Properties

Label 1450.2.c.e.1101.7
Level $1450$
Weight $2$
Character 1450.1101
Analytic conductor $11.578$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1450,2,Mod(1101,1450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1450.1101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1450 = 2 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1450.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,-10,0,4,0,0,-14,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5783082931\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 22x^{8} + 161x^{6} + 484x^{4} + 520x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1101.7
Root \(-2.06121i\) of defining polynomial
Character \(\chi\) \(=\) 1450.1101
Dual form 1450.2.c.e.1101.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -2.06121i q^{3} -1.00000 q^{4} +2.06121 q^{6} +1.81264 q^{7} -1.00000i q^{8} -1.24857 q^{9} +3.98479i q^{11} +2.06121i q^{12} -6.04599 q^{13} +1.81264i q^{14} +1.00000 q^{16} +6.58819i q^{17} -1.24857i q^{18} +4.06121i q^{19} -3.73621i q^{21} -3.98479 q^{22} +0.790774 q^{23} -2.06121 q^{24} -6.04599i q^{26} -3.61006i q^{27} -1.81264 q^{28} +(-5.36291 + 0.489069i) q^{29} +3.24857i q^{31} +1.00000i q^{32} +8.21347 q^{33} -6.58819 q^{34} +1.24857 q^{36} -0.457797i q^{37} -4.06121 q^{38} +12.4620i q^{39} +9.91983i q^{41} +3.73621 q^{42} -3.62527i q^{43} -3.98479i q^{44} +0.790774i q^{46} -1.35952i q^{47} -2.06121i q^{48} -3.71435 q^{49} +13.5796 q^{51} +6.04599 q^{52} +6.90172 q^{53} +3.61006 q^{54} -1.81264i q^{56} +8.37098 q^{57} +(-0.489069 - 5.36291i) q^{58} +14.5451 q^{59} +0.827849i q^{61} -3.24857 q^{62} -2.26320 q^{63} -1.00000 q^{64} +8.21347i q^{66} +2.93505 q^{67} -6.58819i q^{68} -1.62995i q^{69} -12.2793 q^{71} +1.24857i q^{72} +6.29456i q^{73} +0.457797 q^{74} -4.06121i q^{76} +7.22296i q^{77} -12.4620 q^{78} +13.9810i q^{79} -11.1868 q^{81} -9.91983 q^{82} +12.9440 q^{83} +3.73621i q^{84} +3.62527 q^{86} +(1.00807 + 11.0541i) q^{87} +3.98479 q^{88} +1.82785i q^{89} -10.9592 q^{91} -0.790774 q^{92} +6.69597 q^{93} +1.35952 q^{94} +2.06121 q^{96} -17.0052i q^{97} -3.71435i q^{98} -4.97529i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{4} + 4 q^{6} - 14 q^{9} - 4 q^{13} + 10 q^{16} - 16 q^{23} - 4 q^{24} - 16 q^{29} - 36 q^{33} + 16 q^{34} + 14 q^{36} - 24 q^{38} - 4 q^{42} + 10 q^{49} - 20 q^{51} + 4 q^{52} + 40 q^{53} - 40 q^{54}+ \cdots + 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1450\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1277\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 2.06121i 1.19004i −0.803712 0.595019i \(-0.797145\pi\)
0.803712 0.595019i \(-0.202855\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 2.06121 0.841484
\(7\) 1.81264 0.685112 0.342556 0.939497i \(-0.388707\pi\)
0.342556 + 0.939497i \(0.388707\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.24857 −0.416190
\(10\) 0 0
\(11\) 3.98479i 1.20146i 0.799453 + 0.600729i \(0.205123\pi\)
−0.799453 + 0.600729i \(0.794877\pi\)
\(12\) 2.06121i 0.595019i
\(13\) −6.04599 −1.67686 −0.838428 0.545012i \(-0.816525\pi\)
−0.838428 + 0.545012i \(0.816525\pi\)
\(14\) 1.81264i 0.484447i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 6.58819i 1.59787i 0.601416 + 0.798936i \(0.294603\pi\)
−0.601416 + 0.798936i \(0.705397\pi\)
\(18\) 1.24857i 0.294291i
\(19\) 4.06121i 0.931705i 0.884862 + 0.465852i \(0.154252\pi\)
−0.884862 + 0.465852i \(0.845748\pi\)
\(20\) 0 0
\(21\) 3.73621i 0.815309i
\(22\) −3.98479 −0.849559
\(23\) 0.790774 0.164888 0.0824439 0.996596i \(-0.473727\pi\)
0.0824439 + 0.996596i \(0.473727\pi\)
\(24\) −2.06121 −0.420742
\(25\) 0 0
\(26\) 6.04599i 1.18572i
\(27\) 3.61006i 0.694756i
\(28\) −1.81264 −0.342556
\(29\) −5.36291 + 0.489069i −0.995868 + 0.0908179i
\(30\) 0 0
\(31\) 3.24857i 0.583461i 0.956501 + 0.291730i \(0.0942310\pi\)
−0.956501 + 0.291730i \(0.905769\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 8.21347 1.42978
\(34\) −6.58819 −1.12987
\(35\) 0 0
\(36\) 1.24857 0.208095
\(37\) 0.457797i 0.0752614i −0.999292 0.0376307i \(-0.988019\pi\)
0.999292 0.0376307i \(-0.0119811\pi\)
\(38\) −4.06121 −0.658815
\(39\) 12.4620i 1.99552i
\(40\) 0 0
\(41\) 9.91983i 1.54922i 0.632441 + 0.774609i \(0.282053\pi\)
−0.632441 + 0.774609i \(0.717947\pi\)
\(42\) 3.73621 0.576510
\(43\) 3.62527i 0.552849i −0.961036 0.276424i \(-0.910850\pi\)
0.961036 0.276424i \(-0.0891495\pi\)
\(44\) 3.98479i 0.600729i
\(45\) 0 0
\(46\) 0.790774i 0.116593i
\(47\) 1.35952i 0.198306i −0.995072 0.0991529i \(-0.968387\pi\)
0.995072 0.0991529i \(-0.0316133\pi\)
\(48\) 2.06121i 0.297509i
\(49\) −3.71435 −0.530622
\(50\) 0 0
\(51\) 13.5796 1.90153
\(52\) 6.04599 0.838428
\(53\) 6.90172 0.948024 0.474012 0.880518i \(-0.342805\pi\)
0.474012 + 0.880518i \(0.342805\pi\)
\(54\) 3.61006 0.491266
\(55\) 0 0
\(56\) 1.81264i 0.242224i
\(57\) 8.37098 1.10876
\(58\) −0.489069 5.36291i −0.0642179 0.704185i
\(59\) 14.5451 1.89361 0.946806 0.321806i \(-0.104290\pi\)
