\) 5.24040i 0.432221i
\(148\) −9.27054 −0.762034
\(149\) −9.75656 −0.799288 −0.399644 0.916670i \(-0.630866\pi\)
−0.399644 + 0.916670i \(0.630866\pi\)
\(150\) 0 0
\(151\) 6.29344i 0.512153i −0.966657 0.256076i \(-0.917570\pi\)
0.966657 0.256076i \(-0.0824299\pi\)
\(152\) −4.80216 + 4.80216i −0.389507 + 0.389507i
\(153\) 14.4201i 1.16579i
\(154\) 5.41388 0.436263
\(155\) 0 0
\(156\) 11.1527 11.1527i 0.892929 0.892929i
\(157\) 23.4621 1.87248 0.936240 0.351360i \(-0.114281\pi\)
0.936240 + 0.351360i \(0.114281\pi\)
\(158\) 1.05529 1.05529i 0.0839543 0.0839543i
\(159\) 3.17928 + 3.17928i 0.252133 + 0.252133i
\(160\) 0 0
\(161\) 5.88752 0.464002
\(162\) 9.98733i 0.784679i
\(163\) 5.60923i 0.439349i 0.975573 + 0.219674i \(0.0704995\pi\)
−0.975573 + 0.219674i \(0.929501\pi\)
\(164\) −6.23227 6.23227i −0.486659 0.486659i
\(165\) 0 0
\(166\) −1.00000 + 1.00000i −0.0776151 + 0.0776151i
\(167\) −10.7430 10.7430i −0.831322 0.831322i 0.156376 0.987698i \(-0.450019\pi\)
−0.987698 + 0.156376i \(0.950019\pi\)
\(168\) 3.67005 + 3.67005i 0.283151 + 0.283151i
\(169\) 31.2351i 2.40270i
\(170\) 0 0
\(171\) −12.5993 12.5993i −0.963496 0.963496i
\(172\) 8.13887 0.620583
\(173\) 2.54018 2.54018i 0.193126 0.193126i −0.603919 0.797046i \(-0.706395\pi\)
0.797046 + 0.603919i \(0.206395\pi\)
\(174\) 11.3005 + 5.94856i 0.856689 + 0.450959i
\(175\) 0 0
\(176\) −1.74911 + 1.74911i −0.131844 + 0.131844i
\(177\) 19.0647i 1.43299i
\(178\) −7.44059 + 7.44059i −0.557695 + 0.557695i
\(179\) 13.1139 0.980176 0.490088 0.871673i \(-0.336965\pi\)
0.490088 + 0.871673i \(0.336965\pi\)
\(180\) 0 0
\(181\) 6.48628 0.482121 0.241061 0.970510i \(-0.422505\pi\)
0.241061 + 0.970510i \(0.422505\pi\)
\(182\) 14.5566 1.07901
\(183\) −4.51078 + 4.51078i −0.333446 + 0.333446i
\(184\) −1.90213 + 1.90213i −0.140227 + 0.140227i
\(185\) 0 0
\(186\) 3.17928 + 3.17928i 0.233116 + 0.233116i
\(187\) −9.61330 9.61330i −0.702994 0.702994i
\(188\) 3.34747 0.244140
\(189\) 1.38110 1.38110i 0.100460 0.100460i
\(190\) 0 0
\(191\) 15.2545 15.2545i 1.10378 1.10378i 0.109828 0.993951i \(-0.464970\pi\)
0.993951 0.109828i \(-0.0350299\pi\)
\(192\) −2.37143 −0.171143
\(193\) −10.2509 −0.737877 −0.368938 0.929454i \(-0.620279\pi\)
−0.368938 + 0.929454i \(0.620279\pi\)
\(194\) 6.98037i 0.501161i
\(195\) 0 0
\(196\) 2.20981i 0.157843i
\(197\) 3.43016 3.43016i 0.244389 0.244389i −0.574274 0.818663i \(-0.694716\pi\)
0.818663 + 0.574274i \(0.194716\pi\)
\(198\) −4.58911 4.58911i −0.326134 0.326134i
\(199\) 5.28540i 0.374672i 0.982296 + 0.187336i \(0.0599853\pi\)
−0.982296 + 0.187336i \(0.940015\pi\)
\(200\) 0 0
\(201\) 18.2933 + 18.2933i 1.29031 + 1.29031i
\(202\) −8.86530 8.86530i −0.623760 0.623760i
\(203\) 3.49272 + 11.2568i 0.245141 + 0.790076i
\(204\) 13.0336i 0.912538i
\(205\) 0 0
\(206\) −8.53083 + 8.53083i −0.594371 + 0.594371i
\(207\) −4.99060 4.99060i −0.346870 0.346870i
\(208\) −4.70293 + 4.70293i −0.326090 + 0.326090i
\(209\) 16.7990 1.16201
\(210\) 0 0
\(211\) −0.597369 0.597369i −0.0411246 0.0411246i 0.686245 0.727370i \(-0.259258\pi\)
−0.727370 + 0.686245i \(0.759258\pi\)
\(212\) −1.34066 1.34066i −0.0920768 0.0920768i
\(213\) 7.85506i 0.538220i
\(214\) 10.3819 + 10.3819i 0.709692 + 0.709692i
\(215\) 0 0
\(216\) 0.892408i 0.0607207i
\(217\) 4.14963i 0.281695i
\(218\) 2.50284i 0.169514i
\(219\) 6.64923i 0.449313i
\(220\) 0 0
\(221\) −25.8478 25.8478i −1.73871 1.73871i
\(222\) 21.9844i 1.47550i
\(223\) −9.30527 9.30527i −0.623127 0.623127i 0.323203 0.946330i \(-0.395240\pi\)
−0.946330 + 0.323203i \(0.895240\pi\)
\(224\) −1.54761 1.54761i −0.103404 0.103404i
\(225\) 0 0
\(226\) −4.50808 −0.299873
\(227\) −13.1820 + 13.1820i −0.874921 + 0.874921i −0.993004 0.118082i \(-0.962325\pi\)
0.118082 + 0.993004i \(0.462325\pi\)
\(228\) 11.3880 + 11.3880i 0.754188 + 0.754188i
\(229\) −3.41240 + 3.41240i −0.225498 + 0.225498i −0.810809 0.585311i \(-0.800972\pi\)
0.585311 + 0.810809i \(0.300972\pi\)
\(230\) 0 0
\(231\) 12.8386i 0.844720i
\(232\) −4.76527 2.50843i −0.312855 0.164686i
\(233\) −19.7859 19.7859i −1.29622 1.29622i −0.930872 0.365347i \(-0.880951\pi\)
−0.365347 0.930872i \(-0.619049\pi\)
\(234\) −12.3390 12.3390i −0.806626 0.806626i
\(235\) 0 0
\(236\) 8.03932i 0.523315i
\(237\) −2.50255 2.50255i −0.162558 0.162558i
\(238\) 8.50584 8.50584i 0.551351 0.551351i
\(239\) 1.78183i 0.115257i −0.998338 0.0576285i \(-0.981646\pi\)
0.998338 0.0576285i \(-0.0183539\pi\)
\(240\) 0 0
\(241\) 2.56743i 0.165382i 0.996575 + 0.0826912i \(0.0263515\pi\)
−0.996575 + 0.0826912i \(0.973648\pi\)
\(242\) −4.88123 −0.313778
\(243\) −21.0070 −1.34760
\(244\) 1.90213 1.90213i 0.121772 0.121772i
\(245\) 0 0
\(246\) −14.7794 + 14.7794i −0.942300 + 0.942300i
\(247\) 45.1684 2.87400
\(248\) −1.34066 1.34066i −0.0851319 0.0851319i
\(249\) 2.37143 + 2.37143i 0.150283 + 0.150283i
