Properties

Label 1449.4.a.i.1.2
Level $1449$
Weight $4$
Character 1449.1
Self dual yes
Analytic conductor $85.494$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1449,4,Mod(1,1449)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1449.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1449, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1449 = 3^{2} \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1449.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,24,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(85.4937675983\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 44x^{6} - 23x^{5} + 587x^{4} + 594x^{3} - 2430x^{2} - 3403x + 110 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 161)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.02588\) of defining polynomial
Character \(\chi\) \(=\) 1449.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.02588 q^{2} +1.15594 q^{4} -18.5973 q^{5} -7.00000 q^{7} +20.7093 q^{8} +56.2732 q^{10} +33.2549 q^{11} -64.4205 q^{13} +21.1812 q^{14} -71.9113 q^{16} +52.2394 q^{17} -88.3614 q^{19} -21.4974 q^{20} -100.625 q^{22} -23.0000 q^{23} +220.859 q^{25} +194.928 q^{26} -8.09159 q^{28} -118.211 q^{29} -255.347 q^{31} +51.9206 q^{32} -158.070 q^{34} +130.181 q^{35} +57.9031 q^{37} +267.371 q^{38} -385.137 q^{40} +347.026 q^{41} +477.979 q^{43} +38.4407 q^{44} +69.5952 q^{46} -239.666 q^{47} +49.0000 q^{49} -668.294 q^{50} -74.4663 q^{52} +402.094 q^{53} -618.452 q^{55} -144.965 q^{56} +357.691 q^{58} +587.617 q^{59} +698.764 q^{61} +772.649 q^{62} +418.185 q^{64} +1198.05 q^{65} +126.625 q^{67} +60.3857 q^{68} -393.912 q^{70} +844.084 q^{71} +712.052 q^{73} -175.208 q^{74} -102.141 q^{76} -232.784 q^{77} -589.839 q^{79} +1337.36 q^{80} -1050.06 q^{82} -1009.86 q^{83} -971.511 q^{85} -1446.31 q^{86} +688.686 q^{88} -35.6685 q^{89} +450.943 q^{91} -26.5866 q^{92} +725.201 q^{94} +1643.28 q^{95} -127.177 q^{97} -148.268 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 24 q^{4} + 24 q^{5} - 56 q^{7} + 69 q^{8} - 30 q^{10} + 98 q^{11} - 145 q^{13} - 76 q^{16} + 96 q^{17} - 226 q^{19} + 22 q^{20} - 98 q^{22} - 184 q^{23} + 60 q^{25} + 185 q^{26} - 168 q^{28} - 73 q^{29}+ \cdots - 1452 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.02588 −1.06981 −0.534905 0.844912i \(-0.679653\pi\)
−0.534905 + 0.844912i \(0.679653\pi\)
\(3\) 0 0
\(4\) 1.15594 0.144493
\(5\) −18.5973 −1.66339 −0.831696 0.555231i \(-0.812630\pi\)
−0.831696 + 0.555231i \(0.812630\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 20.7093 0.915230
\(9\) 0 0
\(10\) 56.2732 1.77951
\(11\) 33.2549 0.911522 0.455761 0.890102i \(-0.349367\pi\)
0.455761 + 0.890102i \(0.349367\pi\)
\(12\) 0 0
\(13\) −64.4205 −1.37439 −0.687193 0.726475i \(-0.741157\pi\)
−0.687193 + 0.726475i \(0.741157\pi\)
\(14\) 21.1812 0.404350
\(15\) 0 0
\(16\) −71.9113 −1.12361
\(17\) 52.2394 0.745289 0.372644 0.927974i \(-0.378451\pi\)
0.372644 + 0.927974i \(0.378451\pi\)
\(18\) 0 0
\(19\) −88.3614 −1.06692 −0.533460 0.845825i \(-0.679109\pi\)
−0.533460 + 0.845825i \(0.679109\pi\)
\(20\) −21.4974 −0.240348
\(21\) 0 0
\(22\) −100.625 −0.975155
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) 220.859 1.76687
\(26\) 194.928 1.47033
\(27\) 0 0
\(28\) −8.09159 −0.0546131
\(29\) −118.211 −0.756936 −0.378468 0.925614i \(-0.623549\pi\)
−0.378468 + 0.925614i \(0.623549\pi\)
\(30\) 0 0
\(31\) −255.347 −1.47941 −0.739704 0.672932i \(-0.765035\pi\)
−0.739704 + 0.672932i \(0.765035\pi\)
\(32\) 51.9206 0.286824
\(33\) 0 0
\(34\) −158.070 −0.797317
\(35\) 130.181 0.628703
\(36\) 0 0
\(37\) 57.9031 0.257276 0.128638 0.991692i \(-0.458939\pi\)
0.128638 + 0.991692i \(0.458939\pi\)
\(38\) 267.371 1.14140
\(39\) 0 0
\(40\) −385.137 −1.52239
\(41\) 347.026 1.32186 0.660931 0.750446i \(-0.270161\pi\)
0.660931 + 0.750446i \(0.270161\pi\)
\(42\) 0 0
\(43\) 477.979 1.69514 0.847571 0.530682i \(-0.178064\pi\)
0.847571 + 0.530682i \(0.178064\pi\)
\(44\) 38.4407 0.131708
\(45\) 0 0
\(46\) 69.5952 0.223071
\(47\) −239.666 −0.743807 −0.371903 0.928271i \(-0.621295\pi\)
−0.371903 + 0.928271i \(0.621295\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −668.294 −1.89022
\(51\) 0 0
\(52\) −74.4663 −0.198589
\(53\) 402.094 1.04211 0.521056 0.853523i \(-0.325538\pi\)
0.521056 + 0.853523i \(0.325538\pi\)
\(54\) 0 0
\(55\) −618.452 −1.51622
\(56\) −144.965 −0.345924
\(57\) 0 0
\(58\) 357.691 0.809777
\(59\) 587.617 1.29663 0.648315 0.761372i \(-0.275474\pi\)
0.648315 + 0.761372i \(0.275474\pi\)
\(60\) 0 0