0.946806 + 0.321806i \(0.104290\pi\)
\(60\) 0 0
\(61\) 0.827849i 0.105995i 0.998595 + 0.0529976i \(0.0168776\pi\)
−0.998595 + 0.0529976i \(0.983122\pi\)
\(62\) −3.24857 −0.412569
\(63\) −2.26320 −0.285137
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 8.21347i 1.01101i
\(67\) 2.93505 0.358573 0.179287 0.983797i \(-0.442621\pi\)
0.179287 + 0.983797i \(0.442621\pi\)
\(68\) 6.58819i 0.798936i
\(69\) 1.62995i 0.196223i
\(70\) 0 0
\(71\) −12.2793 −1.45729 −0.728645 0.684891i \(-0.759850\pi\)
−0.728645 + 0.684891i \(0.759850\pi\)
\(72\) 1.24857i 0.147145i
\(73\) 6.29456i 0.736723i 0.929683 + 0.368361i \(0.120081\pi\)
−0.929683 + 0.368361i \(0.879919\pi\)
\(74\) 0.457797 0.0532178
\(75\) 0 0
\(76\) 4.06121i 0.465852i
\(77\) 7.22296i 0.823133i
\(78\) −12.4620 −1.41105
\(79\) 13.9810i 1.57299i 0.617597 + 0.786495i \(0.288106\pi\)
−0.617597 + 0.786495i \(0.711894\pi\)
\(80\) 0 0
\(81\) −11.1868 −1.24298
\(82\) −9.91983 −1.09546
\(83\) 12.9440 1.42078 0.710392 0.703806i \(-0.248518\pi\)
0.710392 + 0.703806i \(0.248518\pi\)
\(84\) 3.73621i 0.407654i
\(85\) 0 0
\(86\) 3.62527 0.390923
\(87\) 1.00807 + 11.0541i 0.108077 + 1.18512i
\(88\) 3.98479 0.424780
\(89\) 1.82785i 0.193752i 0.995296 + 0.0968758i \(0.0308850\pi\)
−0.995296 + 0.0968758i \(0.969115\pi\)
\(90\) 0 0
\(91\) −10.9592 −1.14883
\(92\) −0.790774 −0.0824439
\(93\) 6.69597 0.694340
\(94\) 1.35952 0.140223
\(95\) 0 0
\(96\) 2.06121 0.210371
\(97\) 17.0052i 1.72661i −0.504680 0.863307i \(-0.668389\pi\)
0.504680 0.863307i \(-0.331611\pi\)
\(98\) 3.71435i 0.375206i
\(99\) 4.97529i 0.500035i
\(100\) 0 0
\(101\) 0.441652i 0.0439460i 0.999759 + 0.0219730i \(0.00699479\pi\)
−0.999759 + 0.0219730i \(0.993005\pi\)
\(102\) 13.5796i 1.34458i
\(103\) −4.91319 −0.484111 −0.242055 0.970262i \(-0.577822\pi\)
−0.242055 + 0.970262i \(0.577822\pi\)
\(104\) 6.04599i 0.592858i
\(105\) 0 0
\(106\) 6.90172i 0.670354i
\(107\) −12.2690 −1.18608 −0.593042 0.805171i \(-0.702073\pi\)
−0.593042 + 0.805171i \(0.702073\pi\)
\(108\) 3.61006i 0.347378i
\(109\) 7.44258 0.712870 0.356435 0.934320i \(-0.383992\pi\)
0.356435 + 0.934320i \(0.383992\pi\)
\(110\) 0 0
\(111\) −0.943614 −0.0895639
\(112\) 1.81264 0.171278
\(113\) 5.57553i 0.524502i −0.965000 0.262251i \(-0.915535\pi\)
0.965000 0.262251i \(-0.0844648\pi\)
\(114\) 8.37098i 0.784014i
\(115\) 0 0
\(116\) 5.36291 0.489069i 0.497934 0.0454089i
\(117\) 7.54885 0.697891
\(118\) 14.5451i 1.33899i
\(119\) 11.9420i 1.09472i
\(120\) 0 0
\(121\) −4.87852 −0.443502
\(122\) −0.827849 −0.0749500
\(123\) 20.4468 1.84363
\(124\) 3.24857i 0.291730i
\(125\) 0 0
\(126\) 2.26320i 0.201622i
\(127\) 19.9877i 1.77362i 0.462134 + 0.886810i \(0.347084\pi\)
−0.462134 + 0.886810i \(0.652916\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −7.47243 −0.657911
\(130\) 0 0
\(131\) 7.79367i 0.680937i 0.940256 + 0.340468i \(0.110586\pi\)
−0.940256 + 0.340468i \(0.889414\pi\)
\(132\) −8.21347 −0.714890
\(133\) 7.36149i 0.638322i
\(134\) 2.93505i 0.253549i
\(135\) 0 0
\(136\) 6.58819 0.564933
\(137\) 2.49621i 0.213266i 0.994298 + 0.106633i \(0.0340069\pi\)
−0.994298 + 0.106633i \(0.965993\pi\)
\(138\) 1.62995 0.138750
\(139\) 1.06027 0.0899314 0.0449657 0.998989i \(-0.485682\pi\)
0.0449657 + 0.998989i \(0.485682\pi\)
\(140\) 0 0
\(141\) −2.80224 −0.235991
\(142\) 12.2793i 1.03046i
\(143\) 24.0920i 2.01467i
\(144\) −1.24857 −0.104048
\(145\) 0 0
\(146\) −6.29456 −0.520942
\(147\) 7.65605i 0.631460i
\(148\) 0.457797i 0.0376307i
\(149\) 15.1925 1.24462 0.622310 0.782771i \(-0.286194\pi\)
0.622310 + 0.782771i \(0.286194\pi\)
\(150\) 0 0
\(151\) −21.5299 −1.75208 −0.876039 0.482241i \(-0.839823\pi\)
−0.876039 + 0.482241i \(0.839823\pi\)
\(152\) 4.06121 0.329407
\(153\) 8.22583i 0.665019i
\(154\) −7.22296 −0.582043
\(155\) 0 0
\(156\) 12.4620i 0.997761i
\(157\) 5.51645i 0.440261i 0.975470 + 0.220130i \(0.0706483\pi\)
−0.975470 + 0.220130i \(0.929352\pi\)
\(158\) −13.9810 −1.11227
\(159\) 14.2259i 1.12818i
\(160\) 0 0
\(161\) 1.43338 0.112967
\(162\) 11.1868i 0.878917i
\(163\) 0.405508i 0.0317618i −0.999874 0.0158809i \(-0.994945\pi\)
0.999874 0.0158809i \(-0.00505526\pi\)
\(164\) 9.91983i 0.774609i
\(165\) 0 0
\(166\) 12.9440i 1.00465i
\(167\) −8.32816 −0.644452 −0.322226 0.946663i \(-0.604431\pi\)
−0.322226 + 0.946663i \(0.604431\pi\)
\(168\) −3.73621 −0.288255
\(169\) 23.5540 1.81185
\(170\) 0 0
\(171\) 5.07070i 0.387766i
\(172\) 3.62527i 0.276424i
\(173\) 0.228679 0.0173862 0.00869309 0.999962i \(-0.497233\pi\)
0.00869309 + 0.999962i \(0.497233\pi\)
\(174\) −11.0541 + 1.00807i −0.838006 + 0.0764218i
\(175\) 0 0
\(176\) 3.98479i 0.300365i
\(177\) 29.9805i 2.25347i
\(178\) −1.82785 −0.137003
\(179\) 3.67983 0.275043 0.137522 0.990499i \(-0.456086\pi\)
0.137522 + 0.990499i \(0.456086\pi\)
\(180\) 0 0
\(181\) 11.3127 0.840865 0.420432 0.907324i \(-0.361878\pi\)
0.420432 + 0.907324i \(0.361878\pi\)
\(182\) 10.9592i 0.812348i
\(183\) 1.70637 0.126138
\(184\) 0.790774i 0.0582966i
\(185\) 0 0
\(186\) 6.69597i 0.490973i