\(250\) 0 0
\(251\) −19.3334 + 19.3334i −1.22032 + 1.22032i −0.252797 + 0.967519i \(0.581350\pi\)
−0.967519 + 0.252797i \(0.918650\pi\)
\(252\) 4.06044 4.06044i 0.255784 0.255784i
\(253\) 6.65408 0.418338
\(254\) 5.40735 0.339288
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −0.598364 + 0.598364i −0.0373249 + 0.0373249i −0.725523 0.688198i \(-0.758402\pi\)
0.688198 + 0.725523i \(0.258402\pi\)
\(258\) 19.3008i 1.20161i
\(259\) −14.3472 + 14.3472i −0.891490 + 0.891490i
\(260\) 0 0
\(261\) 6.58131 12.5026i 0.407373 0.773889i
\(262\) −10.5711 + 10.5711i −0.653084 + 0.653084i
\(263\) −7.05120 −0.434795 −0.217398 0.976083i \(-0.569757\pi\)
−0.217398 + 0.976083i \(0.569757\pi\)
\(264\) 4.14789 + 4.14789i 0.255285 + 0.255285i
\(265\) 0 0
\(266\) 14.8637i 0.911354i
\(267\) 17.6448 + 17.6448i 1.07985 + 1.07985i
\(268\) −7.71402 7.71402i −0.471209 0.471209i
\(269\) −0.0364640 + 0.0364640i −0.00222325 + 0.00222325i −0.708218 0.705994i \(-0.750500\pi\)
0.705994 + 0.708218i \(0.250500\pi\)
\(270\) 0 0
\(271\) 0.0290926 + 0.0290926i 0.00176725 + 0.00176725i 0.707990 0.706223i \(-0.249602\pi\)
−0.706223 + 0.707990i \(0.749602\pi\)
\(272\) 5.49611i 0.333251i
\(273\) 34.5200i 2.08924i
\(274\) 5.27765 0.318834
\(275\) 0 0
\(276\) 4.51078 + 4.51078i 0.271517 + 0.271517i
\(277\) −0.330886 + 0.330886i −0.0198810 + 0.0198810i −0.716977 0.697096i \(-0.754475\pi\)
0.697096 + 0.716977i \(0.254475\pi\)
\(278\) −5.16233 −0.309616
\(279\) 3.51746 3.51746i 0.210585 0.210585i
\(280\) 0 0
\(281\) −23.3321 −1.39187 −0.695937 0.718103i \(-0.745011\pi\)
−0.695937 + 0.718103i \(0.745011\pi\)
\(282\) 7.93830i 0.472719i
\(283\) 5.67142 5.67142i 0.337131 0.337131i −0.518155 0.855286i \(-0.673381\pi\)
0.855286 + 0.518155i \(0.173381\pi\)
\(284\) 3.31237i 0.196553i
\(285\) 0 0
\(286\) 16.4519 0.972820
\(287\) −19.2903 −1.13867
\(288\) 2.62368i 0.154602i
\(289\) −13.2072 −0.776896
\(290\) 0 0
\(291\) −16.5535 −0.970382
\(292\) 2.80389i 0.164085i
\(293\) −17.8844 −1.04482 −0.522409 0.852695i \(-0.674966\pi\)
−0.522409 + 0.852695i \(0.674966\pi\)
\(294\) −5.24040 −0.305626
\(295\) 0 0
\(296\) 9.27054i 0.538839i
\(297\) 1.56092 1.56092i 0.0905737 0.0905737i
\(298\) 9.75656i 0.565182i
\(299\) 17.8912 1.03468
\(300\) 0 0
\(301\) 12.5958 12.5958i 0.726009 0.726009i
\(302\) 6.29344 0.362147
\(303\) −21.0234 + 21.0234i −1.20777 + 1.20777i
\(304\) −4.80216 4.80216i −0.275423 0.275423i
\(305\) 0 0
\(306\) −14.4201 −0.824340
\(307\) 28.2201i 1.61061i 0.592862 + 0.805304i \(0.297998\pi\)
−0.592862 + 0.805304i \(0.702002\pi\)
\(308\) 5.41388i 0.308484i
\(309\) 20.2303 + 20.2303i 1.15086 + 1.15086i
\(310\) 0 0
\(311\) 8.09360 8.09360i 0.458946 0.458946i −0.439364 0.898309i \(-0.644796\pi\)
0.898309 + 0.439364i \(0.144796\pi\)
\(312\) 11.1527 + 11.1527i 0.631396 + 0.631396i
\(313\) 23.7823 + 23.7823i 1.34425 + 1.34425i 0.891777 + 0.452475i \(0.149459\pi\)
0.452475 + 0.891777i \(0.350541\pi\)
\(314\) 23.4621i 1.32404i
\(315\) 0 0
\(316\) 1.05529 + 1.05529i 0.0593647 + 0.0593647i
\(317\) 16.1923 0.909451 0.454725 0.890632i \(-0.349737\pi\)
0.454725 + 0.890632i \(0.349737\pi\)
\(318\) −3.17928 + 3.17928i −0.178285 + 0.178285i
\(319\) 3.94747 + 12.7225i 0.221016 + 0.712323i
\(320\) 0 0
\(321\) 24.6200 24.6200i 1.37415 1.37415i
\(322\) 5.88752i 0.328099i
\(323\) 26.3932 26.3932i 1.46856 1.46856i
\(324\) 9.98733 0.554852
\(325\) 0 0
\(326\) −5.60923 −0.310667
\(327\) 5.93531 0.328224
\(328\) 6.23227 6.23227i 0.344120 0.344120i
\(329\) 5.18058 5.18058i 0.285615 0.285615i
\(330\) 0 0
\(331\) 23.0465 + 23.0465i 1.26675 + 1.26675i 0.947758 + 0.318991i \(0.103344\pi\)
0.318991 + 0.947758i \(0.396656\pi\)
\(332\) −1.00000 1.00000i −0.0548821 0.0548821i
\(333\) 24.3230 1.33289
\(334\) 10.7430 10.7430i 0.587834 0.587834i
\(335\) 0 0
\(336\) −3.67005 + 3.67005i −0.200218 + 0.200218i
\(337\) 24.5220 1.33580 0.667900 0.744251i \(-0.267193\pi\)
0.667900 + 0.744251i \(0.267193\pi\)
\(338\) 31.2351 1.69897
\(339\) 10.6906i 0.580633i
\(340\) 0 0
\(341\) 4.68991i 0.253973i
\(342\) 12.5993 12.5993i 0.681295 0.681295i
\(343\) −14.2532 14.2532i −0.769600 0.769600i
\(344\) 8.13887i 0.438818i
\(345\) 0 0
\(346\) 2.54018 + 2.54018i 0.136561 + 0.136561i
\(347\) −3.63621 3.63621i −0.195202 0.195202i 0.602738 0.797939i \(-0.294077\pi\)
−0.797939 + 0.602738i \(0.794077\pi\)
\(348\) −5.94856 + 11.3005i −0.318876 + 0.605771i
\(349\) 12.2722i 0.656917i 0.944518 + 0.328459i \(0.106529\pi\)
−0.944518 + 0.328459i \(0.893471\pi\)
\(350\) 0 0
\(351\) 4.19693 4.19693i 0.224016 0.224016i
\(352\) −1.74911 1.74911i −0.0932278 0.0932278i
\(353\) 2.84358 2.84358i 0.151349 0.151349i −0.627371 0.778720i \(-0.715869\pi\)
0.778720 + 0.627371i \(0.215869\pi\)
\(354\) −19.0647 −1.01328
\(355\) 0 0
\(356\) −7.44059 7.44059i −0.394350 0.394350i