\(61\) 698.764 1.46668 0.733341 0.679861i \(-0.237960\pi\)
0.733341 + 0.679861i \(0.237960\pi\)
\(62\) 772.649 1.58269
\(63\) 0 0
\(64\) 418.185 0.816768
\(65\) 1198.05 2.28614
\(66\) 0 0
\(67\) 126.625 0.230890 0.115445 0.993314i \(-0.463171\pi\)
0.115445 + 0.993314i \(0.463171\pi\)
\(68\) 60.3857 0.107689
\(69\) 0 0
\(70\) −393.912 −0.672593
\(71\) 844.084 1.41091 0.705453 0.708757i \(-0.250744\pi\)
0.705453 + 0.708757i \(0.250744\pi\)
\(72\) 0 0
\(73\) 712.052 1.14164 0.570818 0.821077i \(-0.306626\pi\)
0.570818 + 0.821077i \(0.306626\pi\)
\(74\) −175.208 −0.275236
\(75\) 0 0
\(76\) −102.141 −0.154162
\(77\) −232.784 −0.344523
\(78\) 0 0
\(79\) −589.839 −0.840026 −0.420013 0.907518i \(-0.637974\pi\)
−0.420013 + 0.907518i \(0.637974\pi\)
\(80\) 1337.36 1.86901
\(81\) 0 0
\(82\) −1050.06 −1.41414
\(83\) −1009.86 −1.33550 −0.667752 0.744384i \(-0.732743\pi\)
−0.667752 + 0.744384i \(0.732743\pi\)
\(84\) 0 0
\(85\) −971.511 −1.23971
\(86\) −1446.31 −1.81348
\(87\) 0 0
\(88\) 688.686 0.834252
\(89\) −35.6685 −0.0424814 −0.0212407 0.999774i \(-0.506762\pi\)
−0.0212407 + 0.999774i \(0.506762\pi\)
\(90\) 0 0
\(91\) 450.943 0.519469
\(92\) −26.5866 −0.0301288
\(93\) 0 0
\(94\) 725.201 0.795731
\(95\) 1643.28 1.77471
\(96\) 0 0
\(97\) −127.177 −0.133123 −0.0665613 0.997782i \(-0.521203\pi\)
−0.0665613 + 0.997782i \(0.521203\pi\)
\(98\) −148.268 −0.152830
\(99\) 0 0
\(100\) 255.300 0.255300
\(101\) 1376.80 1.35641 0.678203 0.734875i \(-0.262759\pi\)
0.678203 + 0.734875i \(0.262759\pi\)
\(102\) 0 0
\(103\) −508.618 −0.486559 −0.243280 0.969956i \(-0.578223\pi\)
−0.243280 + 0.969956i \(0.578223\pi\)
\(104\) −1334.10 −1.25788
\(105\) 0 0
\(106\) −1216.69 −1.11486
\(107\) −435.724 −0.393673 −0.196837 0.980436i \(-0.563067\pi\)
−0.196837 + 0.980436i \(0.563067\pi\)
\(108\) 0 0
\(109\) 426.303 0.374610 0.187305 0.982302i \(-0.440025\pi\)
0.187305 + 0.982302i \(0.440025\pi\)
\(110\) 1871.36 1.62206
\(111\) 0 0
\(112\) 503.379 0.424686
\(113\) −692.534 −0.576532 −0.288266 0.957550i \(-0.593079\pi\)
−0.288266 + 0.957550i \(0.593079\pi\)
\(114\) 0 0
\(115\) 427.738 0.346841
\(116\) −136.644 −0.109372
\(117\) 0 0
\(118\) −1778.06 −1.38715
\(119\) −365.676 −0.281693
\(120\) 0 0
\(121\) −225.110 −0.169128
\(122\) −2114.38 −1.56907
\(123\) 0 0
\(124\) −295.166 −0.213764
\(125\) −1782.72 −1.27561
\(126\) 0 0
\(127\) −656.335 −0.458585 −0.229293 0.973358i \(-0.573641\pi\)
−0.229293 + 0.973358i \(0.573641\pi\)
\(128\) −1680.74 −1.16061
\(129\) 0 0
\(130\) −3625.14 −2.44574
\(131\) −1575.99 −1.05111 −0.525553 0.850761i \(-0.676142\pi\)
−0.525553 + 0.850761i \(0.676142\pi\)
\(132\) 0 0
\(133\) 618.530 0.403258
\(134\) −383.151 −0.247009
\(135\) 0 0
\(136\) 1081.84 0.682111
\(137\) −792.294 −0.494089 −0.247045 0.969004i \(-0.579459\pi\)
−0.247045 + 0.969004i \(0.579459\pi\)
\(138\) 0 0
\(139\) −2675.35 −1.63252 −0.816261 0.577684i \(-0.803957\pi\)
−0.816261 + 0.577684i \(0.803957\pi\)
\(140\) 150.482 0.0908430
\(141\) 0 0
\(142\) −2554.10 −1.50940
\(143\) −2142.30 −1.25278
\(144\) 0 0
\(145\) 2198.40 1.25908
\(146\) −2154.58 −1.22133
\(147\) 0 0
\(148\) 66.9326 0.0371745
\(149\) −291.225 −0.160121 −0.0800607 0.996790i \(-0.525511\pi\)
−0.0800607 + 0.996790i \(0.525511\pi\)
\(150\) 0 0
\(151\) 2204.34 1.18799 0.593995 0.804469i \(-0.297550\pi\)
0.593995 + 0.804469i \(0.297550\pi\)
\(152\) −1829.90 −0.976478
\(153\) 0 0
\(154\) 704.378 0.368574
\(155\) 4748.76 2.46084
\(156\) 0 0
\(157\) −1615.90 −0.821422 −0.410711 0.911766i \(-0.634719\pi\)
−0.410711 + 0.911766i \(0.634719\pi\)
\(158\) 1784.78 0.898668
\(159\) 0 0
\(160\) −965.583 −0.477100
\(161\) 161.000 0.0788110
\(162\) 0 0
\(163\) 336.417 0.161658 0.0808288 0.996728i \(-0.474243\pi\)
0.0808288 + 0.996728i \(0.474243\pi\)
\(164\) 401.142 0.190999
\(165\) 0 0
\(166\) 3055.72 1.42874
\(167\) 27.3144 0.0126566 0.00632831 0.999980i \(-0.497986\pi\)
0.00632831 + 0.999980i \(0.497986\pi\)
\(168\) 0 0
\(169\) 1953.00 0.888938
\(170\) 2939.68 1.32625
\(171\) 0 0
\(172\) 552.516 0.244936
\(173\) 2690.54 1.18242 0.591208 0.806519i \(-0.298651\pi\)
0.591208 + 0.806519i \(0.298651\pi\)
\(174\) 0 0
\(175\) −1546.02 −0.667816
\(176\) −2391.41 −1.02420
\(177\) 0 0
\(178\) 107.928 0.0454471
\(179\) 1251.42 0.522546 0.261273 0.965265i \(-0.415858\pi\)
0.261273 + 0.965265i \(0.415858\pi\)
\(180\) 0 0
\(181\) 193.457 0.0794449 0.0397224 0.999211i \(-0.487353\pi\)
0.0397224 + 0.999211i \(0.487353\pi\)
\(182\) −1364.50 −0.555733
\(183\) 0 0
\(184\) −476.314 −0.190839
\(185\) −1076.84 −0.427951