\(187\) −26.2525 −1.91978
\(188\) 1.35952i 0.0991529i
\(189\) 6.54372i 0.475985i
\(190\) 0 0
\(191\) 12.0807i 0.874126i −0.899431 0.437063i \(-0.856019\pi\)
0.899431 0.437063i \(-0.143981\pi\)
\(192\) 2.06121i 0.148755i
\(193\) 6.91412i 0.497689i −0.968543 0.248845i \(-0.919949\pi\)
0.968543 0.248845i \(-0.0800508\pi\)
\(194\) 17.0052 1.22090
\(195\) 0 0
\(196\) 3.71435 0.265311
\(197\) 22.5655 1.60772 0.803862 0.594816i \(-0.202775\pi\)
0.803862 + 0.594816i \(0.202775\pi\)
\(198\) 4.97529 0.353578
\(199\) 0.913186 0.0647341 0.0323670 0.999476i \(-0.489695\pi\)
0.0323670 + 0.999476i \(0.489695\pi\)
\(200\) 0 0
\(201\) 6.04974i 0.426716i
\(202\) −0.441652 −0.0310745
\(203\) −9.72100 + 0.886504i −0.682281 + 0.0622204i
\(204\) −13.5796 −0.950764
\(205\) 0 0
\(206\) 4.91319i 0.342318i
\(207\) −0.987337 −0.0686247
\(208\) −6.04599 −0.419214
\(209\) −16.1830 −1.11940
\(210\) 0 0
\(211\) 9.29108i 0.639624i −0.947481 0.319812i \(-0.896380\pi\)
0.947481 0.319812i \(-0.103620\pi\)
\(212\) −6.90172 −0.474012
\(213\) 25.3103i 1.73423i
\(214\) 12.2690i 0.838689i
\(215\) 0 0
\(216\) −3.61006 −0.245633
\(217\) 5.88847i 0.399736i
\(218\) 7.44258i 0.504075i
\(219\) 12.9744 0.876728
\(220\) 0 0
\(221\) 39.8322i 2.67940i
\(222\) 0.943614i 0.0633312i
\(223\) −16.2448 −1.08783 −0.543917 0.839139i \(-0.683059\pi\)
−0.543917 + 0.839139i \(0.683059\pi\)
\(224\) 1.81264i 0.121112i
\(225\) 0 0
\(226\) 5.57553 0.370879
\(227\) −10.9474 −0.726608 −0.363304 0.931671i \(-0.618351\pi\)
−0.363304 + 0.931671i \(0.618351\pi\)
\(228\) −8.37098 −0.554382
\(229\) 10.4971i 0.693671i −0.937926 0.346835i \(-0.887256\pi\)
0.937926 0.346835i \(-0.112744\pi\)
\(230\) 0 0
\(231\) 14.8880 0.979560
\(232\) 0.489069 + 5.36291i 0.0321090 + 0.352092i
\(233\) −8.59577 −0.563128 −0.281564 0.959542i \(-0.590853\pi\)
−0.281564 + 0.959542i \(0.590853\pi\)
\(234\) 7.54885i 0.493484i
\(235\) 0 0
\(236\) −14.5451 −0.946806
\(237\) 28.8178 1.87192
\(238\) −11.9420 −0.774085
\(239\) −9.88624 −0.639488 −0.319744 0.947504i \(-0.603597\pi\)
−0.319744 + 0.947504i \(0.603597\pi\)
\(240\) 0 0
\(241\) 29.4241 1.89537 0.947687 0.319201i \(-0.103415\pi\)
0.947687 + 0.319201i \(0.103415\pi\)
\(242\) 4.87852i 0.313603i
\(243\) 12.2281i 0.784433i
\(244\) 0.827849i 0.0529976i
\(245\) 0 0
\(246\) 20.4468i 1.30364i
\(247\) 24.5540i 1.56233i
\(248\) 3.24857 0.206284
\(249\) 26.6802i 1.69079i
\(250\) 0 0
\(251\) 17.4824i 1.10348i −0.834016 0.551740i \(-0.813964\pi\)
0.834016 0.551740i \(-0.186036\pi\)
\(252\) 2.26320 0.142568
\(253\) 3.15106i 0.198106i
\(254\) −19.9877 −1.25414
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −13.5995 −0.848315 −0.424157 0.905588i \(-0.639430\pi\)
−0.424157 + 0.905588i \(0.639430\pi\)
\(258\) 7.47243i 0.465213i
\(259\) 0.829819i 0.0515625i
\(260\) 0 0
\(261\) 6.69597 0.610638i 0.414470 0.0377975i
\(262\) −7.79367 −0.481495
\(263\) 12.0020i 0.740073i 0.929017 + 0.370037i \(0.120655\pi\)
−0.929017 + 0.370037i \(0.879345\pi\)
\(264\) 8.21347i 0.505504i
\(265\) 0 0
\(266\) −7.36149 −0.451362
\(267\) 3.76757 0.230572
\(268\) −2.93505 −0.179287
\(269\) 23.8980i 1.45709i −0.685001 0.728543i \(-0.740198\pi\)
0.685001 0.728543i \(-0.259802\pi\)
\(270\) 0 0
\(271\) 29.6755i 1.80266i 0.433135 + 0.901329i \(0.357407\pi\)
−0.433135 + 0.901329i \(0.642593\pi\)
\(272\) 6.58819i 0.399468i
\(273\) 22.5891i 1.36716i
\(274\) −2.49621 −0.150802
\(275\) 0 0
\(276\) 1.62995i 0.0981113i
\(277\) −27.9018 −1.67646 −0.838228 0.545319i \(-0.816408\pi\)
−0.838228 + 0.545319i \(0.816408\pi\)
\(278\) 1.06027i 0.0635911i
\(279\) 4.05607i 0.242831i
\(280\) 0 0
\(281\) 6.50660 0.388151 0.194076 0.980987i \(-0.437829\pi\)
0.194076 + 0.980987i \(0.437829\pi\)
\(282\) 2.80224i 0.166871i
\(283\) 5.35774 0.318485 0.159242 0.987240i \(-0.449095\pi\)
0.159242 + 0.987240i \(0.449095\pi\)
\(284\) 12.2793 0.728645
\(285\) 0 0
\(286\) 24.0920 1.42459
\(287\) 17.9810i 1.06139i
\(288\) 1.24857i 0.0735727i
\(289\) −26.4043 −1.55319
\(290\) 0 0
\(291\) −35.0512 −2.05474
\(292\) 6.29456i 0.368361i
\(293\) 23.0670i 1.34759i −0.738919 0.673795i \(-0.764663\pi\)
0.738919 0.673795i \(-0.235337\pi\)
\(294\) −7.65605 −0.446510
\(295\) 0 0
\(296\) −0.457797 −0.0266089
\(297\) 14.3853 0.834720
\(298\) 15.1925i 0.880080i
\(299\) −4.78101 −0.276493
\(300\) 0 0
\(301\) 6.57129i 0.378763i
\(302\) 21.5299i 1.23891i
\(303\) 0.910336 0.0522974
\(304\) 4.06121i 0.232926i
\(305\) 0 0
\(306\) 8.22583 0.470239
\(307\) 5.37487i 0.306760i −0.988167 0.153380i \(-0.950984\pi\)
0.988167 0.153380i \(-0.0490159\pi\)
\(308\) 7.22296i 0.411567i
\(309\) 10.1271i 0.576110i
\(310\) 0 0
\(311\) 24.5568i 1.39249i −0.717804 0.696245i \(-0.754853\pi\)
0.717804 0.696245i \(-0.245147\pi\)
\(312\) 12.4620 0.705524
\(313\) 5.03998 0.284876 0.142438 0.989804i \(-0.454506\pi\)
0.142438 + 0.989804i \(0.454506\pi\)
\(314\) −5.51645 −0.311311
\(315\) 0 0
\(316\) 13.9810i 0.786495i
\(317\) 15.6531i 0.879168i 0.898201 + 0.439584i \(0.144874\pi\)
−0.898201 + 0.439584i \(0.855126\pi\)