\(357\) −20.1710 20.1710i −1.06756 1.06756i
\(358\) 13.1139i 0.693089i
\(359\) −13.5590 13.5590i −0.715619 0.715619i 0.252086 0.967705i \(-0.418883\pi\)
−0.967705 + 0.252086i \(0.918883\pi\)
\(360\) 0 0
\(361\) 27.1215i 1.42745i
\(362\) 6.48628i 0.340911i
\(363\) 11.5755i 0.607557i
\(364\) 14.5566i 0.762973i
\(365\) 0 0
\(366\) −4.51078 4.51078i −0.235782 0.235782i
\(367\) 18.8151i 0.982138i −0.871121 0.491069i \(-0.836606\pi\)
0.871121 0.491069i \(-0.163394\pi\)
\(368\) −1.90213 1.90213i −0.0991556 0.0991556i
\(369\) 16.3515 + 16.3515i 0.851226 + 0.851226i
\(370\) 0 0
\(371\) −4.14963 −0.215438
\(372\) −3.17928 + 3.17928i −0.164838 + 0.164838i
\(373\) 16.4337 + 16.4337i 0.850904 + 0.850904i 0.990245 0.139340i \(-0.0444983\pi\)
−0.139340 + 0.990245i \(0.544498\pi\)
\(374\) 9.61330 9.61330i 0.497092 0.497092i
\(375\) 0 0
\(376\) 3.34747i 0.172633i
\(377\) 10.6138 + 34.2077i 0.546638 + 1.76179i
\(378\) 1.38110 + 1.38110i 0.0710361 + 0.0710361i
\(379\) −8.61569 8.61569i −0.442559 0.442559i 0.450313 0.892871i \(-0.351313\pi\)
−0.892871 + 0.450313i \(0.851313\pi\)
\(380\) 0 0
\(381\) 12.8232i 0.656951i
\(382\) 15.2545 + 15.2545i 0.780489 + 0.780489i
\(383\) 7.13804 7.13804i 0.364737 0.364737i −0.500817 0.865553i \(-0.666967\pi\)
0.865553 + 0.500817i \(0.166967\pi\)
\(384\) 2.37143i 0.121017i
\(385\) 0 0
\(386\) 10.2509i 0.521758i
\(387\) −21.3538 −1.08548
\(388\) 6.98037 0.354375
\(389\) 21.8568 21.8568i 1.10818 1.10818i 0.114793 0.993389i \(-0.463380\pi\)
0.993389 0.114793i \(-0.0366205\pi\)
\(390\) 0 0
\(391\) 10.4543 10.4543i 0.528698 0.528698i
\(392\) 2.20981 0.111612
\(393\) 25.0686 + 25.0686i 1.26454 + 1.26454i
\(394\) 3.43016 + 3.43016i 0.172809 + 0.172809i
\(395\) 0 0
\(396\) 4.58911 4.58911i 0.230611 0.230611i
\(397\) −16.9123 + 16.9123i −0.848806 + 0.848806i −0.989984 0.141179i \(-0.954911\pi\)
0.141179 + 0.989984i \(0.454911\pi\)
\(398\) −5.28540 −0.264933
\(399\) 35.2483 1.76462
\(400\) 0 0
\(401\) −11.4001 −0.569293 −0.284646 0.958633i \(-0.591876\pi\)
−0.284646 + 0.958633i \(0.591876\pi\)
\(402\) −18.2933 + 18.2933i −0.912385 + 0.912385i
\(403\) 12.6100i 0.628151i
\(404\) 8.86530 8.86530i 0.441065 0.441065i
\(405\) 0 0
\(406\) −11.2568 + 3.49272i −0.558668 + 0.173341i
\(407\) −16.2152 + 16.2152i −0.803757 + 0.803757i
\(408\) 13.0336 0.645262
\(409\) 23.5498 + 23.5498i 1.16446 + 1.16446i 0.983487 + 0.180976i \(0.0579257\pi\)
0.180976 + 0.983487i \(0.442074\pi\)
\(410\) 0 0
\(411\) 12.5156i 0.617348i
\(412\) −8.53083 8.53083i −0.420284 0.420284i
\(413\) −12.4417 12.4417i −0.612217 0.612217i
\(414\) 4.99060 4.99060i 0.245274 0.245274i
\(415\) 0 0
\(416\) −4.70293 4.70293i −0.230580 0.230580i
\(417\) 12.2421i 0.599499i
\(418\) 16.7990i 0.821666i
\(419\) −29.7205 −1.45194 −0.725970 0.687726i \(-0.758609\pi\)
−0.725970 + 0.687726i \(0.758609\pi\)
\(420\) 0 0
\(421\) 2.73660 + 2.73660i 0.133374 + 0.133374i 0.770642 0.637268i \(-0.219936\pi\)
−0.637268 + 0.770642i \(0.719936\pi\)
\(422\) 0.597369 0.597369i 0.0290795 0.0290795i
\(423\) −8.78271 −0.427030
\(424\) 1.34066 1.34066i 0.0651081 0.0651081i
\(425\) 0 0
\(426\) 7.85506 0.380579
\(427\) 5.88752i 0.284917i
\(428\) −10.3819 + 10.3819i −0.501828 + 0.501828i
\(429\) 39.0145i 1.88364i
\(430\) 0 0
\(431\) −22.6167 −1.08941 −0.544705 0.838628i \(-0.683358\pi\)
−0.544705 + 0.838628i \(0.683358\pi\)
\(432\) −0.892408 −0.0429360
\(433\) 12.4997i 0.600697i 0.953829 + 0.300349i \(0.0971030\pi\)
−0.953829 + 0.300349i \(0.902897\pi\)
\(434\) −4.14963 −0.199189
\(435\) 0 0
\(436\) −2.50284 −0.119864
\(437\) 18.2687i 0.873910i
\(438\) 6.64923 0.317712
\(439\) 27.0095 1.28909 0.644546 0.764565i \(-0.277046\pi\)
0.644546 + 0.764565i \(0.277046\pi\)
\(440\) 0 0
\(441\) 5.79783i 0.276087i
\(442\) 25.8478 25.8478i 1.22946 1.22946i
\(443\) 22.9835i 1.09198i −0.837792 0.545990i \(-0.816154\pi\)
0.837792 0.545990i \(-0.183846\pi\)
\(444\) −21.9844 −1.04334
\(445\) 0 0
\(446\) 9.30527 9.30527i 0.440617 0.440617i
\(447\) −23.1370 −1.09434
\(448\) 1.54761 1.54761i 0.0731177 0.0731177i
\(449\) 17.9733 + 17.9733i 0.848212 + 0.848212i 0.989910 0.141698i \(-0.0452561\pi\)
−0.141698 + 0.989910i \(0.545256\pi\)
\(450\) 0 0
\(451\) −21.8018 −1.02661
\(452\) 4.50808i 0.212042i
\(453\) 14.9245i 0.701212i
\(454\) −13.1820 13.1820i −0.618663 0.618663i
\(455\) 0 0
\(456\) −11.3880 + 11.3880i −0.533291 + 0.533291i
\(457\) −13.3089 13.3089i −0.622565 0.622565i 0.323622 0.946187i \(-0.395100\pi\)
−0.946187 + 0.323622i \(0.895100\pi\)
\(458\) −3.41240 3.41240i −0.159451 0.159451i
\(459\) 4.90477i 0.228935i
\(460\) 0 0
\(461\) −3.57923 3.57923i −0.166701 0.166701i 0.618826 0.785528i \(-0.287608\pi\)
−0.785528 + 0.618826i \(0.787608\pi\)
\(462\) 12.8386 0.597307
\(463\) 0.290546 0.290546i 0.0135028 0.0135028i −0.700323 0.713826i \(-0.746961\pi\)
0.713826 + 0.700323i \(0.246961\pi\)