\(186\) 0 0
\(187\) 1737.22 0.679347
\(188\) −277.040 −0.107475
\(189\) 0 0
\(190\) −4972.37 −1.89860
\(191\) 1795.26 0.680107 0.340054 0.940406i \(-0.389555\pi\)
0.340054 + 0.940406i \(0.389555\pi\)
\(192\) 0 0
\(193\) −861.357 −0.321253 −0.160626 0.987015i \(-0.551351\pi\)
−0.160626 + 0.987015i \(0.551351\pi\)
\(194\) 384.823 0.142416
\(195\) 0 0
\(196\) 56.6411 0.0206418
\(197\) −225.099 −0.0814092 −0.0407046 0.999171i \(-0.512960\pi\)
−0.0407046 + 0.999171i \(0.512960\pi\)
\(198\) 0 0
\(199\) −223.345 −0.0795603 −0.0397801 0.999208i \(-0.512666\pi\)
−0.0397801 + 0.999208i \(0.512666\pi\)
\(200\) 4573.84 1.61710
\(201\) 0 0
\(202\) −4166.04 −1.45110
\(203\) 827.474 0.286095
\(204\) 0 0
\(205\) −6453.75 −2.19878
\(206\) 1539.02 0.520526
\(207\) 0 0
\(208\) 4632.56 1.54428
\(209\) −2938.45 −0.972521
\(210\) 0 0
\(211\) 1347.64 0.439694 0.219847 0.975534i \(-0.429444\pi\)
0.219847 + 0.975534i \(0.429444\pi\)
\(212\) 464.797 0.150577
\(213\) 0 0
\(214\) 1318.45 0.421155
\(215\) −8889.11 −2.81969
\(216\) 0 0
\(217\) 1787.43 0.559164
\(218\) −1289.94 −0.400761
\(219\) 0 0
\(220\) −714.894 −0.219082
\(221\) −3365.29 −1.02431
\(222\) 0 0
\(223\) 1209.59 0.363228 0.181614 0.983370i \(-0.441868\pi\)
0.181614 + 0.983370i \(0.441868\pi\)
\(224\) −363.444 −0.108409
\(225\) 0 0
\(226\) 2095.52 0.616780
\(227\) 3411.17 0.997390 0.498695 0.866777i \(-0.333813\pi\)
0.498695 + 0.866777i \(0.333813\pi\)
\(228\) 0 0
\(229\) 512.486 0.147886 0.0739432 0.997262i \(-0.476442\pi\)
0.0739432 + 0.997262i \(0.476442\pi\)
\(230\) −1294.28 −0.371054
\(231\) 0 0
\(232\) −2448.06 −0.692770
\(233\) 3903.84 1.09763 0.548817 0.835942i \(-0.315078\pi\)
0.548817 + 0.835942i \(0.315078\pi\)
\(234\) 0 0
\(235\) 4457.14 1.23724
\(236\) 679.251 0.187354
\(237\) 0 0
\(238\) 1106.49 0.301358
\(239\) −1424.61 −0.385567 −0.192784 0.981241i \(-0.561752\pi\)
−0.192784 + 0.981241i \(0.561752\pi\)
\(240\) 0 0
\(241\) −6444.69 −1.72257 −0.861285 0.508123i \(-0.830340\pi\)
−0.861285 + 0.508123i \(0.830340\pi\)
\(242\) 681.155 0.180935
\(243\) 0 0
\(244\) 807.731 0.211925
\(245\) −911.267 −0.237628
\(246\) 0 0
\(247\) 5692.28 1.46636
\(248\) −5288.05 −1.35400
\(249\) 0 0
\(250\) 5394.31 1.36466
\(251\) −7062.49 −1.77602 −0.888008 0.459827i \(-0.847911\pi\)
−0.888008 + 0.459827i \(0.847911\pi\)
\(252\) 0 0
\(253\) −764.863 −0.190065
\(254\) 1985.99 0.490599
\(255\) 0 0
\(256\) 1740.24 0.424864
\(257\) 5900.90 1.43225 0.716125 0.697972i \(-0.245914\pi\)
0.716125 + 0.697972i \(0.245914\pi\)
\(258\) 0 0
\(259\) −405.322 −0.0972412
\(260\) 1384.87 0.330331
\(261\) 0 0
\(262\) 4768.75 1.12448
\(263\) 1634.09 0.383127 0.191564 0.981480i \(-0.438644\pi\)
0.191564 + 0.981480i \(0.438644\pi\)
\(264\) 0 0
\(265\) −7477.86 −1.73344
\(266\) −1871.60 −0.431409
\(267\) 0 0
\(268\) 146.371 0.0333620
\(269\) 2747.85 0.622824 0.311412 0.950275i \(-0.399198\pi\)
0.311412 + 0.950275i \(0.399198\pi\)
\(270\) 0 0
\(271\) −7298.61 −1.63601 −0.818005 0.575211i \(-0.804920\pi\)
−0.818005 + 0.575211i \(0.804920\pi\)
\(272\) −3756.60 −0.837418
\(273\) 0 0
\(274\) 2397.39 0.528582
\(275\) 7344.66 1.61054
\(276\) 0 0
\(277\) −6341.50 −1.37554 −0.687769 0.725930i \(-0.741410\pi\)
−0.687769 + 0.725930i \(0.741410\pi\)
\(278\) 8095.29 1.74649
\(279\) 0 0
\(280\) 2695.96 0.575408
\(281\) 5340.75 1.13382 0.566908 0.823781i \(-0.308139\pi\)
0.566908 + 0.823781i \(0.308139\pi\)
\(282\) 0 0
\(283\) −4744.66 −0.996611 −0.498305 0.867002i \(-0.666044\pi\)
−0.498305 + 0.867002i \(0.666044\pi\)
\(284\) 975.711 0.203866
\(285\) 0 0
\(286\) 6482.33 1.34024
\(287\) −2429.18 −0.499617
\(288\) 0 0
\(289\) −2184.05 −0.444544
\(290\) −6652.08 −1.34698
\(291\) 0 0
\(292\) 823.090 0.164958
\(293\) −7990.45 −1.59320 −0.796599 0.604508i \(-0.793370\pi\)
−0.796599 + 0.604508i \(0.793370\pi\)
\(294\) 0 0
\(295\) −10928.1 −2.15681
\(296\) 1199.13 0.235467
\(297\) 0 0
\(298\) 881.212 0.171300
\(299\) 1481.67 0.286579
\(300\) 0 0
\(301\) −3345.85 −0.640703
\(302\) −6670.06 −1.27092
\(303\) 0 0
\(304\) 6354.18 1.19881
\(305\) −12995.1 −2.43967
\(306\) 0 0
\(307\) 4925.41 0.915662 0.457831 0.889039i \(-0.348627\pi\)
0.457831 + 0.889039i \(0.348627\pi\)
\(308\) −269.085 −0.0497810
\(309\) 0 0
\(310\) −14369.2 −2.63263
\(311\) −2905.57 −0.529774 −0.264887 0.964279i \(-0.585335\pi\)
−0.264887 + 0.964279i \(0.585335\pi\)
\(312\) 0 0
\(313\) −2970.69 −0.536464 −0.268232 0.963354i \(-0.586439\pi\)
−0.268232 + 0.963354i \(0.586439\pi\)
\(314\) 4889.53 0.878765
\(315\) 0 0
\(316\) −681.819 −0.121378