\(318\) 14.2259 0.797747
\(319\) −1.94884 21.3701i −0.109114 1.19649i
\(320\) 0 0
\(321\) 25.2888i 1.41149i
\(322\) 1.43338i 0.0798794i
\(323\) −26.7560 −1.48874
\(324\) 11.1868 0.621488
\(325\) 0 0
\(326\) 0.405508 0.0224590
\(327\) 15.3407i 0.848343i
\(328\) 9.91983 0.547731
\(329\) 2.46431i 0.135862i
\(330\) 0 0
\(331\) 24.3980i 1.34104i 0.741893 + 0.670518i \(0.233928\pi\)
−0.741893 + 0.670518i \(0.766072\pi\)
\(332\) −12.9440 −0.710392
\(333\) 0.571592i 0.0313231i
\(334\) 8.32816i 0.455696i
\(335\) 0 0
\(336\) 3.73621i 0.203827i
\(337\) 27.8083i 1.51482i −0.652942 0.757408i \(-0.726466\pi\)
0.652942 0.757408i \(-0.273534\pi\)
\(338\) 23.5540i 1.28117i
\(339\) −11.4923 −0.624177
\(340\) 0 0
\(341\) −12.9449 −0.701003
\(342\) 5.07070 0.274192
\(343\) −19.4212 −1.04865
\(344\) −3.62527 −0.195461
\(345\) 0 0
\(346\) 0.228679i 0.0122939i
\(347\) 18.6476 1.00106 0.500528 0.865720i \(-0.333139\pi\)
0.500528 + 0.865720i \(0.333139\pi\)
\(348\) −1.00807 11.0541i −0.0540384 0.592560i
\(349\) 0.948292 0.0507609 0.0253804 0.999678i \(-0.491920\pi\)
0.0253804 + 0.999678i \(0.491920\pi\)
\(350\) 0 0
\(351\) 21.8264i 1.16501i
\(352\) −3.98479 −0.212390
\(353\) 32.9307 1.75273 0.876363 0.481652i \(-0.159963\pi\)
0.876363 + 0.481652i \(0.159963\pi\)
\(354\) 29.9805 1.59344
\(355\) 0 0
\(356\) 1.82785i 0.0968758i
\(357\) 24.6149 1.30276
\(358\) 3.67983i 0.194485i
\(359\) 3.45249i 0.182215i −0.995841 0.0911077i \(-0.970959\pi\)
0.995841 0.0911077i \(-0.0290407\pi\)
\(360\) 0 0
\(361\) 2.50660 0.131927
\(362\) 11.3127i 0.594581i
\(363\) 10.0556i 0.527784i
\(364\) 10.9592 0.574417
\(365\) 0 0
\(366\) 1.70637i 0.0891933i
\(367\) 4.04626i 0.211213i −0.994408 0.105606i \(-0.966322\pi\)
0.994408 0.105606i \(-0.0336784\pi\)
\(368\) 0.790774 0.0412219
\(369\) 12.3856i 0.644769i
\(370\) 0 0
\(371\) 12.5103 0.649502
\(372\) −6.69597 −0.347170
\(373\) −16.3349 −0.845791 −0.422896 0.906178i \(-0.638986\pi\)
−0.422896 + 0.906178i \(0.638986\pi\)
\(374\) 26.2525i 1.35749i
\(375\) 0 0
\(376\) −1.35952 −0.0701117
\(377\) 32.4241 2.95691i 1.66993 0.152289i
\(378\) 6.54372 0.336572
\(379\) 19.4342i 0.998266i 0.866525 + 0.499133i \(0.166348\pi\)
−0.866525 + 0.499133i \(0.833652\pi\)
\(380\) 0 0
\(381\) 41.1987 2.11068
\(382\) 12.0807 0.618100
\(383\) 17.2920 0.883581 0.441790 0.897118i \(-0.354344\pi\)
0.441790 + 0.897118i \(0.354344\pi\)
\(384\) −2.06121 −0.105185
\(385\) 0 0
\(386\) 6.91412 0.351919
\(387\) 4.52641i 0.230090i
\(388\) 17.0052i 0.863307i
\(389\) 9.97849i 0.505929i 0.967476 + 0.252965i \(0.0814057\pi\)
−0.967476 + 0.252965i \(0.918594\pi\)
\(390\) 0 0
\(391\) 5.20977i 0.263469i
\(392\) 3.71435i 0.187603i
\(393\) 16.0644 0.810340
\(394\) 22.5655i 1.13683i
\(395\) 0 0
\(396\) 4.97529i 0.250018i
\(397\) −24.2046 −1.21480 −0.607398 0.794398i \(-0.707787\pi\)
−0.607398 + 0.794398i \(0.707787\pi\)
\(398\) 0.913186i 0.0457739i
\(399\) 15.1735 0.759627
\(400\) 0 0
\(401\) −32.7582 −1.63586 −0.817932 0.575315i \(-0.804880\pi\)
−0.817932 + 0.575315i \(0.804880\pi\)
\(402\) 6.04974 0.301734
\(403\) 19.6408i 0.978380i
\(404\) 0.441652i 0.0219730i
\(405\) 0 0
\(406\) −0.886504 9.72100i −0.0439965 0.482445i
\(407\) 1.82422 0.0904234
\(408\) 13.5796i 0.672292i
\(409\) 3.80251i 0.188022i −0.995571 0.0940109i \(-0.970031\pi\)
0.995571 0.0940109i \(-0.0299689\pi\)
\(410\) 0 0
\(411\) 5.14521 0.253794
\(412\) 4.91319 0.242055
\(413\) 26.3650 1.29734
\(414\) 0.987337i 0.0485250i
\(415\) 0 0
\(416\) 6.04599i 0.296429i
\(417\) 2.18545i 0.107022i
\(418\) 16.1830i 0.791538i
\(419\) 36.1039 1.76379 0.881897 0.471443i \(-0.156267\pi\)
0.881897 + 0.471443i \(0.156267\pi\)
\(420\) 0 0
\(421\) 17.1854i 0.837567i −0.908086 0.418784i \(-0.862457\pi\)
0.908086 0.418784i \(-0.137543\pi\)
\(422\) 9.29108 0.452283
\(423\) 1.69745i 0.0825329i
\(424\) 6.90172i 0.335177i
\(425\) 0 0
\(426\) −25.3103 −1.22629
\(427\) 1.50059i 0.0726186i
\(428\) 12.2690 0.593042
\(429\) −49.6585 −2.39754
\(430\) 0 0
\(431\) 17.4700 0.841501 0.420751 0.907176i \(-0.361767\pi\)
0.420751 + 0.907176i \(0.361767\pi\)
\(432\) 3.61006i 0.173689i
\(433\) 32.0734i 1.54135i 0.637230 + 0.770674i \(0.280080\pi\)
−0.637230 + 0.770674i \(0.719920\pi\)
\(434\) −5.88847 −0.282656
\(435\) 0 0
\(436\) −7.44258 −0.356435
\(437\) 3.21150i 0.153627i
\(438\) 12.9744i 0.619940i
\(439\) −19.7730 −0.943714 −0.471857 0.881675i \(-0.656416\pi\)
−0.471857 + 0.881675i \(0.656416\pi\)
\(440\) 0 0
\(441\) 4.63763 0.220840
\(442\) 39.8322 1.89462
\(443\) 6.34238i 0.301336i 0.988584 + 0.150668i \(0.0481424\pi\)
−0.988584 + 0.150668i \(0.951858\pi\)
\(444\) 0.943614 0.0447820
\(445\) 0 0
\(446\) 16.2448i 0.769215i
\(447\) 31.3149i 1.48115i
\(448\) −1.81264 −0.0856390
\(449\) 20.3567i 0.960690i 0.877080 + 0.480345i \(0.159489\pi\)
−0.877080 + 0.480345i \(0.840511\pi\)
\(450\) 0 0
\(451\) −39.5284 −1.86132
\(452\) 5.57553i 0.262251i
\(453\) 44.3775i 2.08504i
\(454\) 10.9474i 0.513789i
\(455\) 0 0
\(456\) 8.37098i 0.392007i
\(457\) 31.7313 1.48433 0.742165 0.670217i \(-0.233799\pi\)