\(464\) 2.50843 4.76527i 0.116451 0.221222i
\(465\) 0 0
\(466\) 19.7859 19.7859i 0.916565 0.916565i
\(467\) 15.5971i 0.721749i −0.932614 0.360874i \(-0.882478\pi\)
0.932614 0.360874i \(-0.117522\pi\)
\(468\) 12.3390 12.3390i 0.570371 0.570371i
\(469\) −23.8766 −1.10252
\(470\) 0 0
\(471\) 55.6388 2.56370
\(472\) 8.03932 0.370040
\(473\) 14.2358 14.2358i 0.654561 0.654561i
\(474\) 2.50255 2.50255i 0.114946 0.114946i
\(475\) 0 0
\(476\) 8.50584 + 8.50584i 0.389864 + 0.389864i
\(477\) 3.51746 + 3.51746i 0.161054 + 0.161054i
\(478\) 1.78183 0.0814990
\(479\) −3.19653 + 3.19653i −0.146053 + 0.146053i −0.776352 0.630299i \(-0.782932\pi\)
0.630299 + 0.776352i \(0.282932\pi\)
\(480\) 0 0
\(481\) −43.5987 + 43.5987i −1.98793 + 1.98793i
\(482\) −2.56743 −0.116943
\(483\) 13.9619 0.635286
\(484\) 4.88123i 0.221874i
\(485\) 0 0
\(486\) 21.0070i 0.952899i
\(487\) −25.6678 + 25.6678i −1.16312 + 1.16312i −0.179328 + 0.983789i \(0.557392\pi\)
−0.983789 + 0.179328i \(0.942608\pi\)
\(488\) 1.90213 + 1.90213i 0.0861055 + 0.0861055i
\(489\) 13.3019i 0.601533i
\(490\) 0 0
\(491\) 11.1994 + 11.1994i 0.505420 + 0.505420i 0.913117 0.407697i \(-0.133668\pi\)
−0.407697 + 0.913117i \(0.633668\pi\)
\(492\) −14.7794 14.7794i −0.666307 0.666307i
\(493\) 26.1905 + 13.7866i 1.17956 + 0.620916i
\(494\) 45.1684i 2.03222i
\(495\) 0 0
\(496\) 1.34066 1.34066i 0.0601973 0.0601973i
\(497\) 5.12626 + 5.12626i 0.229944 + 0.229944i
\(498\) −2.37143 + 2.37143i −0.106266 + 0.106266i
\(499\) −6.43997 −0.288293 −0.144146 0.989556i \(-0.546044\pi\)
−0.144146 + 0.989556i \(0.546044\pi\)
\(500\) 0 0
\(501\) −25.4764 25.4764i −1.13820 1.13820i
\(502\) −19.3334 19.3334i −0.862894 0.862894i
\(503\) 10.1538i 0.452736i −0.974042 0.226368i \(-0.927315\pi\)
0.974042 0.226368i \(-0.0726852\pi\)
\(504\) 4.06044 + 4.06044i 0.180866 + 0.180866i
\(505\) 0 0
\(506\) 6.65408i 0.295810i
\(507\) 74.0719i 3.28965i
\(508\) 5.40735i 0.239913i
\(509\) 17.5592i 0.778299i −0.921175 0.389150i \(-0.872769\pi\)
0.921175 0.389150i \(-0.127231\pi\)
\(510\) 0 0
\(511\) 4.33933 + 4.33933i 0.191960 + 0.191960i
\(512\) 1.00000i 0.0441942i
\(513\) 4.28549 + 4.28549i 0.189209 + 0.189209i
\(514\) −0.598364 0.598364i −0.0263927 0.0263927i
\(515\) 0 0
\(516\) 19.3008 0.849668
\(517\) 5.85510 5.85510i 0.257507 0.257507i
\(518\) −14.3472 14.3472i −0.630379 0.630379i
\(519\) 6.02386 6.02386i 0.264418 0.264418i
\(520\) 0 0
\(521\) 0.989319i 0.0433429i −0.999765 0.0216714i \(-0.993101\pi\)
0.999765 0.0216714i \(-0.00689877\pi\)
\(522\) 12.5026 + 6.58131i 0.547222 + 0.288056i
\(523\) 1.04327 + 1.04327i 0.0456189 + 0.0456189i 0.729548 0.683929i \(-0.239730\pi\)
−0.683929 + 0.729548i \(0.739730\pi\)
\(524\) −10.5711 10.5711i −0.461800 0.461800i
\(525\) 0 0
\(526\) 7.05120i 0.307447i
\(527\) 7.36841 + 7.36841i 0.320973 + 0.320973i
\(528\) −4.14789 + 4.14789i −0.180514 + 0.180514i
\(529\) 15.7638i 0.685382i
\(530\) 0 0
\(531\) 21.0926i 0.915342i
\(532\) −14.8637 −0.644425
\(533\) −58.6199 −2.53911
\(534\) −17.6448 + 17.6448i −0.763567 + 0.763567i
\(535\) 0 0
\(536\) 7.71402 7.71402i 0.333195 0.333195i
\(537\) 31.0986 1.34200
\(538\) −0.0364640 0.0364640i −0.00157207 0.00157207i
\(539\) −3.86519 3.86519i −0.166486 0.166486i
\(540\) 0 0
\(541\) −10.1475 + 10.1475i −0.436274 + 0.436274i −0.890756 0.454482i \(-0.849824\pi\)
0.454482 + 0.890756i \(0.349824\pi\)
\(542\) −0.0290926 + 0.0290926i −0.00124963 + 0.00124963i
\(543\) 15.3818 0.660095
\(544\) −5.49611 −0.235644
\(545\) 0 0
\(546\) 34.5200 1.47732
\(547\) 4.95983 4.95983i 0.212067 0.212067i −0.593078 0.805145i \(-0.702087\pi\)
0.805145 + 0.593078i \(0.202087\pi\)
\(548\) 5.27765i 0.225450i
\(549\) −4.99060 + 4.99060i −0.212993 + 0.212993i
\(550\) 0 0
\(551\) −34.9294 + 10.8377i −1.48804 + 0.461703i
\(552\) −4.51078 + 4.51078i −0.191991 + 0.191991i
\(553\) 3.26635 0.138899
\(554\) −0.330886 0.330886i −0.0140580 0.0140580i
\(555\) 0 0
\(556\) 5.16233i 0.218932i
\(557\) 18.4793 + 18.4793i 0.782992 + 0.782992i 0.980335 0.197342i \(-0.0632311\pi\)
−0.197342 + 0.980335i \(0.563231\pi\)
\(558\) 3.51746 + 3.51746i 0.148906 + 0.148906i
\(559\) 38.2765 38.2765i 1.61892 1.61892i
\(560\) 0 0
\(561\) −22.7973 22.7973i −0.962501 0.962501i
\(562\) 23.3321i 0.984203i
\(563\) 28.4102i 1.19735i 0.800993 + 0.598674i \(0.204305\pi\)
−0.800993 + 0.598674i \(0.795695\pi\)
\(564\) 7.93830 0.334263
\(565\) 0 0
\(566\) 5.67142 + 5.67142i 0.238388 + 0.238388i
\(567\) 15.4565 15.4565i 0.649112 0.649112i
\(568\) −3.31237 −0.138984
\(569\) −6.58267 + 6.58267i −0.275960 + 0.275960i −0.831494 0.555534i \(-0.812514\pi\)
0.555534 + 0.831494i \(0.312514\pi\)
\(570\) 0 0
\(571\) 38.4563 1.60934 0.804672 0.593719i \(-0.202341\pi\)
0.804672 + 0.593719i \(0.202341\pi\)
\(572\) 16.4519i 0.687888i
\(573\) 36.1750 36.1750i 1.51123 1.51123i
