Properties

Label 145.6.a.c.1.11
Level $145$
Weight $6$
Character 145.1
Self dual yes
Analytic conductor $23.256$
Analytic rank $0$
Dimension $13$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [145,6,Mod(1,145)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("145.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(145, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 145 = 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 145.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [13,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.2556538729\)
Analytic rank: \(0\)
Dimension: \(13\)
Coefficient field: \(\mathbb{Q}[x]/(x^{13} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{13} - 6 x^{12} - 296 x^{11} + 1238 x^{10} + 33250 x^{9} - 78360 x^{8} - 1708024 x^{7} + \cdots + 251513192 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(-7.41417\) of defining polynomial
Character \(\chi\) \(=\) 145.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.41417 q^{2} -17.8297 q^{3} +38.7982 q^{4} -25.0000 q^{5} -150.022 q^{6} +108.201 q^{7} +57.2014 q^{8} +74.8998 q^{9} -210.354 q^{10} +122.859 q^{11} -691.763 q^{12} +1014.99 q^{13} +910.419 q^{14} +445.744 q^{15} -760.241 q^{16} +228.049 q^{17} +630.220 q^{18} +2696.36 q^{19} -969.956 q^{20} -1929.19 q^{21} +1033.76 q^{22} +1930.09 q^{23} -1019.89 q^{24} +625.000 q^{25} +8540.30 q^{26} +2997.18 q^{27} +4198.00 q^{28} +841.000 q^{29} +3750.56 q^{30} -7530.99 q^{31} -8227.24 q^{32} -2190.55 q^{33} +1918.84 q^{34} -2705.02 q^{35} +2905.98 q^{36} +9306.92 q^{37} +22687.6 q^{38} -18097.0 q^{39} -1430.04 q^{40} +20600.9 q^{41} -16232.5 q^{42} +7544.51 q^{43} +4766.72 q^{44} -1872.50 q^{45} +16240.1 q^{46} -18537.6 q^{47} +13554.9 q^{48} -5099.60 q^{49} +5258.86 q^{50} -4066.05 q^{51} +39379.8 q^{52} +22911.7 q^{53} +25218.8 q^{54} -3071.48 q^{55} +6189.24 q^{56} -48075.4 q^{57} +7076.32 q^{58} -12387.2 q^{59} +17294.1 q^{60} -32734.1 q^{61} -63367.1 q^{62} +8104.22 q^{63} -44897.7 q^{64} -25374.8 q^{65} -18431.6 q^{66} -62626.5 q^{67} +8847.88 q^{68} -34413.0 q^{69} -22760.5 q^{70} +78352.0 q^{71} +4284.38 q^{72} -78052.2 q^{73} +78310.0 q^{74} -11143.6 q^{75} +104614. q^{76} +13293.5 q^{77} -152271. q^{78} +24900.3 q^{79} +19006.0 q^{80} -71639.7 q^{81} +173340. q^{82} +19395.6 q^{83} -74849.2 q^{84} -5701.21 q^{85} +63480.8 q^{86} -14994.8 q^{87} +7027.72 q^{88} +56003.7 q^{89} -15755.5 q^{90} +109823. q^{91} +74884.1 q^{92} +134276. q^{93} -155979. q^{94} -67409.0 q^{95} +146690. q^{96} -114410. q^{97} -42908.9 q^{98} +9202.13 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 13 q + 7 q^{2} + 2 q^{3} + 213 q^{4} - 325 q^{5} - 3 q^{6} - 18 q^{7} - 399 q^{8} + 1155 q^{9} - 175 q^{10} + 844 q^{11} + 167 q^{12} - 704 q^{13} + 4425 q^{14} - 50 q^{15} + 5805 q^{16} - 210 q^{17} + 7378 q^{18}+ \cdots - 3872 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.41417 1.48743 0.743714 0.668497i \(-0.233062\pi\)
0.743714 + 0.668497i \(0.233062\pi\)
\(3\) −17.8297 −1.14378 −0.571889 0.820331i \(-0.693789\pi\)
−0.571889 + 0.820331i \(0.693789\pi\)
\(4\) 38.7982 1.21244
\(5\) −25.0000 −0.447214
\(6\) −150.022 −1.70129
\(7\) 108.201 0.834613 0.417306 0.908766i \(-0.362974\pi\)
0.417306 + 0.908766i \(0.362974\pi\)
\(8\) 57.2014 0.315996
\(9\) 74.8998 0.308230
\(10\) −210.354 −0.665198
\(11\) 122.859 0.306144 0.153072 0.988215i \(-0.451083\pi\)
0.153072 + 0.988215i \(0.451083\pi\)
\(12\) −691.763 −1.38677
\(13\) 1014.99 1.66573 0.832863 0.553479i \(-0.186700\pi\)
0.832863 + 0.553479i \(0.186700\pi\)
\(14\) 910.419 1.24143
\(15\) 445.744 0.511513
\(16\) −760.241 −0.742423
\(17\) 228.049 0.191384 0.0956919 0.995411i \(-0.469494\pi\)
0.0956919 + 0.995411i \(0.469494\pi\)
\(18\) 630.220 0.458470
\(19\) 2696.36 1.71354 0.856769 0.515700i \(-0.172468\pi\)
0.856769 + 0.515700i \(0.172468\pi\)
\(20\) −969.956 −0.542222
\(21\) −1929.19 −0.954613
\(22\) 1033.76 0.455368
\(23\) 1930.09 0.760779 0.380389 0.924826i \(-0.375790\pi\)
0.380389 + 0.924826i \(0.375790\pi\)
\(24\) −1019.89 −0.361430
\(25\) 625.000 0.200000
\(26\) 8540.30 2.47765
\(27\) 2997.18 0.791232
\(28\) 4198.00 1.01192
\(29\) 841.000 0.185695
\(30\) 3750.56 0.760840
\(31\) −7530.99 −1.40750 −0.703750 0.710448i \(-0.748492\pi\)
−0.703750 + 0.710448i \(0.748492\pi\)
\(32\) −8227.24 −1.42030
\(33\) −2190.55 −0.350161
\(34\) 1918.84 0.284670
\(35\) −2705.02 −0.373250
\(36\) 2905.98 0.373712
\(37\) 9306.92 1.11764 0.558820 0.829289i \(-0.311254\pi\)
0.558820 + 0.829289i \(0.311254\pi\)
\(38\) 22687.6 2.54877
\(39\) −18097.0 −1.90522
\(40\) −1430.04 −0.141318
\(41\) 20600.9 1.91393 0.956966 0.290199i \(-0.0937214\pi\)
0.956966 + 0.290199i \(0.0937214\pi\)
\(42\) −16232.5 −1.41992
\(43\) 7544.51 0.622243 0.311121 0.950370i \(-0.399295\pi\)
0.311121 + 0.950370i \(0.399295\pi\)
\(44\) 4766.72 0.371183
\(45\) −1872.50 −0.137845
\(46\) 16240.1 1.13160
\(47\) −18537.6 −1.22408 −0.612040 0.790827i \(-0.709651\pi\)
−0.612040 + 0.790827i \(0.709651\pi\)
\(48\) 13554.9 0.849167
\(49\) −5099.60 −0.303421
\(50\) 5258.86 0.297486
\(51\) −4066.05 −0.218901
\(52\) 39379.8 2.01960
\(53\) 22911.7 1.12038 0.560192 0.828363i \(-0.310727\pi\)
0.560192 + 0.828363i \(0.310727\pi\)
\(54\) 25218.8 1.17690
\(55\) −3071.48 −0.136912
\(56\) 6189.24 0.263735
\(57\) −48075.4 −1.95991
\(58\) 7076.32 0.276209