0.742165 + 0.670217i \(0.233799\pi\)
\(458\) 10.4971 0.490499
\(459\) 23.7838 1.11013
\(460\) 0 0
\(461\) 25.7477i 1.19919i −0.800304 0.599595i \(-0.795329\pi\)
0.800304 0.599595i \(-0.204671\pi\)
\(462\) 14.8880i 0.692653i
\(463\) −27.4355 −1.27504 −0.637518 0.770436i \(-0.720039\pi\)
−0.637518 + 0.770436i \(0.720039\pi\)
\(464\) −5.36291 + 0.489069i −0.248967 + 0.0227045i
\(465\) 0 0
\(466\) 8.59577i 0.398192i
\(467\) 17.9948i 0.832699i 0.909205 + 0.416349i \(0.136691\pi\)
−0.909205 + 0.416349i \(0.863309\pi\)
\(468\) −7.54885 −0.348946
\(469\) 5.32017 0.245663
\(470\) 0 0
\(471\) 11.3705 0.523927
\(472\) 14.5451i 0.669493i
\(473\) 14.4459 0.664224
\(474\) 28.8178i 1.32365i
\(475\) 0 0
\(476\) 11.9420i 0.547360i
\(477\) −8.61729 −0.394558
\(478\) 9.88624i 0.452186i
\(479\) 25.0189i 1.14314i −0.820553 0.571571i \(-0.806334\pi\)
0.820553 0.571571i \(-0.193666\pi\)
\(480\) 0 0
\(481\) 2.76784i 0.126203i
\(482\) 29.4241i 1.34023i
\(483\) 2.95450i 0.134434i
\(484\) 4.87852 0.221751
\(485\) 0 0
\(486\) −12.2281 −0.554678
\(487\) −25.8793 −1.17270 −0.586351 0.810057i \(-0.699436\pi\)
−0.586351 + 0.810057i \(0.699436\pi\)
\(488\) 0.827849 0.0374750
\(489\) −0.835835 −0.0377978
\(490\) 0 0
\(491\) 16.9849i 0.766519i −0.923641 0.383260i \(-0.874801\pi\)
0.923641 0.383260i \(-0.125199\pi\)
\(492\) −20.4468 −0.921814
\(493\) −3.22208 35.3319i −0.145115 1.59127i
\(494\) 24.5540 1.10474
\(495\) 0 0
\(496\) 3.24857i 0.145865i
\(497\) −22.2580 −0.998407
\(498\) 26.6802 1.19557
\(499\) 15.2508 0.682721 0.341361 0.939932i \(-0.389112\pi\)
0.341361 + 0.939932i \(0.389112\pi\)
\(500\) 0 0
\(501\) 17.1660i 0.766922i
\(502\) 17.4824 0.780279
\(503\) 13.4194i 0.598341i 0.954200 + 0.299170i \(0.0967099\pi\)
−0.954200 + 0.299170i \(0.903290\pi\)
\(504\) 2.26320i 0.100811i
\(505\) 0 0
\(506\) −3.15106 −0.140082
\(507\) 48.5497i 2.15617i
\(508\) 19.9877i 0.886810i
\(509\) 9.86330 0.437183 0.218592 0.975816i \(-0.429854\pi\)
0.218592 + 0.975816i \(0.429854\pi\)
\(510\) 0 0
\(511\) 11.4097i 0.504737i
\(512\) 1.00000i 0.0441942i
\(513\) 14.6612 0.647307
\(514\) 13.5995i 0.599849i
\(515\) 0 0
\(516\) 7.47243 0.328955
\(517\) 5.41738 0.238256
\(518\) 0.829819 0.0364602
\(519\) 0.471356i 0.0206902i
\(520\) 0 0
\(521\) 33.7809 1.47997 0.739983 0.672625i \(-0.234833\pi\)
0.739983 + 0.672625i \(0.234833\pi\)
\(522\) 0.610638 + 6.69597i 0.0267269 + 0.293075i
\(523\) −3.25856 −0.142487 −0.0712435 0.997459i \(-0.522697\pi\)
−0.0712435 + 0.997459i \(0.522697\pi\)
\(524\) 7.79367i 0.340468i
\(525\) 0 0
\(526\) −12.0020 −0.523311
\(527\) −21.4022 −0.932295
\(528\) 8.21347 0.357445
\(529\) −22.3747 −0.972812
\(530\) 0 0
\(531\) −18.1606 −0.788103
\(532\) 7.36149i 0.319161i
\(533\) 59.9752i 2.59782i
\(534\) 3.76757i 0.163039i
\(535\) 0 0
\(536\) 2.93505i 0.126775i
\(537\) 7.58489i 0.327312i
\(538\) 23.8980 1.03031
\(539\) 14.8009i 0.637520i
\(540\) 0 0
\(541\) 16.1807i 0.695663i 0.937557 + 0.347832i \(0.113082\pi\)
−0.937557 + 0.347832i \(0.886918\pi\)
\(542\) −29.6755 −1.27467
\(543\) 23.3178i 1.00066i
\(544\) −6.58819 −0.282467
\(545\) 0 0
\(546\) −22.5891 −0.966725
\(547\) −32.4375 −1.38693 −0.693463 0.720492i \(-0.743916\pi\)
−0.693463 + 0.720492i \(0.743916\pi\)
\(548\) 2.49621i 0.106633i
\(549\) 1.03363i 0.0441142i
\(550\) 0 0
\(551\) −1.98621 21.7799i −0.0846154 0.927854i
\(552\) −1.62995 −0.0693752
\(553\) 25.3425i 1.07767i
\(554\) 27.9018i 1.18543i
\(555\) 0 0
\(556\) −1.06027 −0.0449657
\(557\) 14.0969 0.597305 0.298653 0.954362i \(-0.403463\pi\)
0.298653 + 0.954362i \(0.403463\pi\)
\(558\) 4.05607 0.171707
\(559\) 21.9184i 0.927048i
\(560\) 0 0
\(561\) 54.1119i 2.28461i
\(562\) 6.50660i 0.274465i
\(563\) 17.4516i 0.735499i 0.929925 + 0.367750i \(0.119872\pi\)
−0.929925 + 0.367750i \(0.880128\pi\)
\(564\) 2.80224 0.117996
\(565\) 0 0
\(566\) 5.35774i 0.225203i
\(567\) −20.2776 −0.851577
\(568\) 12.2793i 0.515230i
\(569\) 37.3824i 1.56715i −0.621297 0.783575i \(-0.713394\pi\)
0.621297 0.783575i \(-0.286606\pi\)
\(570\) 0 0
\(571\) −30.3687 −1.27089 −0.635444 0.772147i \(-0.719183\pi\)
−0.635444 + 0.772147i \(0.719183\pi\)
\(572\) 24.0920i 1.00734i
\(573\) −24.9007 −1.04024
\(574\) −17.9810 −0.750514
\(575\) 0 0
\(576\) 1.24857 0.0520238
\(577\) 29.9814i 1.24814i 0.781368 + 0.624071i \(0.214522\pi\)
−0.781368 + 0.624071i \(0.785478\pi\)
\(578\) 26.4043i 1.09827i
\(579\) −14.2514 −0.592269
\(580\) 0 0
\(581\) 23.4627 0.973396
\(582\) 35.0512i 1.45292i
\(583\) 27.5019i 1.13901i
\(584\) 6.29456 0.260471
\(585\) 0 0
\(586\) 23.0670 0.952889
\(587\) 15.1335 0.624625 0.312313 0.949979i \(-0.398896\pi\)
0.312313 + 0.949979i \(0.398896\pi\)
\(588\) 7.65605i 0.315730i
\(589\) −13.1931 −0.543613
\(590\) 0 0
\(591\) 46.5121i 1.91325i
\(592\) 0.457797i 0.0188153i
\(593\) −46.5827 −1.91292 −0.956461 0.291862i \(-0.905725\pi\)
−0.956461 + 0.291862i \(0.905725\pi\)
\(594\) 14.3853i 0.590236i
\(595\) 0 0
\(596\) −15.1925 −0.622310
\(597\) 1.88227i 0.0770360i
\(598\) 4.78101i 0.195510i