\(574\) 19.2903i 0.805160i
\(575\) 0 0
\(576\) −2.62368 −0.109320
\(577\) 30.8367 1.28375 0.641875 0.766809i \(-0.278157\pi\)
0.641875 + 0.766809i \(0.278157\pi\)
\(578\) 13.2072i 0.549348i
\(579\) −24.3093 −1.01026
\(580\) 0 0
\(581\) −3.09522 −0.128411
\(582\) 16.5535i 0.686163i
\(583\) −4.68991 −0.194236
\(584\) −2.80389 −0.116026
\(585\) 0 0
\(586\) 17.8844i 0.738797i
\(587\) 29.1768 29.1768i 1.20425 1.20425i 0.231394 0.972860i \(-0.425671\pi\)
0.972860 0.231394i \(-0.0743288\pi\)
\(588\) 5.24040i 0.216111i
\(589\) −12.8761 −0.530551
\(590\) 0 0
\(591\) 8.13439 8.13439i 0.334604 0.334604i
\(592\) 9.27054 0.381017
\(593\) −24.1758 + 24.1758i −0.992782 + 0.992782i −0.999974 0.00719201i \(-0.997711\pi\)
0.00719201 + 0.999974i \(0.497711\pi\)
\(594\) 1.56092 + 1.56092i 0.0640453 + 0.0640453i
\(595\) 0 0
\(596\) 9.75656 0.399644
\(597\) 12.5340i 0.512981i
\(598\) 17.8912i 0.731626i
\(599\) 3.24477 + 3.24477i 0.132578 + 0.132578i 0.770282 0.637704i \(-0.220116\pi\)
−0.637704 + 0.770282i \(0.720116\pi\)
\(600\) 0 0
\(601\) 12.8663 12.8663i 0.524825 0.524825i −0.394199 0.919025i \(-0.628978\pi\)
0.919025 + 0.394199i \(0.128978\pi\)
\(602\) 12.5958 + 12.5958i 0.513366 + 0.513366i
\(603\) 20.2391 + 20.2391i 0.824202 + 0.824202i
\(604\) 6.29344i 0.256076i
\(605\) 0 0
\(606\) −21.0234 21.0234i −0.854019 0.854019i
\(607\) −19.8274 −0.804769 −0.402385 0.915471i \(-0.631819\pi\)
−0.402385 + 0.915471i \(0.631819\pi\)
\(608\) 4.80216 4.80216i 0.194753 0.194753i
\(609\) 8.28274 + 26.6948i 0.335633 + 1.08173i
\(610\) 0 0
\(611\) 15.7429 15.7429i 0.636891 0.636891i
\(612\) 14.4201i 0.582896i
\(613\) 1.95319 1.95319i 0.0788886 0.0788886i −0.666561 0.745450i \(-0.732235\pi\)
0.745450 + 0.666561i \(0.232235\pi\)
\(614\) −28.2201 −1.13887
\(615\) 0 0
\(616\) −5.41388 −0.218131
\(617\) −36.4561 −1.46767 −0.733833 0.679330i \(-0.762271\pi\)
−0.733833 + 0.679330i \(0.762271\pi\)
\(618\) −20.2303 + 20.2303i −0.813781 + 0.813781i
\(619\) 14.0991 14.0991i 0.566692 0.566692i −0.364508 0.931200i \(-0.618763\pi\)
0.931200 + 0.364508i \(0.118763\pi\)
\(620\) 0 0
\(621\) 1.69748 + 1.69748i 0.0681175 + 0.0681175i
\(622\) 8.09360 + 8.09360i 0.324524 + 0.324524i
\(623\) −23.0303 −0.922688
\(624\) −11.1527 + 11.1527i −0.446464 + 0.446464i
\(625\) 0 0
\(626\) −23.7823 + 23.7823i −0.950530 + 0.950530i
\(627\) 39.8377 1.59096
\(628\) −23.4621 −0.936240
\(629\) 50.9519i 2.03159i
\(630\) 0 0
\(631\) 40.5547i 1.61446i 0.590238 + 0.807229i \(0.299034\pi\)
−0.590238 + 0.807229i \(0.700966\pi\)
\(632\) −1.05529 + 1.05529i −0.0419772 + 0.0419772i
\(633\) −1.41662 1.41662i −0.0563055 0.0563055i
\(634\) 16.1923i 0.643079i
\(635\) 0 0
\(636\) −3.17928 3.17928i −0.126067 0.126067i
\(637\) −10.3926 10.3926i −0.411768 0.411768i
\(638\) −12.7225 + 3.94747i −0.503688 + 0.156282i
\(639\) 8.69061i 0.343795i
\(640\) 0 0
\(641\) −17.8429 + 17.8429i −0.704750 + 0.704750i −0.965426 0.260676i \(-0.916055\pi\)
0.260676 + 0.965426i \(0.416055\pi\)
\(642\) 24.6200 + 24.6200i 0.971673 + 0.971673i
\(643\) −4.14331 + 4.14331i −0.163396 + 0.163396i −0.784069 0.620673i \(-0.786859\pi\)
0.620673 + 0.784069i \(0.286859\pi\)
\(644\) −5.88752 −0.232001
\(645\) 0 0
\(646\) 26.3932 + 26.3932i 1.03843 + 1.03843i
\(647\) −4.54072 4.54072i −0.178514 0.178514i 0.612194 0.790708i \(-0.290287\pi\)
−0.790708 + 0.612194i \(0.790287\pi\)
\(648\) 9.98733i 0.392340i
\(649\) −14.0616 14.0616i −0.551968 0.551968i
\(650\) 0 0
\(651\) 9.84057i 0.385682i
\(652\) 5.60923i 0.219674i
\(653\) 15.6069i 0.610746i −0.952233 0.305373i \(-0.901219\pi\)
0.952233 0.305373i \(-0.0987812\pi\)
\(654\) 5.93531i 0.232089i
\(655\) 0 0
\(656\) 6.23227 + 6.23227i 0.243329 + 0.243329i
\(657\) 7.35652i 0.287005i
\(658\) 5.18058 + 5.18058i 0.201960 + 0.201960i
\(659\) −18.0250 18.0250i −0.702154 0.702154i 0.262718 0.964873i \(-0.415381\pi\)
−0.964873 + 0.262718i \(0.915381\pi\)
\(660\) 0 0
\(661\) 32.6370 1.26943 0.634717 0.772745i \(-0.281117\pi\)
0.634717 + 0.772745i \(0.281117\pi\)
\(662\) −23.0465 + 23.0465i −0.895726 + 0.895726i
\(663\) −61.2963 61.2963i −2.38055 2.38055i
\(664\) 1.00000 1.00000i 0.0388075 0.0388075i
\(665\) 0 0
\(666\) 24.3230i 0.942496i
\(667\) −13.8355 + 4.29282i −0.535714 + 0.166219i
\(668\) 10.7430 + 10.7430i 0.415661 + 0.415661i
\(669\) −22.0668 22.0668i −0.853152 0.853152i
\(670\) 0 0
\(671\) 6.65408i 0.256878i
\(672\) −3.67005 3.67005i −0.141575 0.141575i
\(673\) 12.4688 12.4688i 0.480638 0.480638i −0.424697 0.905335i \(-0.639620\pi\)
0.905335 + 0.424697i \(0.139620\pi\)
\(674\) 24.5220i 0.944553i
\(675\) 0 0
\(676\) 31.2351i 1.20135i
\(677\) −43.5075 −1.67213 −0.836064 0.548632i \(-0.815149\pi\)
−0.836064 + 0.548632i \(0.815149\pi\)
\(678\) −10.6906 −0.410570
\(679\) 10.8029 10.8029i 0.414577 0.414577i
\(680\) 0 0
\(681\) −31.2602 + 31.2602i −1.19790 + 1.19790i