\(59\) −12387.2 −0.463278 −0.231639 0.972802i \(-0.574409\pi\)
−0.231639 + 0.972802i \(0.574409\pi\)
\(60\) 17294.1 0.620182
\(61\) −32734.1 −1.12636 −0.563179 0.826335i \(-0.690422\pi\)
−0.563179 + 0.826335i \(0.690422\pi\)
\(62\) −63367.1 −2.09355
\(63\) 8104.22 0.257253
\(64\) −44897.7 −1.37017
\(65\) −25374.8 −0.744935
\(66\) −18431.6 −0.520840
\(67\) −62626.5 −1.70440 −0.852199 0.523218i \(-0.824731\pi\)
−0.852199 + 0.523218i \(0.824731\pi\)
\(68\) 8847.88 0.232042
\(69\) −34413.0 −0.870162
\(70\) −22760.5 −0.555183
\(71\) 78352.0 1.84461 0.922304 0.386465i \(-0.126304\pi\)
0.922304 + 0.386465i \(0.126304\pi\)
\(72\) 4284.38 0.0973995
\(73\) −78052.2 −1.71427 −0.857133 0.515095i \(-0.827757\pi\)
−0.857133 + 0.515095i \(0.827757\pi\)
\(74\) 78310.0 1.66241
\(75\) −11143.6 −0.228756
\(76\) 104614. 2.07757
\(77\) 13293.5 0.255512
\(78\) −152271. −2.83388
\(79\) 24900.3 0.448887 0.224444 0.974487i \(-0.427944\pi\)
0.224444 + 0.974487i \(0.427944\pi\)
\(80\) 19006.0 0.332022
\(81\) −71639.7 −1.21322
\(82\) 173340. 2.84684
\(83\) 19395.6 0.309035 0.154517 0.987990i \(-0.450618\pi\)
0.154517 + 0.987990i \(0.450618\pi\)
\(84\) −74849.2 −1.15741
\(85\) −5701.21 −0.0855894
\(86\) 63480.8 0.925542
\(87\) −14994.8 −0.212394
\(88\) 7027.72 0.0967404
\(89\) 56003.7 0.749449 0.374724 0.927136i \(-0.377737\pi\)
0.374724 + 0.927136i \(0.377737\pi\)
\(90\) −15755.5 −0.205034
\(91\) 109823. 1.39024
\(92\) 74884.1 0.922402
\(93\) 134276. 1.60987
\(94\) −155979. −1.82073
\(95\) −67409.0 −0.766318
\(96\) 146690. 1.62451
\(97\) −114410. −1.23463 −0.617313 0.786718i \(-0.711779\pi\)
−0.617313 + 0.786718i \(0.711779\pi\)
\(98\) −42908.9 −0.451317
\(99\) 9202.13 0.0943628
\(100\) 24248.9 0.242489
\(101\) 87850.7 0.856923 0.428461 0.903560i \(-0.359056\pi\)
0.428461 + 0.903560i \(0.359056\pi\)
\(102\) −34212.4 −0.325599
\(103\) 68366.4 0.634964 0.317482 0.948264i \(-0.397163\pi\)
0.317482 + 0.948264i \(0.397163\pi\)
\(104\) 58058.9 0.526363
\(105\) 48229.8 0.426916
\(106\) 192783. 1.66649
\(107\) 84195.6 0.710935 0.355468 0.934689i \(-0.384322\pi\)
0.355468 + 0.934689i \(0.384322\pi\)
\(108\) 116285. 0.959325
\(109\) −5615.91 −0.0452745 −0.0226373 0.999744i \(-0.507206\pi\)
−0.0226373 + 0.999744i \(0.507206\pi\)
\(110\) −25843.9 −0.203647
\(111\) −165940. −1.27833
\(112\) −82258.6 −0.619636
\(113\) 102393. 0.754351 0.377176 0.926142i \(-0.376895\pi\)
0.377176 + 0.926142i \(0.376895\pi\)
\(114\) −404515. −2.91522
\(115\) −48252.3 −0.340230
\(116\) 32629.3 0.225145
\(117\) 76022.6 0.513427
\(118\) −104228. −0.689093
\(119\) 24675.0 0.159731
\(120\) 25497.2 0.161636
\(121\) −145957. −0.906276
\(122\) −275431. −1.67538
\(123\) −367309. −2.18912
\(124\) −292189. −1.70651
\(125\) −15625.0 −0.0894427
\(126\) 68190.3 0.382645
\(127\) 134335. 0.739060 0.369530 0.929219i \(-0.379519\pi\)
0.369530 + 0.929219i \(0.379519\pi\)
\(128\) −114505. −0.617731
\(129\) −134517. −0.711708
\(130\) −213508. −1.10804
\(131\) 20061.6 0.102138 0.0510691 0.998695i \(-0.483737\pi\)
0.0510691 + 0.998695i \(0.483737\pi\)
\(132\) −84989.4 −0.424551
\(133\) 291748. 1.43014
\(134\) −526950. −2.53517
\(135\) −74929.6 −0.353850
\(136\) 13044.7 0.0604765
\(137\) 217421. 0.989691 0.494845 0.868981i \(-0.335225\pi\)
0.494845 + 0.868981i \(0.335225\pi\)
\(138\) −289557. −1.29430
\(139\) −94235.2 −0.413691 −0.206846 0.978374i \(-0.566320\pi\)
−0.206846 + 0.978374i \(0.566320\pi\)
\(140\) −104950. −0.452545
\(141\) 330521. 1.40008
\(142\) 659267. 2.74372
\(143\) 124701. 0.509952
\(144\) −56941.9 −0.228837
\(145\) −21025.0 −0.0830455
\(146\) −656745. −2.54985
\(147\) 90924.6 0.347047
\(148\) 361092. 1.35508
\(149\) −175608. −0.648005 −0.324003 0.946056i \(-0.605029\pi\)
−0.324003 + 0.946056i \(0.605029\pi\)
\(150\) −93764.1 −0.340258
\(151\) 45146.7 0.161133 0.0805664 0.996749i \(-0.474327\pi\)
0.0805664 + 0.996749i \(0.474327\pi\)
\(152\) 154236. 0.541472
\(153\) 17080.8 0.0589902
\(154\) 111853. 0.380056
\(155\) 188275. 0.629453
\(156\) −702132. −2.30998
\(157\) −234893. −0.760537 −0.380268 0.924876i \(-0.624168\pi\)
−0.380268 + 0.924876i \(0.624168\pi\)
\(158\) 209516. 0.667688
\(159\) −408509. −1.28147
\(160\) 205681. 0.635176
\(161\) 208837. 0.634956
\(162\) −602788. −1.80458
\(163\) −142374. −0.419722 −0.209861 0.977731i \(-0.567301\pi\)
−0.209861 + 0.977731i \(0.567301\pi\)
\(164\) 799279. 2.32054
\(165\) 54763.7 0.156597
\(166\) 163198. 0.459667
\(167\) 123976. 0.343992 0.171996 0.985098i \(-0.444978\pi\)
0.171996 + 0.985098i \(0.444978\pi\)
\(168\) −110353. −0.301654
\(169\) 658913. 1.77464
\(170\) −47971.0 −0.127308
\(171\) 201957. 0.528164
\(172\) 292714. 0.754435
\(173\) −590149. −1.49915 −0.749577 0.661917i \(-0.769743\pi\)
−0.749577 + 0.661917i \(0.769743\pi\)
\(174\) −126169. −0.315922
\(175\) 67625.5 0.166923
\(176\) −93402.6 −0.227288
\(177\) 220860. 0.529888
\(178\) 471225. 1.11475
\(179\) 838457. 1.95591 0.977954 0.208822i \(-0.0669631\pi\)
0.977954 + 0.208822i \(0.0669631\pi\)
\(180\) −72649.5 −0.167129
\(181\) −287008. −0.651175 −0.325588 0.945512i \(-0.605562\pi\)
−0.325588 + 0.945512i \(0.605562\pi\)
\(182\) 924067. 2.06788
\(183\) 583641. 1.28830
\(184\) 110404. 0.240403
\(185\) −232673. −0.499824
\(186\) 1.12982e6 2.39456
\(187\) 28017.9 0.0585910
\(188\) −719228. −1.48413
\(189\) 324297. 0.660373
\(190\) −567191. −1.13984