\(599\) 22.1841i 0.906418i 0.891404 + 0.453209i \(0.149721\pi\)
−0.891404 + 0.453209i \(0.850279\pi\)
\(600\) 0 0
\(601\) 23.6670i 0.965396i 0.875787 + 0.482698i \(0.160343\pi\)
−0.875787 + 0.482698i \(0.839657\pi\)
\(602\) 6.57129 0.267826
\(603\) −3.66462 −0.149235
\(604\) 21.5299 0.876039
\(605\) 0 0
\(606\) 0.910336i 0.0369799i
\(607\) 22.3900i 0.908782i 0.890802 + 0.454391i \(0.150143\pi\)
−0.890802 + 0.454391i \(0.849857\pi\)
\(608\) −4.06121 −0.164704
\(609\) 1.82727 + 20.0370i 0.0740446 + 0.811940i
\(610\) 0 0
\(611\) 8.21962i 0.332530i
\(612\) 8.22583i 0.332509i
\(613\) −13.2534 −0.535299 −0.267650 0.963516i \(-0.586247\pi\)
−0.267650 + 0.963516i \(0.586247\pi\)
\(614\) 5.37487 0.216912
\(615\) 0 0
\(616\) 7.22296 0.291021
\(617\) 44.5005i 1.79152i 0.444534 + 0.895762i \(0.353369\pi\)
−0.444534 + 0.895762i \(0.646631\pi\)
\(618\) −10.1271 −0.407371
\(619\) 6.42113i 0.258087i 0.991639 + 0.129043i \(0.0411907\pi\)
−0.991639 + 0.129043i \(0.958809\pi\)
\(620\) 0 0
\(621\) 2.85474i 0.114557i
\(622\) 24.5568 0.984639
\(623\) 3.31322i 0.132742i
\(624\) 12.4620i 0.498881i
\(625\) 0 0
\(626\) 5.03998i 0.201438i
\(627\) 33.3566i 1.33213i
\(628\) 5.51645i 0.220130i
\(629\) 3.01606 0.120258
\(630\) 0 0
\(631\) 34.5259 1.37445 0.687227 0.726443i \(-0.258828\pi\)
0.687227 + 0.726443i \(0.258828\pi\)
\(632\) 13.9810 0.556136
\(633\) −19.1508 −0.761177
\(634\) −15.6531 −0.621666
\(635\) 0 0
\(636\) 14.2259i 0.564092i
\(637\) 22.4570 0.889777
\(638\) 21.3701 1.94884i 0.846048 0.0771552i
\(639\) 15.3316 0.606510
\(640\) 0 0
\(641\) 30.0242i 1.18588i 0.805245 + 0.592942i \(0.202034\pi\)
−0.805245 + 0.592942i \(0.797966\pi\)
\(642\) −25.2888 −0.998071
\(643\) 49.1853 1.93968 0.969840 0.243744i \(-0.0783757\pi\)
0.969840 + 0.243744i \(0.0783757\pi\)
\(644\) −1.43338 −0.0564833
\(645\) 0 0
\(646\) 26.7560i 1.05270i
\(647\) 47.2903 1.85917 0.929587 0.368602i \(-0.120164\pi\)
0.929587 + 0.368602i \(0.120164\pi\)
\(648\) 11.1868i 0.439458i
\(649\) 57.9591i 2.27509i
\(650\) 0 0
\(651\) 12.1374 0.475701
\(652\) 0.405508i 0.0158809i
\(653\) 22.2215i 0.869594i −0.900529 0.434797i \(-0.856820\pi\)
0.900529 0.434797i \(-0.143180\pi\)
\(654\) 15.3407 0.599869
\(655\) 0 0
\(656\) 9.91983i 0.387304i
\(657\) 7.85921i 0.306617i
\(658\) 2.46431 0.0960686
\(659\) 36.6261i 1.42675i 0.700782 + 0.713375i \(0.252835\pi\)
−0.700782 + 0.713375i \(0.747165\pi\)
\(660\) 0 0
\(661\) 21.5507 0.838226 0.419113 0.907934i \(-0.362341\pi\)
0.419113 + 0.907934i \(0.362341\pi\)
\(662\) −24.3980 −0.948256
\(663\) −82.1023 −3.18859
\(664\) 12.9440i 0.502323i
\(665\) 0 0
\(666\) −0.571592 −0.0221487
\(667\) −4.24085 + 0.386743i −0.164206 + 0.0149748i
\(668\) 8.32816 0.322226
\(669\) 33.4839i 1.29456i
\(670\) 0 0
\(671\) −3.29880 −0.127349
\(672\) 3.73621 0.144128
\(673\) −19.8560 −0.765391 −0.382695 0.923875i \(-0.625004\pi\)
−0.382695 + 0.923875i \(0.625004\pi\)
\(674\) 27.8083 1.07114
\(675\) 0 0
\(676\) −23.5540 −0.905924
\(677\) 5.42633i 0.208551i 0.994548 + 0.104275i \(0.0332523\pi\)
−0.994548 + 0.104275i \(0.966748\pi\)
\(678\) 11.4923i 0.441360i
\(679\) 30.8242i 1.18292i
\(680\) 0 0
\(681\) 22.5649i 0.864691i
\(682\) 12.9449i 0.495684i
\(683\) −31.2809 −1.19693 −0.598465 0.801149i \(-0.704223\pi\)
−0.598465 + 0.801149i \(0.704223\pi\)
\(684\) 5.07070i 0.193883i
\(685\) 0 0
\(686\) 19.4212i 0.741505i
\(687\) −21.6368 −0.825494
\(688\) 3.62527i 0.138212i
\(689\) −41.7277 −1.58970
\(690\) 0 0
\(691\) −25.0367 −0.952440 −0.476220 0.879326i \(-0.657993\pi\)
−0.476220 + 0.879326i \(0.657993\pi\)
\(692\) −0.228679 −0.00869309
\(693\) 9.01838i 0.342580i
\(694\) 18.6476i 0.707854i
\(695\) 0 0
\(696\) 11.0541 1.00807i 0.419003 0.0382109i
\(697\) −65.3538 −2.47545
\(698\) 0.948292i 0.0358934i
\(699\) 17.7177i 0.670144i
\(700\) 0 0
\(701\) −5.20003 −0.196402 −0.0982012 0.995167i \(-0.531309\pi\)
−0.0982012 + 0.995167i \(0.531309\pi\)
\(702\) −21.8264 −0.823783
\(703\) 1.85921 0.0701214
\(704\) 3.98479i 0.150182i
\(705\) 0 0
\(706\) 32.9307i 1.23936i
\(707\) 0.800554i 0.0301079i
\(708\) 29.9805i 1.12673i
\(709\) 14.5305 0.545705 0.272853 0.962056i \(-0.412033\pi\)
0.272853 + 0.962056i \(0.412033\pi\)
\(710\) 0 0
\(711\) 17.4563i 0.654663i
\(712\) 1.82785 0.0685015
\(713\) 2.56888i 0.0962055i
\(714\) 24.6149i 0.921190i
\(715\) 0 0
\(716\) −3.67983 −0.137522
\(717\) 20.3776i 0.761015i
\(718\) 3.45249 0.128846
\(719\) 0.980547 0.0365682 0.0182841 0.999833i \(-0.494180\pi\)
0.0182841 + 0.999833i \(0.494180\pi\)
\(720\) 0 0
\(721\) −8.90581 −0.331670
\(722\) 2.50660i 0.0932862i
\(723\) 60.6492i 2.25557i
\(724\) −11.3127 −0.420432
\(725\) 0 0
\(726\) −10.0556 −0.373200
\(727\) 34.7322i 1.28815i −0.764964 0.644073i \(-0.777243\pi\)
0.764964 0.644073i \(-0.222757\pi\)
\(728\) 10.9592i 0.406174i
\(729\) −8.35572 −0.309471
\(730\) 0 0
\(731\) 23.8840 0.883381
\(732\) −1.70637 −0.0630692
\(733\) 32.4220i 1.19753i −0.800923 0.598767i \(-0.795658\pi\)
0.800923 0.598767i \(-0.204342\pi\)
\(734\) 4.04626 0.149350