\(317\) 799.754 0.141699 0.0708497 0.997487i \(-0.477429\pi\)
0.0708497 + 0.997487i \(0.477429\pi\)
\(318\) 0 0
\(319\) −3931.08 −0.689963
\(320\) −7777.11 −1.35861
\(321\) 0 0
\(322\) −487.166 −0.0843128
\(323\) −4615.94 −0.795164
\(324\) 0 0
\(325\) −14227.9 −2.42837
\(326\) −1017.96 −0.172943
\(327\) 0 0
\(328\) 7186.67 1.20981
\(329\) 1677.66 0.281132
\(330\) 0 0
\(331\) 7735.22 1.28449 0.642245 0.766500i \(-0.278003\pi\)
0.642245 + 0.766500i \(0.278003\pi\)
\(332\) −1167.34 −0.192971
\(333\) 0 0
\(334\) −82.6502 −0.0135402
\(335\) −2354.88 −0.384061
\(336\) 0 0
\(337\) 11779.0 1.90398 0.951990 0.306128i \(-0.0990337\pi\)
0.951990 + 0.306128i \(0.0990337\pi\)
\(338\) −5909.53 −0.950994
\(339\) 0 0
\(340\) −1123.01 −0.179129
\(341\) −8491.54 −1.34851
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 9898.60 1.55144
\(345\) 0 0
\(346\) −8141.25 −1.26496
\(347\) −5624.50 −0.870141 −0.435071 0.900396i \(-0.643277\pi\)
−0.435071 + 0.900396i \(0.643277\pi\)
\(348\) 0 0
\(349\) −3023.16 −0.463684 −0.231842 0.972753i \(-0.574475\pi\)
−0.231842 + 0.972753i \(0.574475\pi\)
\(350\) 4678.05 0.714436
\(351\) 0 0
\(352\) 1726.62 0.261446
\(353\) −404.183 −0.0609419 −0.0304709 0.999536i \(-0.509701\pi\)
−0.0304709 + 0.999536i \(0.509701\pi\)
\(354\) 0 0
\(355\) −15697.7 −2.34689
\(356\) −41.2306 −0.00613826
\(357\) 0 0
\(358\) −3786.65 −0.559024
\(359\) −2268.39 −0.333485 −0.166742 0.986001i \(-0.553325\pi\)
−0.166742 + 0.986001i \(0.553325\pi\)
\(360\) 0 0
\(361\) 948.734 0.138320
\(362\) −585.377 −0.0849909
\(363\) 0 0
\(364\) 521.264 0.0750595
\(365\) −13242.2 −1.89899
\(366\) 0 0
\(367\) −129.076 −0.0183589 −0.00917945 0.999958i \(-0.502922\pi\)
−0.00917945 + 0.999958i \(0.502922\pi\)
\(368\) 1653.96 0.234290
\(369\) 0 0
\(370\) 3258.39 0.457826
\(371\) −2814.66 −0.393881
\(372\) 0 0
\(373\) 1354.27 0.187994 0.0939969 0.995572i \(-0.470036\pi\)
0.0939969 + 0.995572i \(0.470036\pi\)
\(374\) −5256.61 −0.726772
\(375\) 0 0
\(376\) −4963.32 −0.680754
\(377\) 7615.18 1.04032
\(378\) 0 0
\(379\) −10233.1 −1.38691 −0.693455 0.720500i \(-0.743912\pi\)
−0.693455 + 0.720500i \(0.743912\pi\)
\(380\) 1899.54 0.256432
\(381\) 0 0
\(382\) −5432.24 −0.727585
\(383\) −5780.40 −0.771188 −0.385594 0.922669i \(-0.626003\pi\)
−0.385594 + 0.922669i \(0.626003\pi\)
\(384\) 0 0
\(385\) 4329.16 0.573077
\(386\) 2606.36 0.343679
\(387\) 0 0
\(388\) −147.009 −0.0192352
\(389\) −11762.5 −1.53311 −0.766556 0.642177i \(-0.778031\pi\)
−0.766556 + 0.642177i \(0.778031\pi\)
\(390\) 0 0
\(391\) −1201.51 −0.155403
\(392\) 1014.76 0.130747
\(393\) 0 0
\(394\) 681.121 0.0870924
\(395\) 10969.4 1.39729
\(396\) 0 0
\(397\) −454.539 −0.0574626 −0.0287313 0.999587i \(-0.509147\pi\)
−0.0287313 + 0.999587i \(0.509147\pi\)
\(398\) 675.814 0.0851144
\(399\) 0 0
\(400\) −15882.3 −1.98529
\(401\) 11330.2 1.41098 0.705491 0.708719i \(-0.250727\pi\)
0.705491 + 0.708719i \(0.250727\pi\)
\(402\) 0 0
\(403\) 16449.6 2.03328
\(404\) 1591.50 0.195991
\(405\) 0 0
\(406\) −2503.83 −0.306067
\(407\) 1925.56 0.234513
\(408\) 0 0
\(409\) −1009.32 −0.122024 −0.0610121 0.998137i \(-0.519433\pi\)
−0.0610121 + 0.998137i \(0.519433\pi\)
\(410\) 19528.3 2.35227
\(411\) 0 0
\(412\) −587.932 −0.0703042
\(413\) −4113.32 −0.490080
\(414\) 0 0
\(415\) 18780.7 2.22147
\(416\) −3344.75 −0.394206
\(417\) 0 0
\(418\) 8891.40 1.04041
\(419\) 14056.5 1.63891 0.819455 0.573143i \(-0.194276\pi\)
0.819455 + 0.573143i \(0.194276\pi\)
\(420\) 0 0
\(421\) −3217.99 −0.372531 −0.186265 0.982499i \(-0.559638\pi\)
−0.186265 + 0.982499i \(0.559638\pi\)
\(422\) −4077.80 −0.470389
\(423\) 0 0
\(424\) 8327.09 0.953771
\(425\) 11537.6 1.31683
\(426\) 0 0
\(427\) −4891.35 −0.554354
\(428\) −503.671 −0.0568829
\(429\) 0 0
\(430\) 26897.4 3.01653
\(431\) −872.562 −0.0975170 −0.0487585 0.998811i \(-0.515526\pi\)
−0.0487585 + 0.998811i \(0.515526\pi\)
\(432\) 0 0
\(433\) −9665.82 −1.07277 −0.536385 0.843973i \(-0.680211\pi\)
−0.536385 + 0.843973i \(0.680211\pi\)
\(434\) −5408.54 −0.598199
\(435\) 0 0
\(436\) 492.782 0.0541284
\(437\) 2032.31 0.222468
\(438\) 0 0
\(439\) 15457.9 1.68055 0.840277 0.542158i \(-0.182392\pi\)
0.840277 + 0.542158i \(0.182392\pi\)
\(440\) −12807.7 −1.38769
\(441\) 0 0
\(442\) 10182.9 1.09582
\(443\) 10487.1 1.12473 0.562365 0.826889i \(-0.309892\pi\)
0.562365 + 0.826889i \(0.309892\pi\)
\(444\) 0 0
\(445\) 663.337 0.0706633
\(446\) −3660.06 −0.388585
\(447\) 0 0
\(448\) −2927.30 −0.308709
\(449\) −6169.92 −0.648500 −0.324250 0.945971i \(-0.605112\pi\)
−0.324250 + 0.945971i \(0.605112\pi\)