\(191\) −197521. −0.391769 −0.195885 0.980627i \(-0.562758\pi\)
−0.195885 + 0.980627i \(0.562758\pi\)
\(192\) 800514. 1.56717
\(193\) 187394. 0.362128 0.181064 0.983471i \(-0.442046\pi\)
0.181064 + 0.983471i \(0.442046\pi\)
\(194\) −962667. −1.83642
\(195\) 452426. 0.852041
\(196\) −197855. −0.367881
\(197\) −383890. −0.704760 −0.352380 0.935857i \(-0.614628\pi\)
−0.352380 + 0.935857i \(0.614628\pi\)
\(198\) 77428.3 0.140358
\(199\) 474125. 0.848712 0.424356 0.905495i \(-0.360500\pi\)
0.424356 + 0.905495i \(0.360500\pi\)
\(200\) 35750.9 0.0631992
\(201\) 1.11661e6 1.94945
\(202\) 739191. 1.27461
\(203\) 90996.8 0.154984
\(204\) −157755. −0.265405
\(205\) −515023. −0.855937
\(206\) 575246. 0.944464
\(207\) 144564. 0.234495
\(208\) −771637. −1.23667
\(209\) 331273. 0.524590
\(210\) 405814. 0.635007
\(211\) 150464. 0.232662 0.116331 0.993211i \(-0.462887\pi\)
0.116331 + 0.993211i \(0.462887\pi\)
\(212\) 888932. 1.35840
\(213\) −1.39700e6 −2.10982
\(214\) 708436. 1.05747
\(215\) −188613. −0.278275
\(216\) 171443. 0.250026
\(217\) −814859. −1.17472
\(218\) −47253.2 −0.0673426
\(219\) 1.39165e6 1.96074
\(220\) −119168. −0.165998
\(221\) 231467. 0.318793
\(222\) −1.39625e6 −1.90143
\(223\) 364182. 0.490407 0.245203 0.969472i \(-0.421145\pi\)
0.245203 + 0.969472i \(0.421145\pi\)
\(224\) −890193. −1.18540
\(225\) 46812.4 0.0616460
\(226\) 861551. 1.12204
\(227\) −612476. −0.788904 −0.394452 0.918917i \(-0.629066\pi\)
−0.394452 + 0.918917i \(0.629066\pi\)
\(228\) −1.86524e6 −2.37628
\(229\) 1.25481e6 1.58121 0.790604 0.612327i \(-0.209767\pi\)
0.790604 + 0.612327i \(0.209767\pi\)
\(230\) −406003. −0.506069
\(231\) −237019. −0.292249
\(232\) 48106.4 0.0586790
\(233\) −613531. −0.740366 −0.370183 0.928959i \(-0.620705\pi\)
−0.370183 + 0.928959i \(0.620705\pi\)
\(234\) 639667. 0.763685
\(235\) 463441. 0.547425
\(236\) −480600. −0.561699
\(237\) −443966. −0.513428
\(238\) 207620. 0.237589
\(239\) 28774.9 0.0325851 0.0162926 0.999867i \(-0.494814\pi\)
0.0162926 + 0.999867i \(0.494814\pi\)
\(240\) −338873. −0.379759
\(241\) 507833. 0.563220 0.281610 0.959529i \(-0.409132\pi\)
0.281610 + 0.959529i \(0.409132\pi\)
\(242\) −1.22810e6 −1.34802
\(243\) 549002. 0.596428
\(244\) −1.27003e6 −1.36565
\(245\) 127490. 0.135694
\(246\) −3.09060e6 −3.25615
\(247\) 2.73678e6 2.85429
\(248\) −430784. −0.444764
\(249\) −345818. −0.353468
\(250\) −131471. −0.133040
\(251\) 10890.8 0.0109113 0.00545566 0.999985i \(-0.498263\pi\)
0.00545566 + 0.999985i \(0.498263\pi\)
\(252\) 314429. 0.311905
\(253\) 237129. 0.232908
\(254\) 1.13032e6 1.09930
\(255\) 101651. 0.0978954
\(256\) 473262. 0.451338
\(257\) −2.03342e6 −1.92041 −0.960204 0.279299i \(-0.909898\pi\)
−0.960204 + 0.279299i \(0.909898\pi\)
\(258\) −1.13185e6 −1.05861
\(259\) 1.00702e6 0.932797
\(260\) −984496. −0.903193
\(261\) 62990.8 0.0572368
\(262\) 168802. 0.151923
\(263\) −52391.6 −0.0467059 −0.0233530 0.999727i \(-0.507434\pi\)
−0.0233530 + 0.999727i \(0.507434\pi\)
\(264\) −125302. −0.110650
\(265\) −572792. −0.501051
\(266\) 2.45482e6 2.12723
\(267\) −998532. −0.857204
\(268\) −2.42980e6 −2.06649
\(269\) −430994. −0.363153 −0.181577 0.983377i \(-0.558120\pi\)
−0.181577 + 0.983377i \(0.558120\pi\)
\(270\) −630470. −0.526326
\(271\) −1.27010e6 −1.05054 −0.525272 0.850935i \(-0.676036\pi\)
−0.525272 + 0.850935i \(0.676036\pi\)
\(272\) −173372. −0.142088
\(273\) −1.95811e6 −1.59012
\(274\) 1.82941e6 1.47209
\(275\) 76787.0 0.0612288
\(276\) −1.33516e6 −1.05502
\(277\) −1.57723e6 −1.23508 −0.617541 0.786539i \(-0.711871\pi\)
−0.617541 + 0.786539i \(0.711871\pi\)
\(278\) −792911. −0.615336
\(279\) −564070. −0.433833
\(280\) −154731. −0.117946
\(281\) 1.41837e6 1.07158 0.535790 0.844351i \(-0.320014\pi\)
0.535790 + 0.844351i \(0.320014\pi\)
\(282\) 2.78106e6 2.08251
\(283\) −374114. −0.277676 −0.138838 0.990315i \(-0.544337\pi\)
−0.138838 + 0.990315i \(0.544337\pi\)
\(284\) 3.03992e6 2.23649
\(285\) 1.20189e6 0.876498
\(286\) 1.04925e6 0.758518
\(287\) 2.22903e6 1.59739
\(288\) −616219. −0.437778
\(289\) −1.36785e6 −0.963372
\(290\) −176908. −0.123524
\(291\) 2.03990e6 1.41214
\(292\) −3.02829e6 −2.07845
\(293\) 1.16381e6 0.791978 0.395989 0.918255i \(-0.370402\pi\)
0.395989 + 0.918255i \(0.370402\pi\)
\(294\) 765055. 0.516207
\(295\) 309679. 0.207184
\(296\) 532369. 0.353170
\(297\) 368231. 0.242231
\(298\) −1.47760e6 −0.963862
\(299\) 1.95902e6 1.26725
\(300\) −432352. −0.277354
\(301\) 816321. 0.519332
\(302\) 379872. 0.239673
\(303\) −1.56636e6 −0.980130
\(304\) −2.04988e6 −1.27217
\(305\) 818354. 0.503723
\(306\) 143721. 0.0877437
\(307\) −1.62020e6 −0.981123 −0.490561 0.871407i \(-0.663208\pi\)
−0.490561 + 0.871407i \(0.663208\pi\)
\(308\) 515763. 0.309794
\(309\) −1.21895e6 −0.726259
\(310\) 1.58418e6 0.936266
\(311\) −2.60499e6 −1.52723 −0.763615 0.645671i \(-0.776578\pi\)
−0.763615 + 0.645671i \(0.776578\pi\)
\(312\) −1.03518e6 −0.602043
\(313\) −1.22973e6 −0.709496 −0.354748 0.934962i \(-0.615433\pi\)
−0.354748 + 0.934962i \(0.615433\pi\)
\(314\) −1.97643e6 −1.13124
\(315\) −202605. −0.115047
\(316\) 966088. 0.544251
\(317\) −3.25297e6 −1.81816 −0.909080 0.416621i \(-0.863214\pi\)
−0.909080 + 0.416621i \(0.863214\pi\)
\(318\) −3.43727e6 −1.90610
\(319\) 103325. 0.0568495
\(320\) 1.12244e6 0.612758
\(321\) −1.50119e6 −0.813152
\(322\) 1.75719e6 0.944451