\(682\) −4.68991 −0.179586
\(683\) −1.58682 1.58682i −0.0607181 0.0607181i 0.676096 0.736814i \(-0.263671\pi\)
−0.736814 + 0.676096i \(0.763671\pi\)
\(684\) 12.5993 + 12.5993i 0.481748 + 0.481748i
\(685\) 0 0
\(686\) 14.2532 14.2532i 0.544189 0.544189i
\(687\) −8.09227 + 8.09227i −0.308739 + 0.308739i
\(688\) −8.13887 −0.310291
\(689\) −12.6100 −0.480404
\(690\) 0 0
\(691\) −13.6208 −0.518160 −0.259080 0.965856i \(-0.583419\pi\)
−0.259080 + 0.965856i \(0.583419\pi\)
\(692\) −2.54018 + 2.54018i −0.0965632 + 0.0965632i
\(693\) 14.2043i 0.539577i
\(694\) 3.63621 3.63621i 0.138028 0.138028i
\(695\) 0 0
\(696\) −11.3005 5.94856i −0.428345 0.225479i
\(697\) −34.2533 + 34.2533i −1.29743 + 1.29743i
\(698\) −12.2722 −0.464511
\(699\) −46.9209 46.9209i −1.77471 1.77471i
\(700\) 0 0
\(701\) 5.99924i 0.226588i −0.993561 0.113294i \(-0.963860\pi\)
0.993561 0.113294i \(-0.0361402\pi\)
\(702\) 4.19693 + 4.19693i 0.158403 + 0.158403i
\(703\) −44.5186 44.5186i −1.67905 1.67905i
\(704\) 1.74911 1.74911i 0.0659220 0.0659220i
\(705\) 0 0
\(706\) 2.84358 + 2.84358i 0.107020 + 0.107020i
\(707\) 27.4401i 1.03199i
\(708\) 19.0647i 0.716495i
\(709\) −30.8193 −1.15744 −0.578722 0.815525i \(-0.696448\pi\)
−0.578722 + 0.815525i \(0.696448\pi\)
\(710\) 0 0
\(711\) −2.76875 2.76875i −0.103836 0.103836i
\(712\) 7.44059 7.44059i 0.278848 0.278848i
\(713\) −5.10022 −0.191005
\(714\) 20.1710 20.1710i 0.754881 0.754881i
\(715\) 0 0
\(716\) −13.1139 −0.490088
\(717\) 4.22548i 0.157804i
\(718\) 13.5590 13.5590i 0.506019 0.506019i
\(719\) 27.3779i 1.02102i 0.859871 + 0.510511i \(0.170544\pi\)
−0.859871 + 0.510511i \(0.829456\pi\)
\(720\) 0 0
\(721\) −26.4048 −0.983367
\(722\) −27.1215 −1.00936
\(723\) 6.08847i 0.226433i
\(724\) −6.48628 −0.241061
\(725\) 0 0
\(726\) −11.5755 −0.429607
\(727\) 29.8682i 1.10775i −0.832600 0.553875i \(-0.813148\pi\)
0.832600 0.553875i \(-0.186852\pi\)
\(728\) −14.5566 −0.539504
\(729\) −19.8548 −0.735361
\(730\) 0 0
\(731\) 44.7321i 1.65448i
\(732\) 4.51078 4.51078i 0.166723 0.166723i
\(733\) 16.4291i 0.606821i −0.952860 0.303411i \(-0.901875\pi\)
0.952860 0.303411i \(-0.0981254\pi\)
\(734\) 18.8151 0.694477
\(735\) 0 0
\(736\) 1.90213 1.90213i 0.0701136 0.0701136i
\(737\) −26.9853 −0.994017
\(738\) −16.3515 + 16.3515i −0.601907 + 0.601907i
\(739\) 22.3784 + 22.3784i 0.823204 + 0.823204i 0.986566 0.163362i \(-0.0522339\pi\)
−0.163362 + 0.986566i \(0.552234\pi\)
\(740\) 0 0
\(741\) 107.114 3.93493
\(742\) 4.14963i 0.152338i
\(743\) 26.2298i 0.962278i 0.876644 + 0.481139i \(0.159777\pi\)
−0.876644 + 0.481139i \(0.840223\pi\)
\(744\) −3.17928 3.17928i −0.116558 0.116558i
\(745\) 0 0
\(746\) −16.4337 + 16.4337i −0.601680 + 0.601680i
\(747\) 2.62368 + 2.62368i 0.0959956 + 0.0959956i
\(748\) 9.61330 + 9.61330i 0.351497 + 0.351497i
\(749\) 32.1343i 1.17416i
\(750\) 0 0
\(751\) −20.2399 20.2399i −0.738565 0.738565i 0.233736 0.972300i \(-0.424905\pi\)
−0.972300 + 0.233736i \(0.924905\pi\)
\(752\) −3.34747 −0.122070
\(753\) −45.8479 + 45.8479i −1.67079 + 1.67079i
\(754\) −34.2077 + 10.6138i −1.24577 + 0.386531i
\(755\) 0 0
\(756\) −1.38110 + 1.38110i −0.0502301 + 0.0502301i
\(757\) 31.3115i 1.13803i −0.822326 0.569017i \(-0.807324\pi\)
0.822326 0.569017i \(-0.192676\pi\)
\(758\) 8.61569 8.61569i 0.312936 0.312936i
\(759\) 15.7797 0.572766
\(760\) 0 0
\(761\) 22.1543 0.803093 0.401547 0.915839i \(-0.368473\pi\)
0.401547 + 0.915839i \(0.368473\pi\)
\(762\) 12.8232 0.464534
\(763\) −3.87342 + 3.87342i −0.140227 + 0.140227i
\(764\) −15.2545 + 15.2545i −0.551889 + 0.551889i
\(765\) 0 0
\(766\) 7.13804 + 7.13804i 0.257908 + 0.257908i
\(767\) −37.8083 37.8083i −1.36518 1.36518i
\(768\) 2.37143 0.0855716
\(769\) −7.89384 + 7.89384i −0.284659 + 0.284659i −0.834964 0.550305i \(-0.814512\pi\)
0.550305 + 0.834964i \(0.314512\pi\)
\(770\) 0 0
\(771\) −1.41898 + 1.41898i −0.0511033 + 0.0511033i
\(772\) 10.2509 0.368938
\(773\) 11.6204 0.417957 0.208979 0.977920i \(-0.432986\pi\)
0.208979 + 0.977920i \(0.432986\pi\)
\(774\) 21.3538i 0.767547i
\(775\) 0 0
\(776\) 6.98037i 0.250581i
\(777\) −34.0233 + 34.0233i −1.22058 + 1.22058i
\(778\) 21.8568 + 21.8568i 0.783603 + 0.783603i
\(779\) 59.8567i 2.14459i
\(780\) 0 0
\(781\) 5.79370 + 5.79370i 0.207315 + 0.207315i
\(782\) 10.4543 + 10.4543i 0.373846 + 0.373846i
\(783\) −2.23854 + 4.25257i −0.0799988 + 0.151974i
\(784\) 2.20981i 0.0789216i
\(785\) 0 0
\(786\) −25.0686 + 25.0686i −0.894167 + 0.894167i
\(787\) −25.0914 25.0914i −0.894412 0.894412i 0.100522 0.994935i \(-0.467949\pi\)
−0.994935 + 0.100522i \(0.967949\pi\)
\(788\) −3.43016 + 3.43016i −0.122194 + 0.122194i
\(789\) −16.7214 −0.595298
\(790\) 0 0
\(791\) −6.97674 6.97674i −0.248064 0.248064i
\(792\) 4.58911 + 4.58911i 0.163067 + 0.163067i
\(793\) 17.8912i 0.635335i
\(794\) −16.9123 16.9123i −0.600196 0.600196i