\(450\) 0 0
\(451\) 11540.3 1.20491
\(452\) −800.529 −0.0833047
\(453\) 0 0
\(454\) −10321.8 −1.06702
\(455\) −8386.32 −0.864081
\(456\) 0 0
\(457\) −16296.4 −1.66808 −0.834039 0.551706i \(-0.813977\pi\)
−0.834039 + 0.551706i \(0.813977\pi\)
\(458\) −1550.72 −0.158210
\(459\) 0 0
\(460\) 494.440 0.0501160
\(461\) −18404.0 −1.85935 −0.929673 0.368386i \(-0.879911\pi\)
−0.929673 + 0.368386i \(0.879911\pi\)
\(462\) 0 0
\(463\) −13024.1 −1.30730 −0.653650 0.756797i \(-0.726763\pi\)
−0.653650 + 0.756797i \(0.726763\pi\)
\(464\) 8500.68 0.850504
\(465\) 0 0
\(466\) −11812.5 −1.17426
\(467\) 2332.68 0.231142 0.115571 0.993299i \(-0.463130\pi\)
0.115571 + 0.993299i \(0.463130\pi\)
\(468\) 0 0
\(469\) −886.372 −0.0872684
\(470\) −13486.8 −1.32361
\(471\) 0 0
\(472\) 12169.1 1.18672
\(473\) 15895.2 1.54516
\(474\) 0 0
\(475\) −19515.4 −1.88512
\(476\) −422.700 −0.0407025
\(477\) 0 0
\(478\) 4310.71 0.412484
\(479\) −16019.5 −1.52808 −0.764040 0.645169i \(-0.776787\pi\)
−0.764040 + 0.645169i \(0.776787\pi\)
\(480\) 0 0
\(481\) −3730.15 −0.353597
\(482\) 19500.9 1.84282
\(483\) 0 0
\(484\) −260.214 −0.0244378
\(485\) 2365.15 0.221435
\(486\) 0 0
\(487\) −1579.85 −0.147002 −0.0735010 0.997295i \(-0.523417\pi\)
−0.0735010 + 0.997295i \(0.523417\pi\)
\(488\) 14470.9 1.34235
\(489\) 0 0
\(490\) 2757.38 0.254216
\(491\) 20545.3 1.88838 0.944191 0.329399i \(-0.106846\pi\)
0.944191 + 0.329399i \(0.106846\pi\)
\(492\) 0 0
\(493\) −6175.24 −0.564136
\(494\) −17224.2 −1.56873
\(495\) 0 0
\(496\) 18362.3 1.66228
\(497\) −5908.59 −0.533272
\(498\) 0 0
\(499\) −1331.47 −0.119448 −0.0597242 0.998215i \(-0.519022\pi\)
−0.0597242 + 0.998215i \(0.519022\pi\)
\(500\) −2060.72 −0.184317
\(501\) 0 0
\(502\) 21370.2 1.90000
\(503\) 927.686 0.0822335 0.0411168 0.999154i \(-0.486908\pi\)
0.0411168 + 0.999154i \(0.486908\pi\)
\(504\) 0 0
\(505\) −25604.8 −2.25624
\(506\) 2314.38 0.203334
\(507\) 0 0
\(508\) −758.685 −0.0662622
\(509\) −6991.85 −0.608857 −0.304429 0.952535i \(-0.598466\pi\)
−0.304429 + 0.952535i \(0.598466\pi\)
\(510\) 0 0
\(511\) −4984.36 −0.431498
\(512\) 8180.18 0.706086
\(513\) 0 0
\(514\) −17855.4 −1.53223
\(515\) 9458.91 0.809339
\(516\) 0 0
\(517\) −7970.08 −0.677996
\(518\) 1226.45 0.104030
\(519\) 0 0
\(520\) 24810.7 2.09235
\(521\) −15300.3 −1.28660 −0.643302 0.765613i \(-0.722436\pi\)
−0.643302 + 0.765613i \(0.722436\pi\)
\(522\) 0 0
\(523\) 13089.8 1.09441 0.547206 0.836998i \(-0.315691\pi\)
0.547206 + 0.836998i \(0.315691\pi\)
\(524\) −1821.75 −0.151877
\(525\) 0 0
\(526\) −4944.57 −0.409873
\(527\) −13339.2 −1.10259
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 22627.1 1.85445
\(531\) 0 0
\(532\) 714.984 0.0582678
\(533\) −22355.6 −1.81675
\(534\) 0 0
\(535\) 8103.29 0.654833
\(536\) 2622.31 0.211318
\(537\) 0 0
\(538\) −8314.68 −0.666303
\(539\) 1629.49 0.130217
\(540\) 0 0
\(541\) 1599.69 0.127128 0.0635638 0.997978i \(-0.479753\pi\)
0.0635638 + 0.997978i \(0.479753\pi\)
\(542\) 22084.7 1.75022
\(543\) 0 0
\(544\) 2712.30 0.213767
\(545\) −7928.09 −0.623123
\(546\) 0 0
\(547\) 18730.5 1.46409 0.732045 0.681256i \(-0.238566\pi\)
0.732045 + 0.681256i \(0.238566\pi\)
\(548\) −915.845 −0.0713923
\(549\) 0 0
\(550\) −22224.1 −1.72298
\(551\) 10445.2 0.807591
\(552\) 0 0
\(553\) 4128.87 0.317500
\(554\) 19188.6 1.47156
\(555\) 0 0
\(556\) −3092.55 −0.235887
\(557\) 5488.44 0.417509 0.208755 0.977968i \(-0.433059\pi\)
0.208755 + 0.977968i \(0.433059\pi\)
\(558\) 0 0
\(559\) −30791.6 −2.32978
\(560\) −9361.49 −0.706420
\(561\) 0 0
\(562\) −16160.5 −1.21297
\(563\) 8122.20 0.608010 0.304005 0.952670i \(-0.401676\pi\)
0.304005 + 0.952670i \(0.401676\pi\)
\(564\) 0 0
\(565\) 12879.3 0.958999
\(566\) 14356.8 1.06618
\(567\) 0 0
\(568\) 17480.4 1.29130
\(569\) 15394.8 1.13424 0.567120 0.823635i \(-0.308057\pi\)
0.567120 + 0.823635i \(0.308057\pi\)
\(570\) 0 0
\(571\) 1704.64 0.124934 0.0624668 0.998047i \(-0.480103\pi\)
0.0624668 + 0.998047i \(0.480103\pi\)
\(572\) −2476.37 −0.181018
\(573\) 0 0
\(574\) 7350.41 0.534495
\(575\) −5079.76 −0.368419
\(576\) 0 0
\(577\) −2603.58 −0.187848 −0.0939241 0.995579i \(-0.529941\pi\)
−0.0939241 + 0.995579i \(0.529941\pi\)
\(578\) 6608.66 0.475578
\(579\) 0 0
\(580\) 2541.22 0.181928
\(581\) 7069.04 0.504773
\(582\) 0 0
\(583\) 13371.6 0.949907
\(584\) 14746.1 1.04486
\(585\) 0 0
\(586\) 24178.1 1.70442
\(587\) −8901.60 −0.625909 −0.312954 0.949768i \(-0.601319\pi\)
−0.312954 + 0.949768i \(0.601319\pi\)
\(588\) 0 0
\(589\) 22562.8 1.57841
\(590\) 33067.1 2.30737