\(323\) 614901. 0.327943
\(324\) −2.77949e6 −1.47097
\(325\) 634369. 0.333145
\(326\) −1.19796e6 −0.624306
\(327\) 100130. 0.0517840
\(328\) 1.17840e6 0.604796
\(329\) −2.00579e6 −1.02163
\(330\) 460791. 0.232927
\(331\) −1.31245e6 −0.658435 −0.329218 0.944254i \(-0.606785\pi\)
−0.329218 + 0.944254i \(0.606785\pi\)
\(332\) 752514. 0.374688
\(333\) 697087. 0.344490
\(334\) 1.04316e6 0.511663
\(335\) 1.56566e6 0.762230
\(336\) 1.46665e6 0.708726
\(337\) 3.13373e6 1.50309 0.751547 0.659679i \(-0.229308\pi\)
0.751547 + 0.659679i \(0.229308\pi\)
\(338\) 5.54420e6 2.63966
\(339\) −1.82564e6 −0.862811
\(340\) −221197. −0.103772
\(341\) −925252. −0.430898
\(342\) 1.69930e6 0.785606
\(343\) −2.37031e6 −1.08785
\(344\) 431557. 0.196626
\(345\) 860326. 0.389148
\(346\) −4.96561e6 −2.22988
\(347\) −1.35263e6 −0.603054 −0.301527 0.953458i \(-0.597496\pi\)
−0.301527 + 0.953458i \(0.597496\pi\)
\(348\) −581772. −0.257516
\(349\) −4.06262e6 −1.78543 −0.892715 0.450622i \(-0.851202\pi\)
−0.892715 + 0.450622i \(0.851202\pi\)
\(350\) 569012. 0.248285
\(351\) 3.04211e6 1.31798
\(352\) −1.01079e6 −0.434816
\(353\) 593560. 0.253529 0.126765 0.991933i \(-0.459541\pi\)
0.126765 + 0.991933i \(0.459541\pi\)
\(354\) 1.85835e6 0.788170
\(355\) −1.95880e6 −0.824934
\(356\) 2.17285e6 0.908665
\(357\) −439949. −0.182697
\(358\) 7.05492e6 2.90927
\(359\) 657659. 0.269317 0.134659 0.990892i \(-0.457006\pi\)
0.134659 + 0.990892i \(0.457006\pi\)
\(360\) −107109. −0.0435584
\(361\) 4.79426e6 1.93621
\(362\) −2.41493e6 −0.968577
\(363\) 2.60237e6 1.03658
\(364\) 4.26093e6 1.68559
\(365\) 1.95131e6 0.766643
\(366\) 4.91086e6 1.91626
\(367\) −1.91160e6 −0.740852 −0.370426 0.928862i \(-0.620788\pi\)
−0.370426 + 0.928862i \(0.620788\pi\)
\(368\) −1.46733e6 −0.564819
\(369\) 1.54300e6 0.589931
\(370\) −1.95775e6 −0.743452
\(371\) 2.47906e6 0.935088
\(372\) 5.20966e6 1.95188
\(373\) −2.72571e6 −1.01439 −0.507197 0.861830i \(-0.669319\pi\)
−0.507197 + 0.861830i \(0.669319\pi\)
\(374\) 235747. 0.0871500
\(375\) 278590. 0.102303
\(376\) −1.06038e6 −0.386805
\(377\) 853607. 0.309318
\(378\) 2.72869e6 0.982257
\(379\) 4.36078e6 1.55943 0.779716 0.626133i \(-0.215363\pi\)
0.779716 + 0.626133i \(0.215363\pi\)
\(380\) −2.61535e6 −0.929118
\(381\) −2.39516e6 −0.845321
\(382\) −1.66198e6 −0.582729
\(383\) 1.86081e6 0.648194 0.324097 0.946024i \(-0.394940\pi\)
0.324097 + 0.946024i \(0.394940\pi\)
\(384\) 2.04159e6 0.706547
\(385\) −332336. −0.114268
\(386\) 1.57676e6 0.538639
\(387\) 565083. 0.191794
\(388\) −4.43891e6 −1.49692
\(389\) −2.90623e6 −0.973770 −0.486885 0.873466i \(-0.661867\pi\)
−0.486885 + 0.873466i \(0.661867\pi\)
\(390\) 3.80679e6 1.26735
\(391\) 440155. 0.145601
\(392\) −291704. −0.0958799
\(393\) −357694. −0.116824
\(394\) −3.23012e6 −1.04828
\(395\) −622508. −0.200748
\(396\) 357027. 0.114410
\(397\) −5.49890e6 −1.75106 −0.875528 0.483168i \(-0.839486\pi\)
−0.875528 + 0.483168i \(0.839486\pi\)
\(398\) 3.98937e6 1.26240
\(399\) −5.20180e6 −1.63577
\(400\) −475151. −0.148485
\(401\) −2.31594e6 −0.719228 −0.359614 0.933101i \(-0.617092\pi\)
−0.359614 + 0.933101i \(0.617092\pi\)
\(402\) 9.39538e6 2.89967
\(403\) −7.64389e6 −2.34451
\(404\) 3.40845e6 1.03897
\(405\) 1.79099e6 0.542570
\(406\) 765663. 0.230527
\(407\) 1.14344e6 0.342159
\(408\) −232584. −0.0691718
\(409\) 3.95053e6 1.16774 0.583871 0.811846i \(-0.301537\pi\)
0.583871 + 0.811846i \(0.301537\pi\)
\(410\) −4.33349e6 −1.27315
\(411\) −3.87656e6 −1.13199
\(412\) 2.65249e6 0.769859
\(413\) −1.34030e6 −0.386658
\(414\) 1.21638e6 0.348794
\(415\) −484890. −0.138205
\(416\) −8.35057e6 −2.36583
\(417\) 1.68019e6 0.473171
\(418\) 2.78738e6 0.780290
\(419\) 909937. 0.253207 0.126604 0.991953i \(-0.459592\pi\)
0.126604 + 0.991953i \(0.459592\pi\)
\(420\) 1.87123e6 0.517612
\(421\) 2.60594e6 0.716570 0.358285 0.933612i \(-0.383362\pi\)
0.358285 + 0.933612i \(0.383362\pi\)
\(422\) 1.26603e6 0.346068
\(423\) −1.38847e6 −0.377298
\(424\) 1.31058e6 0.354037
\(425\) 142530. 0.0382767
\(426\) −1.17546e7 −3.13821
\(427\) −3.54186e6 −0.940073
\(428\) 3.26664e6 0.861969
\(429\) −2.22339e6 −0.583273
\(430\) −1.58702e6 −0.413915
\(431\) 6.43510e6 1.66864 0.834319 0.551282i \(-0.185861\pi\)
0.834319 + 0.551282i \(0.185861\pi\)
\(432\) −2.27858e6 −0.587429
\(433\) −7.13239e6 −1.82816 −0.914082 0.405530i \(-0.867087\pi\)
−0.914082 + 0.405530i \(0.867087\pi\)
\(434\) −6.85636e6 −1.74731
\(435\) 374870. 0.0949857
\(436\) −217887. −0.0548929
\(437\) 5.20422e6 1.30362
\(438\) 1.17096e7 2.91646
\(439\) 3.93283e6 0.973967 0.486983 0.873411i \(-0.338097\pi\)
0.486983 + 0.873411i \(0.338097\pi\)
\(440\) −175693. −0.0432636
\(441\) −381959. −0.0935234
\(442\) 1.94760e6 0.474182
\(443\) 6.12456e6 1.48274 0.741371 0.671096i \(-0.234176\pi\)
0.741371 + 0.671096i \(0.234176\pi\)
\(444\) −6.43818e6 −1.54991
\(445\) −1.40009e6 −0.335164
\(446\) 3.06429e6 0.729446
\(447\) 3.13105e6 0.741175
\(448\) −4.85796e6 −1.14356
\(449\) 478620. 0.112041 0.0560203 0.998430i \(-0.482159\pi\)
0.0560203 + 0.998430i \(0.482159\pi\)
\(450\) 393887. 0.0916940
\(451\) 2.53101e6 0.585939
\(452\) 3.97266e6 0.914609
\(453\) −804955. −0.184300
\(454\) −5.15347e6 −1.17344
\(455\) −2.74557e6 −0.621733
\(456\) −2.74998e6 −0.619324
\(457\) −8.49339e6 −1.90235 −0.951175 0.308651i \(-0.900123\pi\)
−0.951175 + 0.308651i \(0.900123\pi\)