\(735\) 0 0
\(736\) 0.790774i 0.0291483i
\(737\) 11.6955i 0.430811i
\(738\) 12.3856 0.455921
\(739\) 14.0862i 0.518169i 0.965855 + 0.259084i \(0.0834207\pi\)
−0.965855 + 0.259084i \(0.916579\pi\)
\(740\) 0 0
\(741\) −50.6109 −1.85924
\(742\) 12.5103i 0.459267i
\(743\) 1.67635i 0.0614992i −0.999527 0.0307496i \(-0.990211\pi\)
0.999527 0.0307496i \(-0.00978944\pi\)
\(744\) 6.69597i 0.245486i
\(745\) 0 0
\(746\) 16.3349i 0.598065i
\(747\) −16.1615 −0.591317
\(748\) 26.2525 0.959888
\(749\) −22.2391 −0.812601
\(750\) 0 0
\(751\) 22.4079i 0.817675i 0.912607 + 0.408837i \(0.134066\pi\)
−0.912607 + 0.408837i \(0.865934\pi\)
\(752\) 1.35952i 0.0495764i
\(753\) −36.0349 −1.31318
\(754\) 2.95691 + 32.4241i 0.107684 + 1.18082i
\(755\) 0 0
\(756\) 6.54372i 0.237993i
\(757\) 24.5949i 0.893918i 0.894554 + 0.446959i \(0.147493\pi\)
−0.894554 + 0.446959i \(0.852507\pi\)
\(758\) −19.4342 −0.705880
\(759\) 6.49499 0.235753
\(760\) 0 0
\(761\) −1.78622 −0.0647503 −0.0323752 0.999476i \(-0.510307\pi\)
−0.0323752 + 0.999476i \(0.510307\pi\)
\(762\) 41.1987i 1.49247i
\(763\) 13.4907 0.488396
\(764\) 12.0807i 0.437063i
\(765\) 0 0
\(766\) 17.2920i 0.624786i
\(767\) −87.9396 −3.17531
\(768\) 2.06121i 0.0743774i
\(769\) 53.0836i 1.91424i 0.289684 + 0.957122i \(0.406450\pi\)
−0.289684 + 0.957122i \(0.593550\pi\)
\(770\) 0 0
\(771\) 28.0314i 1.00953i
\(772\) 6.91412i 0.248845i
\(773\) 18.4313i 0.662929i −0.943468 0.331465i \(-0.892457\pi\)
0.943468 0.331465i \(-0.107543\pi\)
\(774\) −4.52641 −0.162698
\(775\) 0 0
\(776\) −17.0052 −0.610450
\(777\) −1.71043 −0.0613613
\(778\) −9.97849 −0.357746
\(779\) −40.2865 −1.44341
\(780\) 0 0
\(781\) 48.9306i 1.75087i
\(782\) −5.20977 −0.186301
\(783\) 1.76557 + 19.3604i 0.0630962 + 0.691885i
\(784\) −3.71435 −0.132655
\(785\) 0 0
\(786\) 16.0644i 0.572997i
\(787\) 18.3836 0.655306 0.327653 0.944798i \(-0.393742\pi\)
0.327653 + 0.944798i \(0.393742\pi\)
\(788\) −22.5655 −0.803862
\(789\) 24.7385 0.880715
\(790\) 0 0
\(791\) 10.1064i 0.359342i
\(792\) −4.97529 −0.176789
\(793\) 5.00517i 0.177739i
\(794\) 24.2046i 0.858990i
\(795\) 0 0
\(796\) −0.913186 −0.0323670
\(797\) 37.9592i 1.34458i −0.740286 0.672292i \(-0.765310\pi\)
0.740286 0.672292i \(-0.234690\pi\)
\(798\) 15.1735i 0.537137i
\(799\) 8.95675 0.316867
\(800\) 0 0
\(801\) 2.28220i 0.0806376i
\(802\) 32.7582i 1.15673i
\(803\) −25.0825 −0.885142
\(804\) 6.04974i 0.213358i
\(805\) 0 0
\(806\) 19.6408 0.691819
\(807\) −49.2586 −1.73399
\(808\) 0.441652 0.0155373
\(809\) 14.3208i 0.503494i 0.967793 + 0.251747i \(0.0810051\pi\)
−0.967793 + 0.251747i \(0.918995\pi\)
\(810\) 0 0
\(811\) 16.1010 0.565384 0.282692 0.959211i \(-0.408773\pi\)
0.282692 + 0.959211i \(0.408773\pi\)
\(812\) 9.72100 0.886504i 0.341140 0.0311102i
\(813\) 61.1673 2.14523
\(814\) 1.82422i 0.0639390i
\(815\) 0 0
\(816\) 13.5796 0.475382
\(817\) 14.7230 0.515092
\(818\) 3.80251 0.132951
\(819\) 13.6833 0.478134
\(820\) 0 0
\(821\) 38.1172 1.33030 0.665150 0.746710i \(-0.268368\pi\)
0.665150 + 0.746710i \(0.268368\pi\)
\(822\) 5.14521i 0.179460i
\(823\) 28.6149i 0.997452i −0.866760 0.498726i \(-0.833801\pi\)
0.866760 0.498726i \(-0.166199\pi\)
\(824\) 4.91319i 0.171159i
\(825\) 0 0
\(826\) 26.3650i 0.917355i
\(827\) 14.3083i 0.497548i −0.968562 0.248774i \(-0.919972\pi\)
0.968562 0.248774i \(-0.0800277\pi\)
\(828\) 0.987337 0.0343123
\(829\) 6.46207i 0.224437i −0.993684 0.112219i \(-0.964204\pi\)
0.993684 0.112219i \(-0.0357957\pi\)
\(830\) 0 0
\(831\) 57.5114i 1.99505i
\(832\) 6.04599 0.209607
\(833\) 24.4709i 0.847866i
\(834\) 2.18545 0.0756758
\(835\) 0 0
\(836\) 16.1830 0.559702
\(837\) 11.7275 0.405363
\(838\) 36.1039i 1.24719i
\(839\) 46.6896i 1.61190i −0.591980 0.805952i \(-0.701654\pi\)
0.591980 0.805952i \(-0.298346\pi\)
\(840\) 0 0
\(841\) 28.5216 5.24567i 0.983504 0.180885i
\(842\) 17.1854 0.592250
\(843\) 13.4115i 0.461915i
\(844\) 9.29108i 0.319812i
\(845\) 0 0
\(846\) −1.69745 −0.0583596
\(847\) −8.84298 −0.303848
\(848\) 6.90172 0.237006
\(849\) 11.0434i 0.379009i
\(850\) 0 0
\(851\) 0.362014i 0.0124097i
\(852\) 25.3103i 0.867116i
\(853\) 34.3614i 1.17651i −0.808674 0.588257i \(-0.799815\pi\)
0.808674 0.588257i \(-0.200185\pi\)
\(854\) −1.50059 −0.0513491
\(855\) 0 0
\(856\) 12.2690i 0.419344i
\(857\) 42.0918 1.43783 0.718913 0.695100i \(-0.244640\pi\)
0.718913 + 0.695100i \(0.244640\pi\)
\(858\) 49.6585i 1.69531i
\(859\) 35.5332i 1.21238i −0.795321 0.606189i \(-0.792697\pi\)
0.795321 0.606189i \(-0.207303\pi\)
\(860\) 0 0
\(861\) 37.0626 1.26309
\(862\) 17.4700i 0.595031i
\(863\) −4.81185 −0.163797 −0.0818986 0.996641i \(-0.526098\pi\)
−0.0818986 + 0.996641i \(0.526098\pi\)
\(864\) 3.61006 0.122817
\(865\) 0 0
\(866\) −32.0734 −1.08990
\(867\) 54.4247i 1.84836i
\(868\) 5.88847i 0.199868i
\(869\) −55.7115 −1.88988
\(870\) 0 0
\(871\) −17.7453 −0.601276
\(872\) 7.44258i 0.252038i
\(873\) 21.2322i 0.718600i
\(874\) −3.21150 −0.108630
\(875\) 0 0
\(876\) −12.9744 −0.438364
\(877\) 50.3310 1.69956 0.849779 0.527140i \(-0.176736\pi\)