\(591\) 0 0
\(592\) −4163.89 −0.289079
\(593\) 642.837 0.0445163 0.0222581 0.999752i \(-0.492914\pi\)
0.0222581 + 0.999752i \(0.492914\pi\)
\(594\) 0 0
\(595\) 6800.58 0.468566
\(596\) −336.639 −0.0231364
\(597\) 0 0
\(598\) −4483.36 −0.306585
\(599\) 14923.7 1.01797 0.508987 0.860774i \(-0.330020\pi\)
0.508987 + 0.860774i \(0.330020\pi\)
\(600\) 0 0
\(601\) −9190.75 −0.623791 −0.311896 0.950116i \(-0.600964\pi\)
−0.311896 + 0.950116i \(0.600964\pi\)
\(602\) 10124.1 0.685431
\(603\) 0 0
\(604\) 2548.09 0.171656
\(605\) 4186.43 0.281327
\(606\) 0 0
\(607\) −16137.4 −1.07907 −0.539535 0.841963i \(-0.681400\pi\)
−0.539535 + 0.841963i \(0.681400\pi\)
\(608\) −4587.78 −0.306018
\(609\) 0 0
\(610\) 39321.7 2.60998
\(611\) 15439.4 1.02228
\(612\) 0 0
\(613\) −12316.5 −0.811516 −0.405758 0.913981i \(-0.632992\pi\)
−0.405758 + 0.913981i \(0.632992\pi\)
\(614\) −14903.7 −0.979584
\(615\) 0 0
\(616\) −4820.80 −0.315318
\(617\) 11398.5 0.743735 0.371868 0.928286i \(-0.378718\pi\)
0.371868 + 0.928286i \(0.378718\pi\)
\(618\) 0 0
\(619\) 7815.13 0.507458 0.253729 0.967275i \(-0.418343\pi\)
0.253729 + 0.967275i \(0.418343\pi\)
\(620\) 5489.29 0.355573
\(621\) 0 0
\(622\) 8791.90 0.566758
\(623\) 249.679 0.0160565
\(624\) 0 0
\(625\) 5546.43 0.354971
\(626\) 8988.94 0.573914
\(627\) 0 0
\(628\) −1867.89 −0.118689
\(629\) 3024.82 0.191745
\(630\) 0 0
\(631\) −30593.9 −1.93015 −0.965073 0.261982i \(-0.915624\pi\)
−0.965073 + 0.261982i \(0.915624\pi\)
\(632\) −12215.1 −0.768817
\(633\) 0 0
\(634\) −2419.96 −0.151591
\(635\) 12206.1 0.762807
\(636\) 0 0
\(637\) −3156.60 −0.196341
\(638\) 11895.0 0.738130
\(639\) 0 0
\(640\) 31257.3 1.93055
\(641\) −22556.1 −1.38988 −0.694938 0.719069i \(-0.744568\pi\)
−0.694938 + 0.719069i \(0.744568\pi\)
\(642\) 0 0
\(643\) 17917.3 1.09890 0.549448 0.835528i \(-0.314838\pi\)
0.549448 + 0.835528i \(0.314838\pi\)
\(644\) 186.107 0.0113876
\(645\) 0 0
\(646\) 13967.3 0.850674
\(647\) 13444.1 0.816911 0.408455 0.912778i \(-0.366068\pi\)
0.408455 + 0.912778i \(0.366068\pi\)
\(648\) 0 0
\(649\) 19541.2 1.18191
\(650\) 43051.8 2.59789
\(651\) 0 0
\(652\) 388.878 0.0233583
\(653\) −14177.3 −0.849616 −0.424808 0.905283i \(-0.639658\pi\)
−0.424808 + 0.905283i \(0.639658\pi\)
\(654\) 0 0
\(655\) 29309.1 1.74840
\(656\) −24955.1 −1.48526
\(657\) 0 0
\(658\) −5076.41 −0.300758
\(659\) −12726.7 −0.752292 −0.376146 0.926560i \(-0.622751\pi\)
−0.376146 + 0.926560i \(0.622751\pi\)
\(660\) 0 0
\(661\) 18860.6 1.10982 0.554911 0.831909i \(-0.312752\pi\)
0.554911 + 0.831909i \(0.312752\pi\)
\(662\) −23405.8 −1.37416
\(663\) 0 0
\(664\) −20913.5 −1.22229
\(665\) −11503.0 −0.670776
\(666\) 0 0
\(667\) 2718.84 0.157832
\(668\) 31.5739 0.00182879
\(669\) 0 0
\(670\) 7125.57 0.410873
\(671\) 23237.4 1.33691
\(672\) 0 0
\(673\) 22067.4 1.26395 0.631974 0.774989i \(-0.282245\pi\)
0.631974 + 0.774989i \(0.282245\pi\)
\(674\) −35641.7 −2.03690
\(675\) 0 0
\(676\) 2257.55 0.128445
\(677\) −19136.3 −1.08636 −0.543181 0.839616i \(-0.682780\pi\)
−0.543181 + 0.839616i \(0.682780\pi\)
\(678\) 0 0
\(679\) 890.240 0.0503156
\(680\) −20119.3 −1.13462
\(681\) 0 0
\(682\) 25694.4 1.44265
\(683\) −27945.8 −1.56562 −0.782808 0.622263i \(-0.786213\pi\)
−0.782808 + 0.622263i \(0.786213\pi\)
\(684\) 0 0
\(685\) 14734.5 0.821865
\(686\) 1037.88 0.0577643
\(687\) 0 0
\(688\) −34372.1 −1.90469
\(689\) −25903.1 −1.43226
\(690\) 0 0
\(691\) −28123.0 −1.54826 −0.774131 0.633025i \(-0.781813\pi\)
−0.774131 + 0.633025i \(0.781813\pi\)
\(692\) 3110.11 0.170850
\(693\) 0 0
\(694\) 17019.1 0.930885
\(695\) 49754.3 2.71552
\(696\) 0 0
\(697\) 18128.4 0.985170
\(698\) 9147.70 0.496054
\(699\) 0 0
\(700\) −1787.10 −0.0964945
\(701\) −3602.16 −0.194082 −0.0970410 0.995280i \(-0.530938\pi\)
−0.0970410 + 0.995280i \(0.530938\pi\)
\(702\) 0 0
\(703\) −5116.40 −0.274493
\(704\) 13906.7 0.744502
\(705\) 0 0
\(706\) 1223.01 0.0651962
\(707\) −9637.62 −0.512673
\(708\) 0 0
\(709\) −2994.24 −0.158605 −0.0793025 0.996851i \(-0.525269\pi\)
−0.0793025 + 0.996851i \(0.525269\pi\)
\(710\) 47499.3 2.51073
\(711\) 0 0
\(712\) −738.668 −0.0388803
\(713\) 5872.98 0.308478
\(714\) 0 0
\(715\) 39840.9 2.08387
\(716\) 1446.57 0.0755040
\(717\) 0 0
\(718\) 6863.87 0.356765
\(719\) −29085.7 −1.50864 −0.754321 0.656506i \(-0.772034\pi\)
−0.754321 + 0.656506i \(0.772034\pi\)
\(720\) 0 0
\(721\) 3560.32 0.183902
\(722\) −2870.75 −0.147976
\(723\) 0 0
\(724\) 223.625 0.0114792
\(725\) −26107.9 −1.33741
\(726\) 0 0
\(727\) −15224.7 −0.776691 −0.388346 0.921514i \(-0.626953\pi\)