\(458\) 1.05582e7 2.35194
\(459\) 683503. 0.151429
\(460\) −1.87210e6 −0.412511
\(461\) −3.69429e6 −0.809616 −0.404808 0.914402i \(-0.632662\pi\)
−0.404808 + 0.914402i \(0.632662\pi\)
\(462\) −1.99432e6 −0.434700
\(463\) −1.57989e6 −0.342511 −0.171256 0.985227i \(-0.554782\pi\)
−0.171256 + 0.985227i \(0.554782\pi\)
\(464\) −639363. −0.137864
\(465\) −3.35689e6 −0.719955
\(466\) −5.16235e6 −1.10124
\(467\) 1.47606e6 0.313192 0.156596 0.987663i \(-0.449948\pi\)
0.156596 + 0.987663i \(0.449948\pi\)
\(468\) 2.94954e6 0.622501
\(469\) −6.77623e6 −1.42251
\(470\) 3.89947e6 0.814256
\(471\) 4.18808e6 0.869886
\(472\) −708563. −0.146394
\(473\) 926912. 0.190496
\(474\) −3.73561e6 −0.763687
\(475\) 1.68522e6 0.342708
\(476\) 957347. 0.193665
\(477\) 1.71608e6 0.345336
\(478\) 242117. 0.0484681
\(479\) −3.76734e6 −0.750233 −0.375116 0.926978i \(-0.622397\pi\)
−0.375116 + 0.926978i \(0.622397\pi\)
\(480\) −3.66724e6 −0.726501
\(481\) 9.44644e6 1.86168
\(482\) 4.27299e6 0.837750
\(483\) −3.72352e6 −0.726249
\(484\) −5.66286e6 −1.09881
\(485\) 2.86026e6 0.552142
\(486\) 4.61939e6 0.887144
\(487\) −3.49960e6 −0.668646 −0.334323 0.942459i \(-0.608508\pi\)
−0.334323 + 0.942459i \(0.608508\pi\)
\(488\) −1.87244e6 −0.355925
\(489\) 2.53849e6 0.480069
\(490\) 1.07272e6 0.201835
\(491\) 4004.99 0.000749718 0 0.000374859 1.00000i \(-0.499881\pi\)
0.000374859 1.00000i \(0.499881\pi\)
\(492\) −1.42509e7 −2.65418
\(493\) 191789. 0.0355391
\(494\) 2.30277e7 4.24555
\(495\) −230053. −0.0422003
\(496\) 5.72537e6 1.04496
\(497\) 8.47774e6 1.53953
\(498\) −2.90977e6 −0.525758
\(499\) 2.48693e6 0.447108 0.223554 0.974692i \(-0.428234\pi\)
0.223554 + 0.974692i \(0.428234\pi\)
\(500\) −606222. −0.108444
\(501\) −2.21047e6 −0.393450
\(502\) 91637.3 0.0162298
\(503\) 2.40169e6 0.423251 0.211625 0.977351i \(-0.432124\pi\)
0.211625 + 0.977351i \(0.432124\pi\)
\(504\) 463573. 0.0812909
\(505\) −2.19627e6 −0.383228
\(506\) 1.99525e6 0.346434
\(507\) −1.17483e7 −2.02980
\(508\) 5.21195e6 0.896069
\(509\) −7.25461e6 −1.24114 −0.620569 0.784152i \(-0.713098\pi\)
−0.620569 + 0.784152i \(0.713098\pi\)
\(510\) 855310. 0.145612
\(511\) −8.44531e6 −1.43075
\(512\) 7.64626e6 1.28906
\(513\) 8.08148e6 1.35581
\(514\) −1.71095e7 −2.85647
\(515\) −1.70916e6 −0.283965
\(516\) −5.21901e6 −0.862906
\(517\) −2.27752e6 −0.374745
\(518\) 8.47320e6 1.38747
\(519\) 1.05222e7 1.71470
\(520\) −1.45147e6 −0.235397
\(521\) −3.23090e6 −0.521471 −0.260735 0.965410i \(-0.583965\pi\)
−0.260735 + 0.965410i \(0.583965\pi\)
\(522\) 530015. 0.0851357
\(523\) 4.69228e6 0.750118 0.375059 0.927001i \(-0.377622\pi\)
0.375059 + 0.927001i \(0.377622\pi\)
\(524\) 778356. 0.123837
\(525\) −1.20574e6 −0.190923
\(526\) −440831. −0.0694717
\(527\) −1.71743e6 −0.269372
\(528\) 1.66534e6 0.259968
\(529\) −2.71109e6 −0.421216
\(530\) −4.81957e6 −0.745278
\(531\) −927796. −0.142796
\(532\) 1.13193e7 1.73397
\(533\) 2.09097e7 3.18809
\(534\) −8.40182e6 −1.27503
\(535\) −2.10489e6 −0.317940
\(536\) −3.58232e6 −0.538583
\(537\) −1.49495e7 −2.23713
\(538\) −3.62645e6 −0.540165
\(539\) −626533. −0.0928906
\(540\) −2.90713e6 −0.429023
\(541\) −2.16755e6 −0.318402 −0.159201 0.987246i \(-0.550892\pi\)
−0.159201 + 0.987246i \(0.550892\pi\)
\(542\) −1.06868e7 −1.56261
\(543\) 5.11728e6 0.744800
\(544\) −1.87621e6 −0.271822
\(545\) 140398. 0.0202474
\(546\) −1.64759e7 −2.36520
\(547\) −1.09034e7 −1.55809 −0.779046 0.626967i \(-0.784296\pi\)
−0.779046 + 0.626967i \(0.784296\pi\)
\(548\) 8.43554e6 1.19994
\(549\) −2.45178e6 −0.347177
\(550\) 646099. 0.0910735
\(551\) 2.26764e6 0.318196
\(552\) −1.96847e6 −0.274968
\(553\) 2.69423e6 0.374647
\(554\) −1.32711e7 −1.83710
\(555\) 4.14850e6 0.571688
\(556\) −3.65616e6 −0.501578
\(557\) −5.86844e6 −0.801465 −0.400732 0.916195i \(-0.631244\pi\)
−0.400732 + 0.916195i \(0.631244\pi\)
\(558\) −4.74618e6 −0.645296
\(559\) 7.65760e6 1.03649
\(560\) 2.05647e6 0.277109
\(561\) −499551. −0.0670152
\(562\) 1.19344e7 1.59390
\(563\) −4.66713e6 −0.620553 −0.310276 0.950646i \(-0.600422\pi\)
−0.310276 + 0.950646i \(0.600422\pi\)
\(564\) 1.28236e7 1.69752
\(565\) −2.55982e6 −0.337356
\(566\) −3.14786e6 −0.413023
\(567\) −7.75147e6 −1.01257
\(568\) 4.48184e6 0.582889
\(569\) 8.64171e6 1.11897 0.559486 0.828840i \(-0.310999\pi\)
0.559486 + 0.828840i \(0.310999\pi\)
\(570\) 1.01129e7 1.30373
\(571\) −9.35750e6 −1.20107 −0.600537 0.799597i \(-0.705046\pi\)
−0.600537 + 0.799597i \(0.705046\pi\)
\(572\) 4.83817e6 0.618289
\(573\) 3.52175e6 0.448097
\(574\) 1.87555e7 2.37601
\(575\) 1.20631e6 0.152156
\(576\) −3.36283e6 −0.422327
\(577\) 6.84399e6 0.855796 0.427898 0.903827i \(-0.359254\pi\)
0.427898 + 0.903827i \(0.359254\pi\)
\(578\) −1.15093e7 −1.43295
\(579\) −3.34118e6 −0.414194
\(580\) −815733. −0.100688
\(581\) 2.09862e6 0.257925
\(582\) 1.71641e7 2.10046
\(583\) 2.81491e6 0.342999
\(584\) −4.46470e6 −0.541702
\(585\) −1.90057e6 −0.229611
\(586\) 9.79250e6 1.17801
\(587\) 3.03476e6 0.363520 0.181760 0.983343i \(-0.441821\pi\)
0.181760 + 0.983343i \(0.441821\pi\)
\(588\) 3.52771e6 0.420775
\(589\) −2.03063e7 −2.41180
\(590\) 2.60569e6 0.308172
\(591\) 6.84466e6 0.806090
\(592\) −7.07550e6 −0.829761
\(593\) 5.46963e6 0.638736 0.319368 0.947631i \(-0.396529\pi\)
0.319368 + 0.947631i \(0.396529\pi\)
\(594\) 3.09836e6 0.360301