0.849779 + 0.527140i \(0.176736\pi\)
\(878\) 19.7730i 0.667307i
\(879\) −47.5459 −1.60368
\(880\) 0 0
\(881\) 28.4344i 0.957980i −0.877820 0.478990i \(-0.841003\pi\)
0.877820 0.478990i \(-0.158997\pi\)
\(882\) 4.63763i 0.156157i
\(883\) 2.61607 0.0880378 0.0440189 0.999031i \(-0.485984\pi\)
0.0440189 + 0.999031i \(0.485984\pi\)
\(884\) 39.8322i 1.33970i
\(885\) 0 0
\(886\) −6.34238 −0.213076
\(887\) 33.6082i 1.12845i −0.825620 0.564226i \(-0.809175\pi\)
0.825620 0.564226i \(-0.190825\pi\)
\(888\) 0.943614i 0.0316656i
\(889\) 36.2304i 1.21513i
\(890\) 0 0
\(891\) 44.5769i 1.49338i
\(892\) 16.2448 0.543917
\(893\) 5.52127 0.184762
\(894\) 31.3149 1.04733
\(895\) 0 0
\(896\) 1.81264i 0.0605559i
\(897\) 9.85465i 0.329037i
\(898\) −20.3567 −0.679311
\(899\) −1.58878 17.4218i −0.0529887 0.581049i
\(900\) 0 0
\(901\) 45.4699i 1.51482i
\(902\) 39.5284i 1.31615i
\(903\) −13.5448 −0.450742
\(904\) −5.57553 −0.185439
\(905\) 0 0
\(906\) −44.3775 −1.47435
\(907\) 2.03270i 0.0674946i 0.999430 + 0.0337473i \(0.0107441\pi\)
−0.999430 + 0.0337473i \(0.989256\pi\)
\(908\) 10.9474 0.363304
\(909\) 0.551434i 0.0182899i
\(910\) 0 0
\(911\) 24.8680i 0.823915i −0.911203 0.411957i \(-0.864845\pi\)
0.911203 0.411957i \(-0.135155\pi\)
\(912\) 8.37098 0.277191
\(913\) 51.5789i 1.70701i
\(914\) 31.7313i 1.04958i
\(915\) 0 0
\(916\) 10.4971i 0.346835i
\(917\) 14.1271i 0.466518i
\(918\) 23.7838i 0.784981i
\(919\) 32.1144 1.05936 0.529678 0.848199i \(-0.322313\pi\)
0.529678 + 0.848199i \(0.322313\pi\)
\(920\) 0 0
\(921\) −11.0787 −0.365056
\(922\) 25.7477 0.847955
\(923\) 74.2408 2.44367
\(924\) −14.8880 −0.489780
\(925\) 0 0
\(926\) 27.4355i 0.901586i
\(927\) 6.13446 0.201482
\(928\) −0.489069 5.36291i −0.0160545 0.176046i
\(929\) 31.9987 1.04984 0.524922 0.851150i \(-0.324094\pi\)
0.524922 + 0.851150i \(0.324094\pi\)
\(930\) 0 0
\(931\) 15.0848i 0.494383i
\(932\) 8.59577 0.281564
\(933\) −50.6167 −1.65712
\(934\) −17.9948 −0.588807
\(935\) 0 0
\(936\) 7.54885i 0.246742i
\(937\) 31.1937 1.01906 0.509528 0.860454i \(-0.329820\pi\)
0.509528 + 0.860454i \(0.329820\pi\)
\(938\) 5.32017i 0.173710i
\(939\) 10.3884i 0.339014i
\(940\) 0 0
\(941\) −38.1626 −1.24407 −0.622033 0.782991i \(-0.713693\pi\)
−0.622033 + 0.782991i \(0.713693\pi\)
\(942\) 11.3705i 0.370472i
\(943\) 7.84434i 0.255447i
\(944\) 14.5451 0.473403
\(945\) 0 0
\(946\) 14.4459i 0.469678i
\(947\) 15.5896i 0.506595i 0.967388 + 0.253297i \(0.0815151\pi\)
−0.967388 + 0.253297i \(0.918485\pi\)
\(948\) −28.8178 −0.935959
\(949\) 38.0569i 1.23538i
\(950\) 0 0
\(951\) 32.2644 1.04624
\(952\) 11.9420 0.387042
\(953\) −12.6670 −0.410325 −0.205163 0.978728i \(-0.565772\pi\)
−0.205163 + 0.978728i \(0.565772\pi\)
\(954\) 8.61729i 0.278995i
\(955\) 0 0
\(956\) 9.88624 0.319744
\(957\) −44.0481 + 4.01695i −1.42387 + 0.129850i
\(958\) 25.0189 0.808323
\(959\) 4.52472i 0.146111i
\(960\) 0 0
\(961\) 20.4468 0.659574
\(962\) −2.76784 −0.0892387
\(963\) 15.3187 0.493637
\(964\) −29.4241 −0.947687
\(965\) 0 0
\(966\) 2.95450 0.0950595
\(967\) 21.9080i 0.704514i 0.935903 + 0.352257i \(0.114586\pi\)
−0.935903 + 0.352257i \(0.885414\pi\)
\(968\) 4.87852i 0.156802i
\(969\) 55.1497i 1.77166i
\(970\) 0 0
\(971\) 24.0732i 0.772547i 0.922384 + 0.386273i \(0.126238\pi\)
−0.922384 + 0.386273i \(0.873762\pi\)
\(972\) 12.2281i 0.392216i
\(973\) 1.92189 0.0616130
\(974\) 25.8793i 0.829225i
\(975\) 0 0
\(976\) 0.827849i 0.0264988i
\(977\) 19.2219 0.614963 0.307481 0.951554i \(-0.400514\pi\)
0.307481 + 0.951554i \(0.400514\pi\)
\(978\) 0.835835i 0.0267270i
\(979\) −7.28359 −0.232784
\(980\) 0 0
\(981\) −9.29259 −0.296690
\(982\) 16.9849 0.542011
\(983\) 36.1818i 1.15402i −0.816737 0.577010i \(-0.804219\pi\)
0.816737 0.577010i \(-0.195781\pi\)
\(984\) 20.4468i 0.651821i
\(985\) 0 0
\(986\) 35.3319 3.22208i 1.12520 0.102612i
\(987\) −5.07944 −0.161680
\(988\) 24.5540i 0.781167i
\(989\) 2.86677i 0.0911579i
\(990\) 0 0
\(991\) 5.49026 0.174404 0.0872020 0.996191i \(-0.472207\pi\)
0.0872020 + 0.996191i \(0.472207\pi\)
\(992\) −3.24857 −0.103142
\(993\) 50.2893 1.59588
\(994\) 22.2580i 0.705980i
\(995\) 0 0
\(996\) 26.6802i 0.845394i
\(997\) 40.1313i 1.27097i 0.772112 + 0.635486i \(0.219200\pi\)
−0.772112 + 0.635486i \(0.780800\pi\)
\(998\) 15.2508i 0.482757i
\(999\) −1.65267 −0.0522883
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1450.2.c.e.1101.7 yes 10
5.2 odd 4 1450.2.d.i.1449.4 10
5.3 odd 4 1450.2.d.j.1449.7 10
5.4 even 2 1450.2.c.f.1101.4 yes 10
29.28 even 2 inner 1450.2.c.e.1101.4 10
145.28 odd 4 1450.2.d.i.1449.3 10
145.57 odd 4 1450.2.d.j.1449.8 10
145.144 even 2 1450.2.c.f.1101.7 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1450.2.c.e.1101.4 10 29.28 even 2 inner
1450.2.c.e.1101.7 yes 10 1.1 even 1 trivial
1450.2.c.f.1101.4 yes 10 5.4 even 2
1450.2.c.f.1101.7 yes 10 145.144 even 2
1450.2.d.i.1449.3 10 145.28 odd 4
1450.2.d.i.1449.4 10 5.2 odd 4
1450.2.d.j.1449.7 10 5.3 odd 4
1450.2.d.j.1449.8 10 145.57 odd 4