−0.388346 + 0.921514i \(0.626953\pi\)
\(728\) 9338.71 0.475434
\(729\) 0 0
\(730\) 40069.4 2.03156
\(731\) 24969.3 1.26337
\(732\) 0 0
\(733\) 26889.5 1.35496 0.677480 0.735542i \(-0.263072\pi\)
0.677480 + 0.735542i \(0.263072\pi\)
\(734\) 390.569 0.0196405
\(735\) 0 0
\(736\) −1194.17 −0.0598069
\(737\) 4210.89 0.210462
\(738\) 0 0
\(739\) −26240.9 −1.30621 −0.653104 0.757269i \(-0.726533\pi\)
−0.653104 + 0.757269i \(0.726533\pi\)
\(740\) −1244.77 −0.0618358
\(741\) 0 0
\(742\) 8516.82 0.421378
\(743\) −16294.7 −0.804571 −0.402285 0.915514i \(-0.631784\pi\)
−0.402285 + 0.915514i \(0.631784\pi\)
\(744\) 0 0
\(745\) 5416.00 0.266345
\(746\) −4097.87 −0.201118
\(747\) 0 0
\(748\) 2008.12 0.0981607
\(749\) 3050.07 0.148795
\(750\) 0 0
\(751\) 10383.4 0.504522 0.252261 0.967659i \(-0.418826\pi\)
0.252261 + 0.967659i \(0.418826\pi\)
\(752\) 17234.7 0.835752
\(753\) 0 0
\(754\) −23042.6 −1.11295
\(755\) −40994.7 −1.97609
\(756\) 0 0
\(757\) 7102.44 0.341008 0.170504 0.985357i \(-0.445460\pi\)
0.170504 + 0.985357i \(0.445460\pi\)
\(758\) 30964.1 1.48373
\(759\) 0 0
\(760\) 34031.2 1.62427
\(761\) 7096.71 0.338049 0.169025 0.985612i \(-0.445938\pi\)
0.169025 + 0.985612i \(0.445938\pi\)
\(762\) 0 0
\(763\) −2984.12 −0.141589
\(764\) 2075.22 0.0982705
\(765\) 0 0
\(766\) 17490.8 0.825024
\(767\) −37854.5 −1.78207
\(768\) 0 0
\(769\) 17765.5 0.833080 0.416540 0.909117i \(-0.363243\pi\)
0.416540 + 0.909117i \(0.363243\pi\)
\(770\) −13099.5 −0.613083
\(771\) 0 0
\(772\) −995.678 −0.0464187
\(773\) 22105.9 1.02858 0.514291 0.857616i \(-0.328055\pi\)
0.514291 + 0.857616i \(0.328055\pi\)
\(774\) 0 0
\(775\) −56395.7 −2.61393
\(776\) −2633.75 −0.121838
\(777\) 0 0
\(778\) 35591.8 1.64014
\(779\) −30663.7 −1.41032
\(780\) 0 0
\(781\) 28069.9 1.28607
\(782\) 3635.61 0.166252
\(783\) 0 0
\(784\) −3523.66 −0.160516
\(785\) 30051.5 1.36635
\(786\) 0 0
\(787\) 42605.5 1.92976 0.964881 0.262686i \(-0.0846085\pi\)
0.964881 + 0.262686i \(0.0846085\pi\)
\(788\) −260.201 −0.0117630
\(789\) 0 0
\(790\) −33192.1 −1.49484
\(791\) 4847.74 0.217909
\(792\) 0 0
\(793\) −45014.7 −2.01579
\(794\) 1375.38 0.0614741
\(795\) 0 0
\(796\) −258.174 −0.0114959
\(797\) 24457.1 1.08697 0.543485 0.839419i \(-0.317105\pi\)
0.543485 + 0.839419i \(0.317105\pi\)
\(798\) 0 0
\(799\) −12520.0 −0.554351
\(800\) 11467.2 0.506781
\(801\) 0 0
\(802\) −34283.8 −1.50948
\(803\) 23679.2 1.04063
\(804\) 0 0
\(805\) −2994.16 −0.131094
\(806\) −49774.4 −2.17522
\(807\) 0 0
\(808\) 28512.6 1.24142
\(809\) −15019.4 −0.652725 −0.326362 0.945245i \(-0.605823\pi\)
−0.326362 + 0.945245i \(0.605823\pi\)
\(810\) 0 0
\(811\) −4964.25 −0.214943 −0.107471 0.994208i \(-0.534275\pi\)
−0.107471 + 0.994208i \(0.534275\pi\)
\(812\) 956.511 0.0413386
\(813\) 0 0
\(814\) −5826.52 −0.250884
\(815\) −6256.44 −0.268900
\(816\) 0 0
\(817\) −42234.9 −1.80858
\(818\) 3054.09 0.130543
\(819\) 0 0
\(820\) −7460.15 −0.317707
\(821\) 40616.6 1.72659 0.863293 0.504703i \(-0.168398\pi\)
0.863293 + 0.504703i \(0.168398\pi\)
\(822\) 0 0
\(823\) 1222.42 0.0517752 0.0258876 0.999665i \(-0.491759\pi\)
0.0258876 + 0.999665i \(0.491759\pi\)
\(824\) −10533.1 −0.445313
\(825\) 0 0
\(826\) 12446.4 0.524293
\(827\) −726.223 −0.0305360 −0.0152680 0.999883i \(-0.504860\pi\)
−0.0152680 + 0.999883i \(0.504860\pi\)
\(828\) 0 0
\(829\) 36946.4 1.54789 0.773945 0.633253i \(-0.218281\pi\)
0.773945 + 0.633253i \(0.218281\pi\)
\(830\) −56828.2 −2.37655
\(831\) 0 0
\(832\) −26939.7 −1.12255
\(833\) 2559.73 0.106470
\(834\) 0 0
\(835\) −507.975 −0.0210529
\(836\) −3396.68 −0.140522
\(837\) 0 0
\(838\) −42533.2 −1.75332
\(839\) 3592.55 0.147829 0.0739145 0.997265i \(-0.476451\pi\)
0.0739145 + 0.997265i \(0.476451\pi\)
\(840\) 0 0
\(841\) −10415.3 −0.427048
\(842\) 9737.26 0.398537
\(843\) 0 0
\(844\) 1557.79 0.0635325
\(845\) −36320.4 −1.47865
\(846\) 0 0
\(847\) 1575.77 0.0639245
\(848\) −28915.1 −1.17093
\(849\) 0 0
\(850\) −34911.2 −1.40876
\(851\) −1331.77 −0.0536458
\(852\) 0 0
\(853\) 18955.7 0.760880 0.380440 0.924806i \(-0.375773\pi\)
0.380440 + 0.924806i \(0.375773\pi\)
\(854\) 14800.6 0.593053
\(855\) 0 0
\(856\) −9023.54 −0.360302
\(857\) −26150.7 −1.04235 −0.521174 0.853451i \(-0.674506\pi\)
−0.521174 + 0.853451i \(0.674506\pi\)
\(858\) 0 0
\(859\) 18422.9 0.731757 0.365879 0.930663i \(-0.380768\pi\)
0.365879 + 0.930663i \(0.380768\pi\)
\(860\) −10275.3 −0.407424
\(861\) 0 0
\(862\) 2640.27 0.104325
\(863\) −23731.6 −0.936077 −0.468038 0.883708i \(-0.655039\pi\)