\(595\) −616876. −0.0714340
\(596\) −6.81328e6 −0.785671
\(597\) −8.45354e6 −0.970739
\(598\) 1.64836e7 1.88494
\(599\) 4.70553e6 0.535847 0.267924 0.963440i \(-0.413662\pi\)
0.267924 + 0.963440i \(0.413662\pi\)
\(600\) −637429. −0.0722859
\(601\) 1.05357e6 0.118981 0.0594904 0.998229i \(-0.481052\pi\)
0.0594904 + 0.998229i \(0.481052\pi\)
\(602\) 6.86867e6 0.772469
\(603\) −4.69071e6 −0.525346
\(604\) 1.75161e6 0.195365
\(605\) 3.64892e6 0.405299
\(606\) −1.31796e7 −1.45787
\(607\) 1.06562e7 1.17390 0.586951 0.809622i \(-0.300328\pi\)
0.586951 + 0.809622i \(0.300328\pi\)
\(608\) −2.21836e7 −2.43373
\(609\) −1.62245e6 −0.177267
\(610\) 6.88576e6 0.749251
\(611\) −1.88155e7 −2.03898
\(612\) 662705. 0.0715223
\(613\) 7.67755e6 0.825224 0.412612 0.910907i \(-0.364617\pi\)
0.412612 + 0.910907i \(0.364617\pi\)
\(614\) −1.36327e7 −1.45935
\(615\) 9.18272e6 0.979002
\(616\) 760405. 0.0807408
\(617\) −3.74926e6 −0.396491 −0.198245 0.980152i \(-0.563524\pi\)
−0.198245 + 0.980152i \(0.563524\pi\)
\(618\) −1.02565e7 −1.08026
\(619\) 549073. 0.0575974 0.0287987 0.999585i \(-0.490832\pi\)
0.0287987 + 0.999585i \(0.490832\pi\)
\(620\) 7.30473e6 0.763177
\(621\) 5.78484e6 0.601952
\(622\) −2.19188e7 −2.27165
\(623\) 6.05965e6 0.625500
\(624\) 1.37581e7 1.41448
\(625\) 390625. 0.0400000
\(626\) −1.03472e7 −1.05533
\(627\) −5.90651e6 −0.600015
\(628\) −9.11342e6 −0.922109
\(629\) 2.12243e6 0.213898
\(630\) −1.70476e6 −0.171124
\(631\) 8.27453e6 0.827313 0.413657 0.910433i \(-0.364251\pi\)
0.413657 + 0.910433i \(0.364251\pi\)
\(632\) 1.42433e6 0.141847
\(633\) −2.68273e6 −0.266114
\(634\) −2.73711e7 −2.70438
\(635\) −3.35837e6 −0.330518
\(636\) −1.58494e7 −1.55371
\(637\) −5.17605e6 −0.505417
\(638\) 869390. 0.0845596
\(639\) 5.86855e6 0.568563
\(640\) 2.86262e6 0.276258
\(641\) 1.04022e7 0.999954 0.499977 0.866039i \(-0.333342\pi\)
0.499977 + 0.866039i \(0.333342\pi\)
\(642\) −1.26312e7 −1.20951
\(643\) 7.34934e6 0.701004 0.350502 0.936562i \(-0.386011\pi\)
0.350502 + 0.936562i \(0.386011\pi\)
\(644\) 8.10252e6 0.769849
\(645\) 3.36292e6 0.318285
\(646\) 5.17388e6 0.487792
\(647\) 1.69436e7 1.59128 0.795639 0.605771i \(-0.207135\pi\)
0.795639 + 0.605771i \(0.207135\pi\)
\(648\) −4.09789e6 −0.383374
\(649\) −1.52188e6 −0.141830
\(650\) 5.33769e6 0.495530
\(651\) 1.45287e7 1.34362
\(652\) −5.52385e6 −0.508889
\(653\) −1.68999e7 −1.55096 −0.775481 0.631371i \(-0.782492\pi\)
−0.775481 + 0.631371i \(0.782492\pi\)
\(654\) 842513. 0.0770251
\(655\) −501541. −0.0456776
\(656\) −1.56617e7 −1.42095
\(657\) −5.84610e6 −0.528388
\(658\) −1.68770e7 −1.51961
\(659\) 1.24291e6 0.111488 0.0557438 0.998445i \(-0.482247\pi\)
0.0557438 + 0.998445i \(0.482247\pi\)
\(660\) 2.12473e6 0.189865
\(661\) 5.22902e6 0.465497 0.232748 0.972537i \(-0.425228\pi\)
0.232748 + 0.972537i \(0.425228\pi\)
\(662\) −1.10432e7 −0.979376
\(663\) −4.12700e6 −0.364629
\(664\) 1.10945e6 0.0976539
\(665\) −7.29370e6 −0.639579
\(666\) 5.86541e6 0.512404
\(667\) 1.62321e6 0.141273
\(668\) 4.81006e6 0.417071
\(669\) −6.49328e6 −0.560917
\(670\) 1.31737e7 1.13376
\(671\) −4.02169e6 −0.344828
\(672\) 1.58719e7 1.35583
\(673\) 1.38184e7 1.17603 0.588016 0.808849i \(-0.299909\pi\)
0.588016 + 0.808849i \(0.299909\pi\)
\(674\) 2.63677e7 2.23575
\(675\) 1.87324e6 0.158246
\(676\) 2.55647e7 2.15166
\(677\) 1.33744e7 1.12151 0.560755 0.827982i \(-0.310511\pi\)
0.560755 + 0.827982i \(0.310511\pi\)
\(678\) −1.53612e7 −1.28337
\(679\) −1.23793e7 −1.03043
\(680\) −326118. −0.0270459
\(681\) 1.09203e7 0.902332
\(682\) −7.78523e6 −0.640929
\(683\) 491792. 0.0403394 0.0201697 0.999797i \(-0.493579\pi\)
0.0201697 + 0.999797i \(0.493579\pi\)
\(684\) 7.83557e6 0.640369
\(685\) −5.43552e6 −0.442603
\(686\) −1.99442e7 −1.61810
\(687\) −2.23729e7 −1.80855
\(688\) −5.73564e6 −0.461967
\(689\) 2.32551e7 1.86625
\(690\) 7.23893e6 0.578831
\(691\) 7.64609e6 0.609178 0.304589 0.952484i \(-0.401481\pi\)
0.304589 + 0.952484i \(0.401481\pi\)
\(692\) −2.28967e7 −1.81764
\(693\) 995678. 0.0787564
\(694\) −1.13813e7 −0.896999
\(695\) 2.35588e6 0.185008
\(696\) −857725. −0.0671158
\(697\) 4.69801e6 0.366296
\(698\) −3.41836e7 −2.65570
\(699\) 1.09391e7 0.846815
\(700\) 2.62375e6 0.202384
\(701\) 1.47009e7 1.12992 0.564961 0.825118i \(-0.308891\pi\)
0.564961 + 0.825118i \(0.308891\pi\)
\(702\) 2.55968e7 1.96040
\(703\) 2.50948e7 1.91512
\(704\) −5.51609e6 −0.419469
\(705\) −8.26304e6 −0.626133
\(706\) 4.99431e6 0.377107
\(707\) 9.50551e6 0.715199
\(708\) 8.56897e6 0.642459
\(709\) 1.79168e7 1.33858 0.669291 0.743000i \(-0.266598\pi\)
0.669291 + 0.743000i \(0.266598\pi\)
\(710\) −1.64817e7 −1.22703
\(711\) 1.86503e6 0.138360
\(712\) 3.20349e6 0.236823
\(713\) −1.45355e7 −1.07080
\(714\) −3.70181e6 −0.271749
\(715\) −3.11752e6 −0.228058
\(716\) 3.25306e7 2.37143
\(717\) −513049. −0.0372702
\(718\) 5.53365e6 0.400590
\(719\) 1.35890e6 0.0980313 0.0490157 0.998798i \(-0.484392\pi\)
0.0490157 + 0.998798i \(0.484392\pi\)
\(720\) 1.42355e6 0.102339
\(721\) 7.39729e6 0.529950
\(722\) 4.03397e7 2.87998
\(723\) −9.05453e6 −0.644199
\(724\) −1.11354e7 −0.789514
\(725\) 525625. 0.0371391
\(726\) 2.18968e7 1.54184
\(727\) 490288. 0.0344045 0.0172023 0.999852i \(-0.494524\pi\)
0.0172023 + 0.999852i \(0.494524\pi\)
\(728\) 6.28202e6 0.439310
\(729\) 7.61988e6 0.531042
\(730\) 1.64186e7 1.14033
