Properties

Label 145.6.a.d
Level $145$
Weight $6$
Character orbit 145.a
Self dual yes
Analytic conductor $23.256$
Analytic rank $0$
Dimension $13$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [145,6,Mod(1,145)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("145.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(145, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 145 = 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 145.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [13,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.2556538729\)
Analytic rank: \(0\)
Dimension: \(13\)
Coefficient field: \(\mathbb{Q}[x]/(x^{13} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{13} - 4 x^{12} - 342 x^{11} + 1270 x^{10} + 44810 x^{9} - 155844 x^{8} - 2796324 x^{7} + \cdots - 11370826136 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{12}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} + ( - \beta_{5} + 3) q^{3} + (\beta_{2} - 2 \beta_1 + 23) q^{4} + 25 q^{5} + ( - \beta_{9} - 2 \beta_1 + 18) q^{6} + ( - \beta_{11} + 3 \beta_1 + 23) q^{7} + ( - \beta_{7} + 2 \beta_{5} + \cdots + 96) q^{8}+ \cdots + (143 \beta_{12} + 483 \beta_{11} + \cdots - 20329) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 13 q + 9 q^{2} + 38 q^{3} + 289 q^{4} + 325 q^{5} + 229 q^{6} + 316 q^{7} + 1167 q^{8} + 1827 q^{9} + 225 q^{10} + 446 q^{11} + 375 q^{12} + 1432 q^{13} - 1635 q^{14} + 950 q^{15} + 4909 q^{16} + 3594 q^{17}+ \cdots - 303102 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{13} - 4 x^{12} - 342 x^{11} + 1270 x^{10} + 44810 x^{9} - 155844 x^{8} - 2796324 x^{7} + \cdots - 11370826136 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 54 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 11038736241983 \nu^{12} - 144062210847433 \nu^{11} + \cdots + 13\!\cdots\!68 ) / 38\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 1581601242739 \nu^{12} - 71525802097605 \nu^{11} + 603782913300555 \nu^{10} + \cdots + 78\!\cdots\!08 ) / 38\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 17289597636481 \nu^{12} + 154722207699319 \nu^{11} + \cdots + 16\!\cdots\!48 ) / 38\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 8674735415599 \nu^{12} + 140464938810599 \nu^{11} + \cdots + 73\!\cdots\!88 ) / 19\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 17289597636481 \nu^{12} + 154722207699319 \nu^{11} + \cdots + 18\!\cdots\!48 ) / 19\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 49004056169457 \nu^{12} + 704345711676673 \nu^{11} + \cdots + 44\!\cdots\!32 ) / 95\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 103295500304381 \nu^{12} + 670203609061349 \nu^{11} + \cdots - 11\!\cdots\!84 ) / 19\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 292545803137877 \nu^{12} - 321037265561581 \nu^{11} + \cdots + 13\!\cdots\!44 ) / 38\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 183796681175259 \nu^{12} - 504878992363139 \nu^{11} + \cdots + 67\!\cdots\!92 ) / 12\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 653081008433457 \nu^{12} + 799775182906071 \nu^{11} + \cdots + 37\!\cdots\!60 ) / 38\!\cdots\!60 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 54 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} - 2\beta_{5} + 2\beta_{2} + 81\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - 2 \beta_{12} + 3 \beta_{11} + 3 \beta_{10} + \beta_{9} + 3 \beta_{8} + \beta_{7} + 4 \beta_{6} + \cdots + 4352 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 4 \beta_{12} + 6 \beta_{11} + 6 \beta_{10} + 32 \beta_{9} - 6 \beta_{8} + 129 \beta_{7} - 24 \beta_{6} + \cdots + 2385 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 318 \beta_{12} + 513 \beta_{11} + 537 \beta_{10} + 229 \beta_{9} + 503 \beta_{8} + 259 \beta_{7} + \cdots + 394844 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 712 \beta_{12} + 1424 \beta_{11} + 1200 \beta_{10} + 6608 \beta_{9} - 1230 \beta_{8} + 14981 \beta_{7} + \cdots + 485443 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 38318 \beta_{12} + 66837 \beta_{11} + 74805 \beta_{10} + 39403 \beta_{9} + 64121 \beta_{8} + \cdots + 37947622 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 87344 \beta_{12} + 248564 \beta_{11} + 189796 \beta_{10} + 997802 \beta_{9} - 168164 \beta_{8} + \cdots + 75207585 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 4228966 \beta_{12} + 7989901 \beta_{11} + 9561749 \beta_{10} + 5911549 \beta_{9} + 7472243 \beta_{8} + \cdots + 3793860772 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 8966840 \beta_{12} + 37717304 \beta_{11} + 27874584 \beta_{10} + 133737492 \beta_{9} + \cdots + 10449371899 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 451825414 \beta_{12} + 925461857 \beta_{11} + 1172808049 \beta_{10} + 820265987 \beta_{9} + \cdots + 391044983570 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
10.8829
9.35764
9.00561
6.18100
5.24767
2.59512
2.41189
−2.98954
−3.48131
−7.83213
−7.94882
−9.35748
−10.0726
−9.88290 24.5061 65.6717 25.0000 −242.192 −94.3098 −332.774 357.551 −247.072
1.2 −8.35764 −12.3911 37.8501 25.0000 103.560 58.2801 −48.8928 −89.4601 −208.941
1.3 −8.00561 −27.3159 32.0897 25.0000 218.680 244.685 −0.718278 503.158 −200.140
1.4 −5.18100 13.1866 −5.15721 25.0000 −68.3200 137.284 192.512 −69.1125 −129.525
1.5 −4.24767 −17.1327 −13.9573 25.0000 72.7739 −82.2461 195.211 50.5283 −106.192
1.6 −1.59512 29.1351 −29.4556 25.0000 −46.4738 218.047 98.0288 605.852 −39.8779
1.7 −1.41189 4.67916 −30.0066 25.0000 −6.60648 −217.629 87.5467 −221.105 −35.2974
1.8 3.98954 −18.0770 −16.0836 25.0000 −72.1190 −2.55988 −191.831 83.7784 99.7386
1.9 4.48131 22.1935 −11.9179 25.0000 99.4559 −21.2578 −196.810 249.552 112.033
1.10 8.83213 2.24444 46.0065 25.0000 19.8232 200.981 123.707 −237.962 220.803
1.11 8.94882 25.1408 48.0815 25.0000 224.981 35.2643 143.910 389.060 223.721
1.12 10.3575 −22.2201 75.2773 25.0000 −230.144 −103.079 448.244 250.731 258.937
1.13 11.0726 14.0510 90.6014 25.0000 155.580 −57.4584 648.867 −45.5696 276.814
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.13
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 145.6.a.d 13
5.b even 2 1 725.6.a.e 13
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
145.6.a.d 13 1.a even 1 1 trivial
725.6.a.e 13 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{13} - 9 T_{2}^{12} - 312 T_{2}^{11} + 2470 T_{2}^{10} + 38535 T_{2}^{9} - 247473 T_{2}^{8} + \cdots + 5311067904 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(145))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{13} + \cdots + 5311067904 \) Copy content Toggle raw display
$3$ \( T^{13} + \cdots + 18\!\cdots\!64 \) Copy content Toggle raw display
$5$ \( (T - 25)^{13} \) Copy content Toggle raw display
$7$ \( T^{13} + \cdots + 16\!\cdots\!84 \) Copy content Toggle raw display
$11$ \( T^{13} + \cdots - 38\!\cdots\!76 \) Copy content Toggle raw display
$13$ \( T^{13} + \cdots + 21\!\cdots\!52 \) Copy content Toggle raw display
$17$ \( T^{13} + \cdots - 83\!\cdots\!88 \) Copy content Toggle raw display
$19$ \( T^{13} + \cdots - 28\!\cdots\!80 \) Copy content Toggle raw display
$23$ \( T^{13} + \cdots + 16\!\cdots\!72 \) Copy content Toggle raw display
$29$ \( (T + 841)^{13} \) Copy content Toggle raw display
$31$ \( T^{13} + \cdots - 88\!\cdots\!24 \) Copy content Toggle raw display
$37$ \( T^{13} + \cdots - 73\!\cdots\!52 \) Copy content Toggle raw display
$41$ \( T^{13} + \cdots - 15\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{13} + \cdots - 30\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{13} + \cdots - 32\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( T^{13} + \cdots - 15\!\cdots\!12 \) Copy content Toggle raw display
$59$ \( T^{13} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{13} + \cdots - 12\!\cdots\!76 \) Copy content Toggle raw display
$67$ \( T^{13} + \cdots + 22\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{13} + \cdots - 27\!\cdots\!28 \) Copy content Toggle raw display
$73$ \( T^{13} + \cdots + 25\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{13} + \cdots + 81\!\cdots\!80 \) Copy content Toggle raw display
$83$ \( T^{13} + \cdots + 20\!\cdots\!72 \) Copy content Toggle raw display
$89$ \( T^{13} + \cdots - 46\!\cdots\!40 \) Copy content Toggle raw display
$97$ \( T^{13} + \cdots + 59\!\cdots\!44 \) Copy content Toggle raw display
show more
show less