−0.468038 + 0.883708i \(0.655039\pi\)
\(864\) 0 0
\(865\) −50036.8 −1.96682
\(866\) 29247.6 1.14766
\(867\) 0 0
\(868\) 2066.16 0.0807951
\(869\) −19615.0 −0.765702
\(870\) 0 0
\(871\) −8157.22 −0.317333
\(872\) 8828.44 0.342854
\(873\) 0 0
\(874\) −6149.53 −0.237999
\(875\) 12479.1 0.482137
\(876\) 0 0
\(877\) −27340.9 −1.05272 −0.526360 0.850262i \(-0.676444\pi\)
−0.526360 + 0.850262i \(0.676444\pi\)
\(878\) −46773.6 −1.79787
\(879\) 0 0
\(880\) 44473.7 1.70364
\(881\) 29829.5 1.14073 0.570363 0.821393i \(-0.306802\pi\)
0.570363 + 0.821393i \(0.306802\pi\)
\(882\) 0 0
\(883\) 28971.8 1.10417 0.552084 0.833789i \(-0.313833\pi\)
0.552084 + 0.833789i \(0.313833\pi\)
\(884\) −3890.07 −0.148006
\(885\) 0 0
\(886\) −31732.6 −1.20325
\(887\) −13412.2 −0.507708 −0.253854 0.967243i \(-0.581698\pi\)
−0.253854 + 0.967243i \(0.581698\pi\)
\(888\) 0 0
\(889\) 4594.34 0.173329
\(890\) −2007.18 −0.0755963
\(891\) 0 0
\(892\) 1398.21 0.0524838
\(893\) 21177.2 0.793583
\(894\) 0 0
\(895\) −23273.1 −0.869198
\(896\) 11765.2 0.438669
\(897\) 0 0
\(898\) 18669.4 0.693772
\(899\) 30184.7 1.11982
\(900\) 0 0
\(901\) 21005.2 0.776674
\(902\) −34919.6 −1.28902
\(903\) 0 0
\(904\) −14341.9 −0.527660
\(905\) −3597.77 −0.132148
\(906\) 0 0
\(907\) −21692.1 −0.794129 −0.397064 0.917791i \(-0.629971\pi\)
−0.397064 + 0.917791i \(0.629971\pi\)
\(908\) 3943.12 0.144116
\(909\) 0 0
\(910\) 25376.0 0.924402
\(911\) 6922.04 0.251742 0.125871 0.992047i \(-0.459827\pi\)
0.125871 + 0.992047i \(0.459827\pi\)
\(912\) 0 0
\(913\) −33582.9 −1.21734
\(914\) 49310.8 1.78453
\(915\) 0 0
\(916\) 592.403 0.0213685
\(917\) 11031.9 0.397281
\(918\) 0 0
\(919\) −32716.2 −1.17433 −0.587164 0.809468i \(-0.699755\pi\)
−0.587164 + 0.809468i \(0.699755\pi\)
\(920\) 8858.15 0.317440
\(921\) 0 0
\(922\) 55688.2 1.98915
\(923\) −54376.3 −1.93913
\(924\) 0 0
\(925\) 12788.4 0.454575
\(926\) 39409.2 1.39856
\(927\) 0 0
\(928\) −6137.56 −0.217107
\(929\) −9370.01 −0.330915 −0.165458 0.986217i \(-0.552910\pi\)
−0.165458 + 0.986217i \(0.552910\pi\)
\(930\) 0 0
\(931\) −4329.71 −0.152417
\(932\) 4512.60 0.158600
\(933\) 0 0
\(934\) −7058.40 −0.247278
\(935\) −32307.5 −1.13002
\(936\) 0 0
\(937\) −50755.5 −1.76960 −0.884798 0.465975i \(-0.845704\pi\)
−0.884798 + 0.465975i \(0.845704\pi\)
\(938\) 2682.06 0.0933606
\(939\) 0 0
\(940\) 5152.20 0.178772
\(941\) −1528.30 −0.0529449 −0.0264724 0.999650i \(-0.508427\pi\)
−0.0264724 + 0.999650i \(0.508427\pi\)
\(942\) 0 0
\(943\) −7981.60 −0.275627
\(944\) −42256.3 −1.45691
\(945\) 0 0
\(946\) −48096.8 −1.65303
\(947\) −14564.9 −0.499786 −0.249893 0.968274i \(-0.580395\pi\)
−0.249893 + 0.968274i \(0.580395\pi\)
\(948\) 0 0
\(949\) −45870.7 −1.56905
\(950\) 59051.3 2.01671
\(951\) 0 0
\(952\) −7572.88 −0.257814
\(953\) 26605.3 0.904334 0.452167 0.891933i \(-0.350651\pi\)
0.452167 + 0.891933i \(0.350651\pi\)
\(954\) 0 0
\(955\) −33387.0 −1.13129
\(956\) −1646.77 −0.0557117
\(957\) 0 0
\(958\) 48473.1 1.63475
\(959\) 5546.06 0.186748
\(960\) 0 0
\(961\) 35411.0 1.18865
\(962\) 11287.0 0.378281
\(963\) 0 0
\(964\) −7449.69 −0.248899
\(965\) 16018.9 0.534370
\(966\) 0 0
\(967\) −13268.4 −0.441244 −0.220622 0.975359i \(-0.570809\pi\)
−0.220622 + 0.975359i \(0.570809\pi\)
\(968\) −4661.86 −0.154791
\(969\) 0 0
\(970\) −7156.66 −0.236893
\(971\) 40126.2 1.32617 0.663085 0.748544i \(-0.269247\pi\)
0.663085 + 0.748544i \(0.269247\pi\)
\(972\) 0 0
\(973\) 18727.5 0.617035
\(974\) 4780.44 0.157264
\(975\) 0 0
\(976\) −50249.1 −1.64799
\(977\) −997.072 −0.0326501 −0.0163251 0.999867i \(-0.505197\pi\)
−0.0163251 + 0.999867i \(0.505197\pi\)
\(978\) 0 0
\(979\) −1186.15 −0.0387228
\(980\) −1053.37 −0.0343354
\(981\) 0 0
\(982\) −62167.5 −2.02021
\(983\) 20022.9 0.649677 0.324838 0.945770i \(-0.394690\pi\)
0.324838 + 0.945770i \(0.394690\pi\)
\(984\) 0 0
\(985\) 4186.23 0.135415
\(986\) 18685.5 0.603518
\(987\) 0 0
\(988\) 6579.94 0.211878
\(989\) −10993.5 −0.353462
\(990\) 0 0
\(991\) 1277.26 0.0409419 0.0204710 0.999790i \(-0.493483\pi\)
0.0204710 + 0.999790i \(0.493483\pi\)
\(992\) −13257.8 −0.424329
\(993\) 0 0
\(994\) 17878.7 0.570500
\(995\) 4153.61 0.132340
\(996\) 0 0
\(997\) 59113.7 1.87778 0.938891 0.344215i \(-0.111855\pi\)
0.938891 + 0.344215i \(0.111855\pi\)
\(998\) 4028.87 0.127787
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1449.4.a.i.1.2 8
3.2 odd 2 161.4.a.b.1.7 8
21.20 even 2 1127.4.a.e.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.a.b.1.7 8 3.2 odd 2
1127.4.a.e.1.7 8 21.20 even 2
1449.4.a.i.1.2 8 1.1 even 1 trivial