\(731\) 1.72051e6 0.119087
\(732\) 2.26443e7 1.56200
\(733\) −2.50427e6 −0.172155 −0.0860777 0.996288i \(-0.527433\pi\)
−0.0860777 + 0.996288i \(0.527433\pi\)
\(734\) −1.60845e7 −1.10197
\(735\) −2.27311e6 −0.155204
\(736\) −1.58793e7 −1.08053
\(737\) −7.69424e6 −0.521791
\(738\) 1.29831e7 0.877481
\(739\) −1.77705e7 −1.19699 −0.598493 0.801128i \(-0.704234\pi\)
−0.598493 + 0.801128i \(0.704234\pi\)
\(740\) −9.02730e6 −0.606008
\(741\) −4.87961e7 −3.26467
\(742\) 2.08592e7 1.39088
\(743\) −5.64219e6 −0.374952 −0.187476 0.982269i \(-0.560031\pi\)
−0.187476 + 0.982269i \(0.560031\pi\)
\(744\) 7.68076e6 0.508712
\(745\) 4.39020e6 0.289797
\(746\) −2.29346e7 −1.50884
\(747\) 1.45273e6 0.0952538
\(748\) 1.08704e6 0.0710384
\(749\) 9.11003e6 0.593356
\(750\) 2.34410e6 0.152168
\(751\) 2.20425e7 1.42614 0.713069 0.701094i \(-0.247305\pi\)
0.713069 + 0.701094i \(0.247305\pi\)
\(752\) 1.40931e7 0.908785
\(753\) −194181. −0.0124801
\(754\) 7.18239e6 0.460088
\(755\) −1.12867e6 −0.0720608
\(756\) 1.25822e7 0.800665
\(757\) −1.62573e7 −1.03112 −0.515561 0.856853i \(-0.672416\pi\)
−0.515561 + 0.856853i \(0.672416\pi\)
\(758\) 3.66924e7 2.31954
\(759\) −4.22796e6 −0.266395
\(760\) −3.85589e6 −0.242153
\(761\) −1.10995e7 −0.694771 −0.347385 0.937722i \(-0.612930\pi\)
−0.347385 + 0.937722i \(0.612930\pi\)
\(762\) −2.01533e7 −1.25735
\(763\) −607646. −0.0377867
\(764\) −7.66348e6 −0.474999
\(765\) −427020. −0.0263812
\(766\) 1.56572e7 0.964142
\(767\) −1.25728e7 −0.771694
\(768\) −8.43814e6 −0.516231
\(769\) 1.95216e7 1.19042 0.595210 0.803570i \(-0.297069\pi\)
0.595210 + 0.803570i \(0.297069\pi\)
\(770\) −2.79633e6 −0.169966
\(771\) 3.62553e7 2.19652
\(772\) 7.27055e6 0.439060
\(773\) −4.61524e6 −0.277809 −0.138904 0.990306i \(-0.544358\pi\)
−0.138904 + 0.990306i \(0.544358\pi\)
\(774\) 4.75470e6 0.285280
\(775\) −4.70687e6 −0.281500
\(776\) −6.54443e6 −0.390137
\(777\) −1.79548e7 −1.06691
\(778\) −2.44535e7 −1.44841
\(779\) 5.55475e7 3.27960
\(780\) 1.75533e7 1.03305
\(781\) 9.62626e6 0.564716
\(782\) 3.70353e6 0.216571
\(783\) 2.52063e6 0.146928
\(784\) 3.87692e6 0.225267
\(785\) 5.87232e6 0.340122
\(786\) −3.00970e6 −0.173767
\(787\) 2.19270e7 1.26195 0.630976 0.775802i \(-0.282655\pi\)
0.630976 + 0.775802i \(0.282655\pi\)
\(788\) −1.48943e7 −0.854483
\(789\) 934128. 0.0534212
\(790\) −5.23789e6 −0.298599
\(791\) 1.10790e7 0.629591
\(792\) 526375. 0.0298183
\(793\) −3.32248e7 −1.87620
\(794\) −4.62687e7 −2.60457
\(795\) 1.02127e7 0.573092
\(796\) 1.83952e7 1.02902
\(797\) −2.88511e6 −0.160886 −0.0804428 0.996759i \(-0.525633\pi\)
−0.0804428 + 0.996759i \(0.525633\pi\)
\(798\) −4.37688e7 −2.43308
\(799\) −4.22748e6 −0.234269
\(800\) −5.14203e6 −0.284059
\(801\) 4.19467e6 0.231002
\(802\) −1.94867e7 −1.06980
\(803\) −9.58944e6 −0.524812
\(804\) 4.33226e7 2.36360
\(805\) −5.22093e6 −0.283961
\(806\) −6.43170e7 −3.48729
\(807\) 7.68451e6 0.415367
\(808\) 5.02519e6 0.270784
\(809\) −3.37982e7 −1.81561 −0.907803 0.419396i \(-0.862242\pi\)
−0.907803 + 0.419396i \(0.862242\pi\)
\(810\) 1.50697e7 0.807035
\(811\) −3.64110e7 −1.94393 −0.971964 0.235130i \(-0.924448\pi\)
−0.971964 + 0.235130i \(0.924448\pi\)
\(812\) 3.53052e6 0.187909
\(813\) 2.26455e7 1.20159
\(814\) 9.62110e6 0.508937
\(815\) 3.55935e6 0.187705
\(816\) 3.09118e6 0.162517
\(817\) 2.03427e7 1.06624
\(818\) 3.32404e7 1.73693
\(819\) 8.22571e6 0.428512
\(820\) −1.99820e7 −1.03778
\(821\) −2.29723e7 −1.18945 −0.594724 0.803930i \(-0.702739\pi\)
−0.594724 + 0.803930i \(0.702739\pi\)
\(822\) −3.26180e7 −1.68375
\(823\) 1.70994e7 0.879998 0.439999 0.897998i \(-0.354979\pi\)
0.439999 + 0.897998i \(0.354979\pi\)
\(824\) 3.91065e6 0.200646
\(825\) −1.36909e6 −0.0700322
\(826\) −1.12775e7 −0.575126
\(827\) 1.66022e7 0.844115 0.422058 0.906569i \(-0.361308\pi\)
0.422058 + 0.906569i \(0.361308\pi\)
\(828\) 5.60881e6 0.284312
\(829\) 1.29179e7 0.652839 0.326419 0.945225i \(-0.394158\pi\)
0.326419 + 0.945225i \(0.394158\pi\)
\(830\) −4.07994e6 −0.205570
\(831\) 2.81216e7 1.41266
\(832\) −4.55707e7 −2.28233
\(833\) −1.16296e6 −0.0580699
\(834\) 1.41374e7 0.703809
\(835\) −3.09941e6 −0.153838
\(836\) 1.28528e7 0.636036
\(837\) −2.25718e7 −1.11366
\(838\) 7.65636e6 0.376628
\(839\) −2.99519e7 −1.46899 −0.734496 0.678614i \(-0.762581\pi\)
−0.734496 + 0.678614i \(0.762581\pi\)
\(840\) 2.75881e6 0.134904
\(841\) 707281. 0.0344828
\(842\) 2.19268e7 1.06585
\(843\) −2.52892e7 −1.22565
\(844\) 5.83772e6 0.282090
\(845\) −1.64728e7 −0.793645
\(846\) −1.16828e7 −0.561204
\(847\) −1.57926e7 −0.756390
\(848\) −1.74184e7 −0.831799
\(849\) 6.67036e6 0.317599
\(850\) 1.19927e6 0.0569339
\(851\) 1.79632e7 0.850276
\(852\) −5.42010e7 −2.55804
\(853\) 2.98009e6 0.140235 0.0701176 0.997539i \(-0.477663\pi\)
0.0701176 + 0.997539i \(0.477663\pi\)
\(854\) −2.98018e7 −1.39829
\(855\) −5.04892e6 −0.236202
\(856\) 4.81611e6 0.224653
\(857\) −1.83307e7 −0.852565 −0.426282 0.904590i \(-0.640177\pi\)
−0.426282 + 0.904590i \(0.640177\pi\)
\(858\) −1.87079e7 −0.867577
\(859\) 1.43925e7 0.665508 0.332754 0.943014i \(-0.392022\pi\)
0.332754 + 0.943014i \(0.392022\pi\)
\(860\) −7.31784e6 −0.337393
\(861\) −3.97431e7 −1.82706
\(862\) 5.41460e7 2.48198
\(863\) 2.37456e7 1.08532 0.542658 0.839954i \(-0.317418\pi\)
0.542658 + 0.839954i \(0.317418\pi\)
\(864\) −2.46585e7 −1.12378
\(865\) 1.47537e7 0.670442