\(795\) 0 0
\(796\) 5.28540i 0.187336i
\(797\) 5.24181i 0.185674i 0.995681 + 0.0928372i \(0.0295936\pi\)
−0.995681 + 0.0928372i \(0.970406\pi\)
\(798\) 35.2483i 1.24778i
\(799\) 18.3981i 0.650877i
\(800\) 0 0
\(801\) 19.5217 + 19.5217i 0.689767 + 0.689767i
\(802\) 11.4001i 0.402551i
\(803\) 4.90431 + 4.90431i 0.173069 + 0.173069i
\(804\) −18.2933 18.2933i −0.645154 0.645154i
\(805\) 0 0
\(806\) −12.6100 −0.444170
\(807\) −0.0864718 + 0.0864718i −0.00304395 + 0.00304395i
\(808\) 8.86530 + 8.86530i 0.311880 + 0.311880i
\(809\) −31.8511 + 31.8511i −1.11982 + 1.11982i −0.128057 + 0.991767i \(0.540874\pi\)
−0.991767 + 0.128057i \(0.959126\pi\)
\(810\) 0 0
\(811\) 1.13345i 0.0398009i −0.999802 0.0199004i \(-0.993665\pi\)
0.999802 0.0199004i \(-0.00633492\pi\)
\(812\) −3.49272 11.2568i −0.122570 0.395038i
\(813\) 0.0689911 + 0.0689911i 0.00241962 + 0.00241962i
\(814\) −16.2152 16.2152i −0.568342 0.568342i
\(815\) 0 0
\(816\) 13.0336i 0.456269i
\(817\) 39.0841 + 39.0841i 1.36738 + 1.36738i
\(818\) −23.5498 + 23.5498i −0.823400 + 0.823400i
\(819\) 38.1919i 1.33453i
\(820\) 0 0
\(821\) 0.203732i 0.00711030i 0.999994 + 0.00355515i \(0.00113164\pi\)
−0.999994 + 0.00355515i \(0.998868\pi\)
\(822\) 12.5156 0.436531
\(823\) 40.6757 1.41787 0.708933 0.705276i \(-0.249177\pi\)
0.708933 + 0.705276i \(0.249177\pi\)
\(824\) 8.53083 8.53083i 0.297186 0.297186i
\(825\) 0 0
\(826\) 12.4417 12.4417i 0.432903 0.432903i
\(827\) 42.8178 1.48892 0.744460 0.667667i \(-0.232707\pi\)
0.744460 + 0.667667i \(0.232707\pi\)
\(828\) 4.99060 + 4.99060i 0.173435 + 0.173435i
\(829\) 17.7392 + 17.7392i 0.616109 + 0.616109i 0.944531 0.328422i \(-0.106517\pi\)
−0.328422 + 0.944531i \(0.606517\pi\)
\(830\) 0 0
\(831\) −0.784672 + 0.784672i −0.0272200 + 0.0272200i
\(832\) 4.70293 4.70293i 0.163045 0.163045i
\(833\) −12.1453 −0.420811
\(834\) −12.2421 −0.423910
\(835\) 0 0
\(836\) −16.7990 −0.581006
\(837\) −1.19641 + 1.19641i −0.0413541 + 0.0413541i
\(838\) 29.7205i 1.02668i
\(839\) −19.7783 + 19.7783i −0.682823 + 0.682823i −0.960635 0.277812i \(-0.910391\pi\)
0.277812 + 0.960635i \(0.410391\pi\)
\(840\) 0 0
\(841\) −16.4156 23.9066i −0.566055 0.824367i
\(842\) −2.73660 + 2.73660i −0.0943096 + 0.0943096i
\(843\) −55.3304 −1.90568
\(844\) 0.597369 + 0.597369i 0.0205623 + 0.0205623i
\(845\) 0 0
\(846\) 8.78271i 0.301956i
\(847\) −7.55425 7.55425i −0.259567 0.259567i
\(848\) 1.34066 + 1.34066i 0.0460384 + 0.0460384i
\(849\) 13.4494 13.4494i 0.461582 0.461582i
\(850\) 0 0
\(851\) −17.6338 17.6338i −0.604479 0.604479i
\(852\) 7.85506i 0.269110i
\(853\) 42.0722i 1.44053i 0.693701 + 0.720263i \(0.255979\pi\)
−0.693701 + 0.720263i \(0.744021\pi\)
\(854\) 5.88752 0.201467
\(855\) 0 0
\(856\) −10.3819 10.3819i −0.354846 0.354846i
\(857\) 31.3395 31.3395i 1.07054 1.07054i 0.0732222 0.997316i \(-0.476672\pi\)
0.997316 0.0732222i \(-0.0233282\pi\)
\(858\) 39.0145 1.33193
\(859\) 23.5554 23.5554i 0.803699 0.803699i −0.179973 0.983672i \(-0.557601\pi\)
0.983672 + 0.179973i \(0.0576010\pi\)
\(860\) 0 0
\(861\) −45.7455 −1.55900
\(862\) 22.6167i 0.770329i
\(863\) −22.3672 + 22.3672i −0.761389 + 0.761389i −0.976573 0.215185i \(-0.930965\pi\)
0.215185 + 0.976573i \(0.430965\pi\)
\(864\) 0.892408i 0.0303603i
\(865\) 0 0
\(866\) −12.4997 −0.424757
\(867\) −31.3200 −1.06368
\(868\) 4.14963i 0.140848i
\(869\) 3.69163 0.125230
\(870\) 0 0
\(871\) −72.5570 −2.45850
\(872\) 2.50284i 0.0847569i
\(873\) −18.3143 −0.619845
\(874\) −18.2687 −0.617948
\(875\) 0 0
\(876\) 6.64923i 0.224657i
\(877\) −40.1211 + 40.1211i −1.35479 + 1.35479i −0.474585 + 0.880210i \(0.657402\pi\)
−0.880210 + 0.474585i \(0.842598\pi\)
\(878\) 27.0095i 0.911526i
\(879\) −42.4116 −1.43051
\(880\) 0 0
\(881\) 2.72309 2.72309i 0.0917433 0.0917433i −0.659746 0.751489i \(-0.729336\pi\)
0.751489 + 0.659746i \(0.229336\pi\)
\(882\) −5.79783 −0.195223
\(883\) 18.4641 18.4641i 0.621367 0.621367i −0.324514 0.945881i \(-0.605201\pi\)
0.945881 + 0.324514i \(0.105201\pi\)
\(884\) 25.8478 + 25.8478i 0.869356 + 0.869356i
\(885\) 0 0
\(886\) 22.9835 0.772146
\(887\) 18.2921i 0.614187i 0.951679 + 0.307094i \(0.0993564\pi\)
−0.951679 + 0.307094i \(0.900644\pi\)
\(888\) 21.9844i 0.737750i
\(889\) 8.36847 + 8.36847i 0.280670 + 0.280670i
\(890\) 0 0
\(891\) 17.4689 17.4689i 0.585231 0.585231i
\(892\) 9.30527 + 9.30527i 0.311564 + 0.311564i
\(893\) 16.0751 + 16.0751i 0.537933 + 0.537933i
\(894\) 23.1370i 0.773817i
\(895\) 0 0
\(896\) 1.54761 + 1.54761i 0.0517020 + 0.0517020i
\(897\) 42.4278 1.41662
\(898\) −17.9733 + 17.9733i −0.599777 + 0.599777i
\(899\) −3.02566 9.75154i −0.100911 0.325232i
\(900\) 0 0
\(901\) −7.36841 + 7.36841i −0.245477 + 0.245477i
\(902\) 21.8018i 0.725922i
\(903\) 29.8700 29.8700i 0.994013 0.994013i
\(904\) 4.50808 0.149936
\(905\) 0 0
\(906\) 14.9245 0.495832