\(866\) −6.00131e7 −2.71926
\(867\) 2.43884e7 1.10188
\(868\) −3.16151e7 −1.42428
\(869\) 3.05923e6 0.137424
\(870\) 3.15422e6 0.141284
\(871\) −6.35653e7 −2.83906
\(872\) −321238. −0.0143066
\(873\) −8.56931e6 −0.380549
\(874\) 4.37892e7 1.93905
\(875\) −1.69064e6 −0.0746501
\(876\) 5.39936e7 2.37729
\(877\) −2.36568e7 −1.03862 −0.519311 0.854585i \(-0.673811\pi\)
−0.519311 + 0.854585i \(0.673811\pi\)
\(878\) 3.30915e7 1.44871
\(879\) −2.07504e7 −0.905848
\(880\) 2.33506e6 0.101646
\(881\) −1.13263e7 −0.491639 −0.245820 0.969316i \(-0.579057\pi\)
−0.245820 + 0.969316i \(0.579057\pi\)
\(882\) −3.21387e6 −0.139109
\(883\) −1.95391e7 −0.843341 −0.421671 0.906749i \(-0.638556\pi\)
−0.421671 + 0.906749i \(0.638556\pi\)
\(884\) 8.98052e6 0.386519
\(885\) −5.52150e6 −0.236973
\(886\) 5.15331e7 2.20547
\(887\) −2.63343e7 −1.12386 −0.561931 0.827184i \(-0.689941\pi\)
−0.561931 + 0.827184i \(0.689941\pi\)
\(888\) −9.49201e6 −0.403948
\(889\) 1.45351e7 0.616829
\(890\) −1.17806e7 −0.498532
\(891\) −8.80159e6 −0.371421
\(892\) 1.41296e7 0.594591
\(893\) −4.99841e7 −2.09751
\(894\) 2.63451e7 1.10244
\(895\) −2.09614e7 −0.874708
\(896\) −1.23895e7 −0.515566
\(897\) −3.49289e7 −1.44945
\(898\) 4.02719e6 0.166652
\(899\) −6.33357e6 −0.261366
\(900\) 1.81624e6 0.0747423
\(901\) 5.22498e6 0.214423
\(902\) 2.12964e7 0.871543
\(903\) −1.45548e7 −0.594001
\(904\) 5.85702e6 0.238372
\(905\) 7.17520e6 0.291214
\(906\) −6.77302e6 −0.274133
\(907\) −3.82413e7 −1.54353 −0.771765 0.635908i \(-0.780626\pi\)
−0.771765 + 0.635908i \(0.780626\pi\)
\(908\) −2.37630e7 −0.956502
\(909\) 6.58000e6 0.264129
\(910\) −2.31017e7 −0.924783
\(911\) −4.36962e7 −1.74441 −0.872203 0.489144i \(-0.837309\pi\)
−0.872203 + 0.489144i \(0.837309\pi\)
\(912\) 3.65489e7 1.45508
\(913\) 2.38293e6 0.0946092
\(914\) −7.14648e7 −2.82961
\(915\) −1.45910e7 −0.576147
\(916\) 4.86844e7 1.91713
\(917\) 2.17069e6 0.0852459
\(918\) 5.75111e6 0.225240
\(919\) −2.29974e6 −0.0898234 −0.0449117 0.998991i \(-0.514301\pi\)
−0.0449117 + 0.998991i \(0.514301\pi\)
\(920\) −2.76010e6 −0.107512
\(921\) 2.88878e7 1.12219
\(922\) −3.10844e7 −1.20425
\(923\) 7.95265e7 3.07261
\(924\) −9.19591e6 −0.354336
\(925\) 5.81683e6 0.223528
\(926\) −1.32935e7 −0.509461
\(927\) 5.12063e6 0.195715
\(928\) −6.91911e6 −0.263743
\(929\) −3.74465e7 −1.42355 −0.711773 0.702409i \(-0.752108\pi\)
−0.711773 + 0.702409i \(0.752108\pi\)
\(930\) −2.82455e7 −1.07088
\(931\) −1.37504e7 −0.519924
\(932\) −2.38039e7 −0.897653
\(933\) 4.64463e7 1.74681
\(934\) 1.24198e7 0.465851
\(935\) −700447. −0.0262027
\(936\) 4.34860e6 0.162241
\(937\) −2.96887e6 −0.110469 −0.0552347 0.998473i \(-0.517591\pi\)
−0.0552347 + 0.998473i \(0.517591\pi\)
\(938\) −5.70163e7 −2.11589
\(939\) 2.19258e7 0.811507
\(940\) 1.79807e7 0.663723
\(941\) 4.68984e7 1.72657 0.863284 0.504719i \(-0.168404\pi\)
0.863284 + 0.504719i \(0.168404\pi\)
\(942\) 3.52392e7 1.29389
\(943\) 3.97616e7 1.45608
\(944\) 9.41722e6 0.343948
\(945\) −8.10744e6 −0.295328
\(946\) 7.79919e6 0.283349
\(947\) 3.51964e7 1.27533 0.637666 0.770313i \(-0.279900\pi\)
0.637666 + 0.770313i \(0.279900\pi\)
\(948\) −1.72251e7 −0.622503
\(949\) −7.92223e7 −2.85550
\(950\) 1.41798e7 0.509753
\(951\) 5.79997e7 2.07957
\(952\) 1.41145e6 0.0504745
\(953\) 2.82281e7 1.00681 0.503407 0.864049i \(-0.332080\pi\)
0.503407 + 0.864049i \(0.332080\pi\)
\(954\) 1.44394e7 0.513663
\(955\) 4.93803e6 0.175205
\(956\) 1.11642e6 0.0395077
\(957\) −1.84225e6 −0.0650233
\(958\) −3.16990e7 −1.11592
\(959\) 2.35251e7 0.826009
\(960\) −2.00129e7 −0.700859
\(961\) 2.80867e7 0.981054
\(962\) 7.94839e7 2.76912
\(963\) 6.30624e6 0.219131
\(964\) 1.97030e7 0.682873
\(965\) −4.68484e6 −0.161948
\(966\) −3.13303e7 −1.08024
\(967\) 4.99644e7 1.71828 0.859140 0.511740i \(-0.170999\pi\)
0.859140 + 0.511740i \(0.170999\pi\)
\(968\) −8.34893e6 −0.286380
\(969\) −1.09635e7 −0.375095
\(970\) 2.40667e7 0.821271
\(971\) −1.14066e7 −0.388247 −0.194124 0.980977i \(-0.562186\pi\)
−0.194124 + 0.980977i \(0.562186\pi\)
\(972\) 2.13003e7 0.723136
\(973\) −1.01963e7 −0.345272
\(974\) −2.94462e7 −0.994563
\(975\) −1.13106e7 −0.381044
\(976\) 2.48858e7 0.836234
\(977\) 2.53123e7 0.848391 0.424195 0.905571i \(-0.360557\pi\)
0.424195 + 0.905571i \(0.360557\pi\)
\(978\) 2.13593e7 0.714068
\(979\) 6.88057e6 0.229439
\(980\) 4.94639e6 0.164522
\(981\) −420631. −0.0139550
\(982\) 33698.7 0.00111515
\(983\) −1.58838e7 −0.524287 −0.262144 0.965029i \(-0.584429\pi\)
−0.262144 + 0.965029i \(0.584429\pi\)
\(984\) −2.10106e7 −0.691752
\(985\) 9.59725e6 0.315178
\(986\) 1.61374e6 0.0528618
\(987\) 3.57627e7 1.16852
\(988\) 1.06182e8 3.46066
\(989\) 1.45616e7 0.473389
\(990\) −1.93571e6 −0.0627700
\(991\) −3.84143e6 −0.124254 −0.0621268 0.998068i \(-0.519788\pi\)
−0.0621268 + 0.998068i \(0.519788\pi\)
\(992\) 6.19593e7 1.99907
\(993\) 2.34007e7 0.753104
\(994\) 7.13331e7 2.28995
\(995\) −1.18531e7 −0.379556
\(996\) −1.34171e7 −0.428560
\(997\) −2.19239e7 −0.698521 −0.349260 0.937026i \(-0.613567\pi\)
−0.349260 + 0.937026i \(0.613567\pi\)
\(998\) 2.09254e7 0.665041
\(999\) 2.78946e7 0.884312
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 145.6.a.c.1.11 13
5.4 even 2 725.6.a.f.1.3 13
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.6.a.c.1.11 13 1.1 even 1 trivial
725.6.a.f.1.3 13 5.4 even 2