\(907\) −41.7431 −1.38606 −0.693029 0.720910i \(-0.743724\pi\)
−0.693029 + 0.720910i \(0.743724\pi\)
\(908\) 13.1820 13.1820i 0.437461 0.437461i
\(909\) −23.2597 + 23.2597i −0.771477 + 0.771477i
\(910\) 0 0
\(911\) −18.2115 18.2115i −0.603373 0.603373i 0.337833 0.941206i \(-0.390306\pi\)
−0.941206 + 0.337833i \(0.890306\pi\)
\(912\) −11.3880 11.3880i −0.377094 0.377094i
\(913\) −3.49822 −0.115774
\(914\) 13.3089 13.3089i 0.440220 0.440220i
\(915\) 0 0
\(916\) 3.41240 3.41240i 0.112749 0.112749i
\(917\) −32.7198 −1.08050
\(918\) 4.90477 0.161882
\(919\) 28.2547i 0.932037i −0.884775 0.466018i \(-0.845688\pi\)
0.884775 0.466018i \(-0.154312\pi\)
\(920\) 0 0
\(921\) 66.9221i 2.20516i
\(922\) 3.57923 3.57923i 0.117876 0.117876i
\(923\) 15.5778 + 15.5778i 0.512751 + 0.512751i
\(924\) 12.8386i 0.422360i
\(925\) 0 0
\(926\) 0.290546 + 0.290546i 0.00954794 + 0.00954794i
\(927\) 22.3822 + 22.3822i 0.735128 + 0.735128i
\(928\) 4.76527 + 2.50843i 0.156428 + 0.0823431i
\(929\) 13.7610i 0.451483i −0.974187 0.225741i \(-0.927520\pi\)
0.974187 0.225741i \(-0.0724804\pi\)
\(930\) 0 0
\(931\) 10.6118 10.6118i 0.347789 0.347789i
\(932\) 19.7859 + 19.7859i 0.648109 + 0.648109i
\(933\) 19.1934 19.1934i 0.628364 0.628364i
\(934\) 15.5971 0.510353
\(935\) 0 0
\(936\) 12.3390 + 12.3390i 0.403313 + 0.403313i
\(937\) −34.2399 34.2399i −1.11857 1.11857i −0.991951 0.126619i \(-0.959587\pi\)
−0.126619 0.991951i \(-0.540413\pi\)
\(938\) 23.8766i 0.779598i
\(939\) 56.3980 + 56.3980i 1.84048 + 1.84048i
\(940\) 0 0
\(941\) 34.0332i 1.10945i −0.832034 0.554725i \(-0.812824\pi\)
0.832034 0.554725i \(-0.187176\pi\)
\(942\) 55.6388i 1.81281i
\(943\) 23.7092i 0.772079i
\(944\) 8.03932i 0.261657i
\(945\) 0 0
\(946\) 14.2358 + 14.2358i 0.462845 + 0.462845i
\(947\) 27.2465i 0.885391i 0.896672 + 0.442695i \(0.145978\pi\)
−0.896672 + 0.442695i \(0.854022\pi\)
\(948\) 2.50255 + 2.50255i 0.0812789 + 0.0812789i
\(949\) 13.1865 + 13.1865i 0.428052 + 0.428052i
\(950\) 0 0
\(951\) 38.3989 1.24517
\(952\) −8.50584 + 8.50584i −0.275676 + 0.275676i
\(953\) 21.7888 + 21.7888i 0.705809 + 0.705809i 0.965651 0.259842i \(-0.0836706\pi\)
−0.259842 + 0.965651i \(0.583671\pi\)
\(954\) −3.51746 + 3.51746i −0.113882 + 0.113882i
\(955\) 0 0
\(956\) 1.78183i 0.0576285i
\(957\) 9.36115 + 30.1705i 0.302603 + 0.975274i
\(958\) −3.19653 3.19653i −0.103275 0.103275i
\(959\) 8.16774 + 8.16774i 0.263750 + 0.263750i
\(960\) 0 0
\(961\) 27.4053i 0.884041i
\(962\) −43.5987 43.5987i −1.40568 1.40568i
\(963\) 27.2388 27.2388i 0.877759 0.877759i
\(964\) 2.56743i 0.0826912i
\(965\) 0 0
\(966\) 13.9619i 0.449215i
\(967\) 58.8079 1.89113 0.945567 0.325427i \(-0.105508\pi\)
0.945567 + 0.325427i \(0.105508\pi\)
\(968\) 4.88123 0.156889
\(969\) 62.5896 62.5896i 2.01067 2.01067i
\(970\) 0 0
\(971\) −16.5729 + 16.5729i −0.531849 + 0.531849i −0.921122 0.389273i \(-0.872726\pi\)
0.389273 + 0.921122i \(0.372726\pi\)
\(972\) 21.0070 0.673801
\(973\) −7.98928 7.98928i −0.256124 0.256124i
\(974\) −25.6678 25.6678i −0.822448 0.822448i
\(975\) 0 0
\(976\) −1.90213 + 1.90213i −0.0608858 + 0.0608858i
\(977\) 31.7362 31.7362i 1.01533 1.01533i 0.0154499 0.999881i \(-0.495082\pi\)
0.999881 0.0154499i \(-0.00491806\pi\)
\(978\) −13.3019 −0.425348
\(979\) −26.0288 −0.831884
\(980\) 0 0
\(981\) 6.56666 0.209657
\(982\) −11.1994 + 11.1994i −0.357386 + 0.357386i
\(983\) 40.2384i 1.28340i −0.766954 0.641702i \(-0.778229\pi\)
0.766954 0.641702i \(-0.221771\pi\)
\(984\) 14.7794 14.7794i 0.471150 0.471150i
\(985\) 0 0
\(986\) −13.7866 + 26.1905i −0.439054 + 0.834074i
\(987\) 12.2854 12.2854i 0.391048 0.391048i
\(988\) −45.1684 −1.43700
\(989\) 15.4812 + 15.4812i 0.492274 + 0.492274i
\(990\) 0 0
\(991\) 23.5667i 0.748621i −0.927303 0.374310i \(-0.877879\pi\)
0.927303 0.374310i \(-0.122121\pi\)
\(992\) 1.34066 + 1.34066i 0.0425659 + 0.0425659i
\(993\) 54.6531 + 54.6531i 1.73436 + 1.73436i
\(994\) −5.12626 + 5.12626i −0.162595 + 0.162595i
\(995\) 0 0
\(996\) −2.37143 2.37143i −0.0751417 0.0751417i
\(997\) 32.2246i 1.02056i −0.860007 0.510282i \(-0.829541\pi\)
0.860007 0.510282i \(-0.170459\pi\)
\(998\) 6.43997i 0.203854i
\(999\) −8.27310 −0.261749
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1450.2.j.h.1293.5 12
5.2 odd 4 1450.2.e.h.307.2 12
5.3 odd 4 290.2.e.f.17.5 12
5.4 even 2 290.2.j.f.133.2 yes 12
29.12 odd 4 1450.2.e.h.1143.5 12
145.12 even 4 inner 1450.2.j.h.157.5 12
145.99 odd 4 290.2.e.f.273.2 yes 12
145.128 even 4 290.2.j.f.157.2 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
290.2.e.f.17.5 12 5.3 odd 4
290.2.e.f.273.2 yes 12 145.99 odd 4
290.2.j.f.133.2 yes 12 5.4 even 2
290.2.j.f.157.2 yes 12 145.128 even 4
1450.2.e.h.307.2 12 5.2 odd 4
1450.2.e.h.1143.5 12 29.12 odd 4
1450.2.j.h.157.5 12 145.12 even 4 inner
1450.2.j.h.1293.5 12 1.1 even 1 trivial